1
|
Wang T, Chen M, Zhu J, Li N, Wang X. Anodic ammonium oxidation in microbial electrolysis cell: Towards nitrogen removal in low C/N environment. WATER RESEARCH 2023; 242:120276. [PMID: 37392506 DOI: 10.1016/j.watres.2023.120276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Biological nitrogen removal in low C/N environment is challenging in wastewater treatment for a long time. Autotrophic ammonium oxidation is promising due to the no need of carbon source addition, but alternative electron acceptors other than oxygen has to be widely investigated. Recently, microbial electrolysis cell (MEC), which applies a polarized inert electrode as the electron harvester, has been proved effective to oxidize ammonium with electroactive biofilm. That is, anodic microbes stimulated by exogenous low power can extract electron from ammonium and transfer electron to electrodes. This review aims to consolidate the recent advances in anodic ammonium oxidation in MEC. Various technologies based on different functional microbes and mechanisms of these processes are reviewed. Thereafter, the crucial factors influencing the ammonium oxidation technology are discussed. Challenges and prospects of anodic ammonium oxidation in ammonium-containing wastewater treatment are also proposed to provide valuable insights on the technologic reference and potential value of MEC in ammonium-containing wastewater treatment.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
2
|
Cano V, Nolasco MA, Kurt H, Long C, Cano J, Nunes SC, Chandran K. Comparative assessment of energy generation from ammonia oxidation by different functional bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161688. [PMID: 36708822 DOI: 10.1016/j.scitotenv.2023.161688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Bioelectrochemical ammonia oxidation (BEAO) in a microbial fuel cell (MFC) is a recently discovered process that has the potential to reduce energy consumption in wastewater treatment. However, level of energy and limiting factors of this process in different microbial groups are not fully understood. This study comparatively investigated the BEAO in wastewater treatment by MFCs enriched with different functional groups of bacteria (confirmed by 16S rRNA gene sequencing): electroactive bacteria (EAB), ammonia oxidizing bacteria (AOB), and anammox bacteria (AnAOB). Ammonia oxidation rates of 0.066, 0.083 and 0.082 g NH4+-N L-1 d-1 were achieved by biofilms enriched with EAB, AOB, and AnAOB, respectively. With influent 444 ± 65 mg NH4+-N d-1, nitrite accumulation between 84 and 105 mg N d-1 was observed independently of the biofilm type. The AnAOB-enriched biofilm released electrons at higher potential energy levels (anode potential of 0.253 V vs. SHE) but had high internal resistance (Rint) of 299 Ω, which limits its power density (0.2 W m-3). For AnAOB enriched biofilm, accumulation of nitrite was a limiting factor for power output by allowing conventional anammox activity without current generation. AOB enriched biofilm had Rint of 18 ± 1 Ω and yielded power density of up to 1.4 W m-3. The activity of the AOB-enriched biofilm was not dependent on the accumulation of dissolved oxygen and achieved 1.5 fold higher coulombic efficiency when sulfate was not available. The EAB-enriched biofilm adapted to oxidize ammonia without organic carbon, with Rint of 19 ± 1 Ω and achieved the highest power density of 11 W m-3. Based on lab-scale experiments (scaling-up factors not considered) energy savings of up to 7 % (AnAOB), 44 % (AOB) and 475 % (EAB) (positive energy balance), compared to conventional nitrification, are projected from the applications of BEAO in wastewater treatment plants.
Collapse
Affiliation(s)
- Vitor Cano
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil; Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Marcelo A Nolasco
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Halil Kurt
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Chenghua Long
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Julio Cano
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Sabrina C Nunes
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Kartik Chandran
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| |
Collapse
|
3
|
Kong Z, Zhou Y, Fu Z, Zhang Y, Yan R. Mechanism of stable power generation and nitrogen removal in the ANAMMOX-MFC treating low C/N wastewater. CHEMOSPHERE 2022; 296:133937. [PMID: 35167835 DOI: 10.1016/j.chemosphere.2022.133937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the mechanism of enhanced power generation and nitrogen removal in an ANAMMOX-MFC reactor through subsequent acetate addition. Data showed that nearly 99% total nitrogen removal (≤1 mg L-1) and 1.41 W m-3 power generation were achieved synchronously under low COD/N (∼1.5) after the subsequent addition of acetate (100 mgCOD·L-1). The columbic efficiency of the system has increased by 15 times (from 0.64% to 9.48%) after adding acetate. Batch tests showed that the denitrification and ANAMMOX progress occurred synchronously before acetate addition the nitrogen removal rate was accelerated. A distinct shift of bacterial community driven by acetate addition was discovered. The high throughput sequencing analysis indicated acetate addition stimulated the enrichment of denitrifiers, such as Aquimonas, Bradyrhizobium, Thauera, and the potential exoelectrogens changing from Comamonas to Pseudomonas. Functional genes forecasts based on KEGG database and COG database showed that the expressions of TCA functional genes were highly promoted in ANAMMOX-MFC, which demonstrated the enhanced electron transfer pathway driven by acetate addition under low COD/N ratio.
Collapse
Affiliation(s)
- Zhiyuan Kong
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yongheng Zhou
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China
| | - Zhimin Fu
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China.
| | - Yuancan Zhang
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China
| | - Rong Yan
- Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010031, China
| |
Collapse
|
4
|
Joel Koffi N, Okabe S. Effect of poised cathodic potential on anodic ammonium nitrogen removal from domestic wastewater by air-cathode microbial fuel cells. BIORESOURCE TECHNOLOGY 2022; 348:126807. [PMID: 35124217 DOI: 10.1016/j.biortech.2022.126807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Performances of anodic ammonia oxidation have been investigated for various bioelectrochemical systems at a wide range of poised anodic potentials in the literature. The effect of poised cathodic potential on ammonium nitrogen (NH4+-N) and total nitrogen (TN, sum of NH4+-N, NO2--N, and NO3--N) removal from domestic wastewater by single chamber air-cathode microbial fuel cells (MFCs) was investigated. Poising the air-cathode potential at +0.7 V vs. SHE significantly increased current generation (from 11 ± 1 mA to 22.8 ± 5 mA) and oxygen permeation into the MFC through the air-cathode (from 75.4 ± 1.2 g-O2/m3/d to 151 ± 3.7 g-O2/m3/d), which consequently resulted in a high NH4+-N removal rate of 150 ± 13 g-NH4+-N/m3/d and TN removal rate of 63 ± 16 g-TN/m3/d. These high NH4+-N and TN removal rates could be attributed to the enhancement of dual respiratory pathways: the electrode-assisted anodic and aerobic NH4+ oxidation.
Collapse
Affiliation(s)
- N'dah Joel Koffi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
5
|
Koffi NJ, Okabe S. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell. CHEMOSPHERE 2021; 274:129715. [PMID: 33529951 DOI: 10.1016/j.chemosphere.2021.129715] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen removal from wastewater is an indispensable but highly energy-demanding process, and thus more energy-saving treatment processes are required. Here, we investigated the performance of bioelectrochemical ammonium nitrogen (NH4+-N) removal from real domestic wastewater without energy-intensive aeration by a single chamber microbial electrolysis cell (MEC) that was electrically powered by a double chamber microbial fuel cell (MFC). Anoxic NH4+-N oxidation and total nitrogen (TN) removal rates were determined at various applied voltages (0-1.2 V), provided by the MFC. The MEC achieved a NH4+-N oxidation rate of 151 ± 42 g NH4+-N m-3 d-1 and TN removal rate of 95 ± 42 g-TN m-3 d-1 without aeration at the applied voltage of 0.8 V (the anode potential Eanode = +0.633 ± 0.218 V vs. SHE). These removal rates were much higher than the previously reported values and conventional biological nitrogen removal processes. Open and closed-circuit MEC batch experiments confirmed that anoxic NH4+-N oxidation was an electrochemically mediated biological process (that is, an anode acted as an electron acceptor) and denitrification occurred simultaneously without NO2- and NO3- accumulation. Moreover, ex-situ15N tracer experiment and microbial community analysis revealed that anammox and heterotrophic denitrification mainly contributed to the TN removal. Thus, the bioelectrochemical anodic NH4+-N oxidation was coupled with anammox and denitrification in this MFC-assisted MEC system. Taken together, our MFC-driven single chamber MEC could be a high rate energy-saving nitrogen removal process without external carbon and energy input and high energy-demanding aeration.
Collapse
Affiliation(s)
- N'Dah Joel Koffi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
6
|
Mohamed A, Zmuda HM, Ha PT, Coats ER, Beyenal H. Large-scale switchable potentiostatically controlled/microbial fuel cell bioelectrochemical wastewater treatment system. Bioelectrochemistry 2020; 138:107724. [PMID: 33485135 DOI: 10.1016/j.bioelechem.2020.107724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The treatment of municipal wastewater is an energy-intensive process, with the delivery of oxygen as an electron acceptor accounting for a significant share of the total energy consumption. Microbial communities growing on polarized electrodes can facilitate wastewater treatment processes by exchanging electrons with the electrodes. As a new approach, we combined the use of polarized electrodes with microbial fuel cells (MFCs) to develop a switchable dual-mode bioelectrochemical wastewater treatment system. In this system, we first enriched microbial communities on polarized anodes and cathodes. After enrichment, the system was switched to either a self-powered MFC (SP-MFC) mode or a potentiostatically controlled (PC) mode. The system was evaluated at the laboratory scale (260 L, 4 anode and cathode pairs) and the pilot scale (1200 L, 16 anode and cathode pairs). PC and SP-MFC systems showed improved COD removal relative to control (41.6 ± 3.5 and 38.4 ± 3.1 vs 28.8 ± 2.1 mg L-1 d-1, respectively). The laboratory-scale system was operated without biological or electrical interruption for one year. Finally, specific enrichment of active microbial communities was observed on PC anodes in comparison to mixed-operation and non-polarized control anodes. The combined PC and SP-MFC systems allowed us to develop a sustainable and failure-free bioelectrochemical wastewater treatment system.
Collapse
Affiliation(s)
- Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hannah M Zmuda
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Phuc T Ha
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
7
|
Zheng D, Gu W, Zhou Q, Zhang L, Wei C, Yang Q, Li D. Ammonia oxidation and denitrification in a bio-anode single-chambered microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2020; 310:123466. [PMID: 32388207 DOI: 10.1016/j.biortech.2020.123466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, anodic ammonia oxidation and denitrification were performed in single-chamber bioelectrochemical systems at a wide range of anodic potentials (-400 to +400 mV) versus Ag/AgCl. The low coulombic efficiencies (~30.84%) in reactors were mainly due to electrons being transferred to atmospheric oxygen through the electrode and reversal of the electrode. The removal efficiencies of acetate, ammonia, and total nitrogen were 100%, 100%, and 40.44% at +200 mV and 100%, 100%, and 50.24% at -200 mV, respectively. The nitrogen-removal mechanisms were nitrogen respiration/nitrate reduction at +200 mV and denitrification at -200 mV, and ammonia oxidation occurred by coupling with sulfate-reducing at -300 and -400 mV. Thauera, Comamonas, Alicycliphilus, Nitrosomonas, Desulforhabdus, Dethiosulfatibacter, and Desulfomicrobium were the dominant genera at the anode which participated in the nitrification/denitrification or sulfate-reducing processes. In summary, ammonia oxidation and denitrification could be coupled with carbon-removal or sulfur-reduction using a bio-anode with a suitable anodic potential.
Collapse
Affiliation(s)
- Decong Zheng
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Gu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinmao Zhou
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuicui Wei
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhuoma Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Mai Q, Yang G, Cao J, Zhang X, Zhuang L. Stratified microbial structure and activity within anode biofilm during electrochemically assisted brewery wastewater treatment. Biotechnol Bioeng 2020; 117:2023-2031. [DOI: 10.1002/bit.27342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Qijun Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Jiayao Cao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Xia Zhang
- Guangzhou Zhujiang Brewery Guangzhou China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| |
Collapse
|
9
|
Zeng D, Yin Q, Du Q, Wu G. System performance and microbial community in ethanol-fed anaerobic reactors acclimated with different organic carbon to sulfate ratios. BIORESOURCE TECHNOLOGY 2019; 278:34-42. [PMID: 30669029 DOI: 10.1016/j.biortech.2019.01.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Sulfate influences the organics removal and methanogenic performance during anaerobic wastewater treatment. System performance, microbial community and metabolic pathways in ethanol-fed anaerobic reactors were investigated under different COD/SO42- ratios (2, 1 and 0.67) and control without sulfate addition. The sulfate removal percentages declined (99%, 60% and 49%) with decreasing COD/SO42- ratios, and methanogenesis was completely inhibited. Acetate accumulated to 903-734 mg/L, though propionate was constantly lower than 30 mg/L. Without sulfate, acetate and propionate did not accumulate, despite the extended time for propionate degradation. Incomplete oxidizing sulfate reducing bacteria (Desulfobulbus and Desulfomicrobium) and hydrolysis-acidification genera (Treponema and Bacteroidales) predominated but could not degrade acetate. Desulfobulbus was the key genus for propionate degradation through the pyruvate & propanoate metabolism pathway. Pseudomonas and Desulfobulbus, possessing genes encoding Type IV pili and cytochrome c6 OmcF, respectively, potentially participated in the direct interspecies electron transfer in sulfate-rich conditions.
Collapse
Affiliation(s)
- Danfei Zeng
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qing Du
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
10
|
Jiang Y, Zeng RJ. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application. BIORESOURCE TECHNOLOGY 2019; 271:439-448. [PMID: 30292689 DOI: 10.1016/j.biortech.2018.09.133] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The extracellular electron transfer (EET) between microorganisms and electrodes forms the basis for microbial electrochemical technology (MET), which recently have advanced as a flexible platform for applications in energy and environmental science. This review, for the first time, focuses on the electrode-biofilm capable of bidirectional EET, where the electrochemically active bacteria (EAB) can conduct both the outward EET (from EAB to electrodes) and the inward EET (from electrodes to EAB). Only few microorganisms are tested in pure culture with the capability of bidirectional EET, however, the mixed culture based bidirectional EET offers great prospects for biocathode enrichment, pollutant complete mineralization, biotemplated material development, pH stabilization, and bioelectronic device design. Future efforts are necessary to identify more EAB capable of the bidirectional EET, to balance the current density, to evaluate the effectiveness of polarity reversal for biocathode enrichment, and to boost the future research endeavors of such a novel function.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Tang X, Guo Y, Wu S, Chen L, Tao H, Liu S. Metabolomics Uncovers the Regulatory Pathway of Acyl-homoserine Lactones Based Quorum Sensing in Anammox Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2206-2216. [PMID: 29378137 DOI: 10.1021/acs.est.7b05699] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acyl-homoserine lactones (AHLs)-mediated quorum sensing in bacterial communities have been extensively observed. However, the metabolic pathways regulated by AHLs in bacteria remain elusive. Here, we combined long-term reactor operation with microbiological and metabolomics analyses to explore the regulatory pathways for different AHLs in anammox consortia, which perform promising nitrogen removal for wastewater treatment. The results showed that no obvious shifts induced by exogenous AHLs occurred in the microbial community and, mainly, dosing AHLs induced changes in the metabolites. 3OC6-HSL, C6-HSL, and C8-HSL controlled the electron transport carriers that influence the bacterial activity. In contrast, only 3OC6-HSL regulated LysoPC(20:0) metabolism, which affected bacterial growth. AHLs mainly regulated the synthesis of the amino acids Ala, Val, and Glu and selectively regulated Asp and Leu to affect extracellular proteins. Simultaneously, all the AHLs regulated the ManNAc biosynthetic pathways, while OC6-HSL, OC8-HSL, and C6-HSL particularly enriched the UDP-GlcNAc pathway to promote exopolysaccharides, resulting in different aggregation levels of the anammox consortia. Our results not only provide the first metabolic insights into the means by which AHLs affect anammox consortia but also hint at potential strategies for overcoming the limitations of the long start-up period required for wastewater treatment by anammox processing.
Collapse
Affiliation(s)
- Xi Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Yongzhao Guo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- School of Environment and Energy, Shenzhen Graduate School, Peking University , Shenzhen 518055, China
| | - Shanshan Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Liming Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Huchun Tao
- School of Environment and Energy, Shenzhen Graduate School, Peking University , Shenzhen 518055, China
| | - Sitong Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China , Beijing 100871, China
- College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
- School of Environment and Energy, Shenzhen Graduate School, Peking University , Shenzhen 518055, China
| |
Collapse
|