1
|
AbdelMageed MF, ElRakaiby MT. Algal-bacterial bioremediation of cyanide-containing wastewater in a continuous stirred photobioreactor. World J Microbiol Biotechnol 2025; 41:26. [PMID: 39779603 PMCID: PMC11711256 DOI: 10.1007/s11274-024-04230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L-1 potassium cyanide, 3 g L-1 benzonitrile, and 1 g L-1 sodium salicylate when incubated as 10% v/v in MSM at 30 ℃. However, it failed to degrade potassium thiocyanate at all tested concentrations. The microalgal isolate was identified by electron microscopy as a strain of Chlorella spp.. Algal toxicity was tested by incubating the microalgae as 6% v/v in MSM containing 2 g L- 1 NaHCO3 with increasing concentrations of the pollutants. Results showed that 0.05 g L-1 KCN, 1.5 g L-1 benzonitrile, 5 g L -1 KSCN, and 5 g L-1 sodium salicylate inhibited 93%, 96%, 75%, and 21% of algal growth, respectively. In a continuous stirred photobioreactor, the bacterial-microalgal microcosm detoxified synthetic wastewater containing 0.2 g L-1 KCN, 0.1 g L-1 benzonitrile, and 0.5 g L-1 sodium salicylate in 3.5 days of hydraulic retention time. System failure was recorded when the KCN concentration was increased to 0.25 g L-1. The effluent had no inhibitory effect on the germination of Lepidium sativum seeds in phytotoxicity testing. Temperature, pH, and chitosan effects were assessed on the algal/bacterial settleability. Statistical analysis showed no significant difference between the tested parameters. The microcosm represents a potential candidate for the treatment of industrial wastewater containing cyanide compounds.
Collapse
Affiliation(s)
- Mona F AbdelMageed
- The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Marwa T ElRakaiby
- The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Zamnuri MAHB, Qiu S, Rizalmy MAAB, He W, Yusoff S, Roeroe KA, Du J, Loh KH. Integration of IoT in Small-Scale Aquaponics to Enhance Efficiency and Profitability: A Systematic Review. Animals (Basel) 2024; 14:2555. [PMID: 39272340 PMCID: PMC11393993 DOI: 10.3390/ani14172555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaponics combines aquaculture and hydroponics to offer a sustainable approach to agriculture, addressing food security issues with minimal environmental harm. However, small-scale practitioners face challenges due to a lack of professional knowledge in water chemistry and system maintenance. Economic hurdles, such as operational costs and energy-intensive components, hinder the viability of small-scale aquaponics. Selecting suitable fish and plant species, along with appropriate stocking densities, is crucial. Media Bed (MB), Deep Water Culture (DWC), and the Nutrient Film Technique (NFT) are commonly used hydroponic techniques. This study outlines optimal conditions, including water quality, temperature, pH, and nutrient concentrations, essential for symbiotic fish and plant cultivation. Integrating IoT technology enhances efficiency and profitability by optimizing resource utilization, monitoring water quality, and ensuring optimal growth conditions. Knowledge sharing among practitioners fosters innovation and sustainability through collaborative learning and best practices exchange. Establishing a community for knowledge sharing is vital for continuous improvement, advancing small-scale aquaponics towards a more efficient and sustainable future.
Collapse
Affiliation(s)
| | - Shuting Qiu
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- APEC Marine Sustainable Development Center, Xiamen 361005, China
| | | | - Weiyi He
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Sumiani Yusoff
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Jianguo Du
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- APEC Marine Sustainable Development Center, Xiamen 361005, China
- Faculty of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China
| | - Kar-Hoe Loh
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Ji M, Gao H, Zhang J, Hu Z, Liang S. Environmental impacts on algal-bacterial-based aquaponics system by different types of carbon source addition: water quality and greenhouse gas emission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26665-26674. [PMID: 38451459 DOI: 10.1007/s11356-024-32717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Carbon source addition is an important way improving the carbon and nitrogen transformation in aquaculture system; however, its effectiveness of algal-bacterial-based aquaponics (AA) through carbon source addition is still vague. In this study, the influences of organic carbon (OC-AA system) and inorganic carbon (IC-AA system) addition and without carbon source addition (C-AA system) on the operational performance of AA system were investigated. Results showed that 10.1-19.5% increase of algal-bacterial biomass enhanced the purifying effect of ammonia nitrogen in OC-AA system and IC-AA system relative to C-AA system. Moreover, extra electron donor supply in the OC-AA system obtained the lowest NO3--N concentration. However, that was at the cost of aggravated N2O conversion ratio, which increased by more than 2.0-folds than other systems, attributing to 2.9-folds increase of nirS gene abundance. In addition, carbon source addition increased the pH and then decreased the fish biomass production of AA system. The results of this study would provide theoretical supports of carbon source addition on the performance of nutrient transformation and greenhouse gas effect in AA system.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Hang Gao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
4
|
Sadvakasova AK, Bauenova MO, Kossalbayev BD, Zayadan BK, Huang Z, Wang J, Balouch H, Alharby HF, Chang JS, Allakhverdiev SI. Synthetic algocyanobacterial consortium as an alternative to chemical fertilizers. ENVIRONMENTAL RESEARCH 2023; 233:116418. [PMID: 37321341 DOI: 10.1016/j.envres.2023.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The use of unregulated pesticides and chemical fertilizers can have detrimental effects on biodiversity and human health. This problem is exacerbated by the growing demand for agricultural products. To address these global challenges and promote food and biological security, a new form of agriculture is needed that aligns with the principles of sustainable development and the circular economy. This entails developing the biotechnology market and maximizing the use of renewable and eco-friendly resources, including organic fertilizers and biofertilizers. Phototrophic microorganisms capable of oxygenic photosynthesis and assimilation of molecular nitrogen play a crucial role in soil microbiota, interacting with diverse microflora. This suggests the potential for creating artificial consortia based on them. Microbial consortia offer advantages over individual organisms as they can perform complex functions and adapt to variable conditions, making them a frontier in synthetic biology. Multifunctional consortia overcome the limitations of monocultures and produce biological products with a wide range of enzymatic activities. Biofertilizers based on such consortia present a viable alternative to chemical fertilizers, addressing the issues associated with their usage. The described capabilities of phototrophic and heterotrophic microbial consortia enable effective and environmentally safe restoration and preservation of soil properties, fertility of disturbed lands, and promotion of plant growth. Hence, the utilization of algo-cyano-bacterial consortia biomass can serve as a sustainable and practical substitute for chemical fertilizers, pesticides, and growth promoters. Furthermore, employing these bio-based organisms is a significant stride towards enhancing agricultural productivity, which is an essential requirement to meet the escalating food demands of the growing global population. Utilizing domestic and livestock wastewater, as well as CO2 flue gases, for cultivating this consortium not only helps reduce agricultural waste but also enables the creation of a novel bioproduct within a closed production cycle.
Collapse
Affiliation(s)
- Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bekzhan D Kossalbayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Satpaev 22, Almaty, 050043, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Huma Balouch
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Turkey.
| |
Collapse
|
5
|
Liao L, Chen B, Deng K, He Q, Lin G, Guo J, Yan P. Effect of the N-hexanoyl-L-homoserine Lactone on the Carbon Fixation Capacity of the Algae-Bacteria System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5047. [PMID: 36981956 PMCID: PMC10049018 DOI: 10.3390/ijerph20065047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Algae-bacteria systems are used widely in wastewater treatment. N-hexanoyl-L-homoserine lactone (AHL) plays an important role in algal-bacteria communication. However, little study has been conducted on the ability of AHLs to regulate algal metabolism and the carbon fixation ability, especially in algae-bacteria system. In this study, we used the Microcystis aeruginosa + Staphylococcus ureilyticus strain as a algae-bacteria system. The results showed that 10 ng/L C6-HSL effectively increased the chlorophyll-a (Chl-a) concentration and carbon fixation enzyme activities in the algae-bacteria group and algae group, in which Chl-a, carbonic anhydrase activity, and Rubisco enzyme increased by 40% and 21%, 56.4% and 137.65%, and 66.6% and 10.2%, respectively, in the algae-bacteria group and algae group, respectively. The carbon dioxide concentration mechanism (CCM) model showed that C6-HSL increased the carbon fixation rate of the algae-bacteria group by increasing the CO2 transport rate in the water and the intracellular CO2 concentration. Furthermore, the addition of C6-HSL promoted the synthesis and secretion of the organic matter of algae, which provided biogenic substances for bacteria in the system. This influenced the metabolic pathways and products of bacteria and finally fed back to the algae. This study provided a strategy to enhance the carbon fixation rate of algae-bacteria consortium based on quorum sensing.
Collapse
Affiliation(s)
- Lei Liao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Bin Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Kaikai Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Qiang He
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Guijiao Lin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Key Laboratory of Ecological Environment of Three Gorges Reservoir Area, Ministry of Education, Chongqing 400045, China
| |
Collapse
|
6
|
Qixin L, Xuan F, Zhiya S, Wenxin S, Shuo W, Ji L. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing. BIORESOURCE TECHNOLOGY 2022; 354:127161. [PMID: 35429596 DOI: 10.1016/j.biortech.2022.127161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In order to further obtain sustainable wastewater treatment technology, in-depth analysis based on algal-bacterial symbiosis, quorum sensing signal molecules and algal-bacterial relationship will lay the foundation for the synergistic algal-bacterial wastewater treatment process. The methods of enhancing algae and bacteria wastewater treatment technology were systematically explored, including promoting symbiosis, reducing algicidal behavior, eliminating the interference of quorum sensing inhibitor, and developing algae and bacteria granular sludge. These findings can provide guidance for sustainable economic and environmental development, and facilitate carbon emissions reduction by using algae and bacteria synergistic wastewater treatment technology in further attempts. The future work should be carried out in the following four aspects: (1) Screening of dominant microalgae and bacteria; (2) Coordination of stable (emerging) contaminants removal; (3) Utilization of algae to produce fertilizers and feed (additives), and (4) Constructing recombinant algae and bacteria for reducing carbon emissions and obtaining high value-added products.
Collapse
Affiliation(s)
- Liu Qixin
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Feng Xuan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Sheng Zhiya
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 2W2, Canada
| | - Shi Wenxin
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Wang Shuo
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| | - Li Ji
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| |
Collapse
|
7
|
Ji M, Gao H, Diao L, Zhang J, Liang S, Hu Z. Environmental impacts of antibiotics addition to algal-bacterial-based aquaponic system. Appl Microbiol Biotechnol 2022; 106:3777-3786. [PMID: 35513518 DOI: 10.1007/s00253-022-11944-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
Abstract
Antibiotics usage is a double-edged sword among the production promotion and environmental aggravation of aquaculture system. In this study, the effects of sulfadiazine addition on algal-bacterial-based aquaponic (AA) system were thoroughly investigated. Results showed that sulfadiazine addition increased the nitrogen (N) and carbon (C) recovery of AA system by 1.3 times and 2.9 times, respectively. Meanwhile, the global warming potential was increased by 63% due to aggravated nitrous oxide (N2O) emission. This was mainly because sulfadiazine increased the abundance of nirS genes and decreased the abundance of nosZ genes, which subsequently led to higher N2O accumulation. Furthermore, resistance gene (sul-1, sul-2, and intI-1) abundance in the treatment group was an order higher than that of the control group, which would give rise to the environmental risk for agroecological system. KEY POINTS: • Sulfadiazine addition increased NUE at expense of aggravated GHG emissions. • Sulfadiazine disrupted the balance between the abundance of nirS and nosZ genes. • Sulfadiazine addition increased the resistance gene abundance of AA system.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Hang Gao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lingling Diao
- Chengyang Branch of Qingdao Ecological Environment Bureau, Qingdao, 266109, People's Republic of China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.,College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
8
|
Saravanan A, Kumar PS, Varjani S, Jeevanantham S, Yaashikaa PR, Thamarai P, Abirami B, George CS. A review on algal-bacterial symbiotic system for effective treatment of wastewater. CHEMOSPHERE 2021; 271:129540. [PMID: 33434824 DOI: 10.1016/j.chemosphere.2021.129540] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Industrialization, urbanization and other anthropogenic activities releases different organic and inorganic toxic chemicals into the environment which prompted the water contamination in the environment. Different physical and chemical techniques have been employed to treat the contaminated wastewater, among them biological wastewater treatment using algae has been studied extensively to overwhelm the constraints related to the usually utilized wastewater treatment techniques. The presence of bacterial biota in the wastewater will form a bond with algae and act as a natural water purification system. The removal efficiency of single algae systems was very low in contrast with that of algal-bacterial systems. Heterotrophic microorganisms separate natural organic matter that is discharged by algae as dissolved organic carbon (DOC) and discharges CO2 that the algae can take up for photosynthesis. Algae bacteria associations offer an exquisite answer for tertiary and scrape medicines because of the capacity of micro-algae to exploit inorganic compounds for their development. Furthermore, for their ability to evacuate noxious contaminants, in this way, it does not prompt optional contamination. The present review contribute the outline of algae-bacteria symbiotic relationship and their applications in the wastewater treatment. The role of algae and bacteria in the wastewater treatment have been elucidated in this review. Moreover, the efforts have been imparted the importance of alage-bacteria consortium and its applications for various pollutant removal from the environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105 India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Thamarai
- Department of Food Technology, JCT College of Engineering and Technology, Coimbatore, 641105, India
| | - B Abirami
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
9
|
Gao H, Hu Z. Reply to the letter to the editor on potential application of algae in aquaponics: discussion on the critical issues of nutrients recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4879-4880. [PMID: 32279268 DOI: 10.1007/s11356-020-08726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Hang Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS. Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol Adv 2020; 47:107684. [PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
Collapse
Affiliation(s)
- Jasmine Jill Jia Yi Yong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
11
|
Teng SY, Yew GY, Sukačová K, Show PL, Máša V, Chang JS. Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnol Adv 2020; 44:107631. [PMID: 32931875 DOI: 10.1016/j.biotechadv.2020.107631] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
Collapse
Affiliation(s)
- Sin Yong Teng
- Brno University of Technology, Institute of Process Engineering, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Kateřina Sukačová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno 603 00, Czech Republic.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Vítězslav Máša
- Brno University of Technology, Institute of Process Engineering, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
12
|
Fang Y, Chen X, Hu Z, Liu D, Gao H, Nie L. Effects of hydraulic retention time on the performance of algal-bacterial-based aquaponics (AA): focusing on nitrogen and oxygen distribution. Appl Microbiol Biotechnol 2018; 102:9843-9855. [PMID: 30191289 DOI: 10.1007/s00253-018-9338-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 11/30/2022]
Abstract
The effects of hydraulic retention time (HRT) on the performance of algal-bacterial-based aquaponics (AA) were investigated in this study. Both the highest fish growth and algal biomass increase were observed in the AA system at 2-day HRT, resulting in the highest nitrogen utilization efficiency (NUE) (39.28%) in this microcosm. On the contrary, ammonia oxidation bacteria (AOB) abundance at 4-day HRT was approximately ten times higher than that at 2-day HRT, since longer HRT would benefit bacterial growth. The 15N labeling study showed that microalgae assimilation was the main pathway of NH4+ removal in the AA system, and oxygen produced by microalgae could in situ support complete nitrification, thus leading to much lower NH4+ concentrations at 2-day HRT. Accordingly, better water quality was achieved at 2-day HRT. Considering all the factors, HRT of 2-day was considered to be optimal for the AA system.
Collapse
Affiliation(s)
- Yingke Fang
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Xinhan Chen
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| | - Daoxing Liu
- Environmental Engineering Co., Ltd., Shandong Academy of Environmental Science, Jinan, 250100, China
| | - Hang Gao
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Lichao Nie
- Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, 250061, Shandong, China
| |
Collapse
|
13
|
Wu H, Zou Y, Lv J, Hu Z. Impacts of aeration management and polylactic acid addition on dissolved organic matter characteristics in intensified aquaponic systems. CHEMOSPHERE 2018; 205:579-586. [PMID: 29715672 DOI: 10.1016/j.chemosphere.2018.04.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Aquaponics as a potential alternative for conventional aquaculture industry has increasingly attracted worldwide attention in recent years. However, the sustainable application of aquaponics is facing a growing challenge. In particular, there is a pressing need to better understand and control the accumulation of dissolved organic matter (DOM) in aquaponics with the aim of optimizing nitrogen utilization efficiency. This study was aiming for assessing the characteristics of DOM in the culture water and the relationship with the nitrogen transformations in different intensified aquaponic systems with hydroponic aeration supplement and polylactic acid (PLA) addition. Two enhancing attempts altered the quantity of DOM in aquaponic systems significantly with a varying DOM content of 21.98-45.65 mg/L. The DOM could be represented by four identified fluorescence components including three humic -like materials (83-86%) and one tryptophan-like substance (14-17%). The fluorescence intensities of humic acid-like components were decreased significantly after the application of intensifying strategies, which indicating that two enhancing attempts possibly affected humic acid-like fluorescence. Variation of optical indices also suggested the reductions of water DOM which could be impacted by the enhancing nitrogen treatment processes. These findings will benefit the potential applications and sustainable operation of these strategies in aquaponics.
Collapse
Affiliation(s)
- Haiming Wu
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yina Zou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan, 250100, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jialong Lv
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan, 250100, PR China
| |
Collapse
|