1
|
Delran P, Barthe L, Peydecastaing J, Pontalier PY, Guihéneuf F, Frances C. Integrating wet stirred-bead milling for Tetraselmis suecica biorefinery: Operating parameters influence and specific energy efficiency. BIORESOURCE TECHNOLOGY 2024; 394:130181. [PMID: 38109980 DOI: 10.1016/j.biortech.2023.130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Stirred bead milling proved to be an efficient cell destruction technique in a biorefinery unit for the extraction of over 95 % of proteins and 60 % of carbohydrates from the green marine microalga Tetraselmis suecica. Optimum conditions, expressed in terms of metabolite yield and energy consumption, were found for average values of bead size and agitator rotation speed. The higher the microalgae concentration, up to 100 g.L-1, which is adequate for biofilm algae growth in an industrial unit, the more efficient the cell destruction process. Cell destruction rates and metabolite extraction yields are similar in pendular and recycling modes, but the pendular configuration reduces the residence time of the suspension in the grinding chamber, which is less costly. With regard to the cell destruction mechanism, it was concluded that bead shocks first damage cells by permeabilizing them, and that after a longer period, all cells are shredded and destroyed, forming elongated debris.
Collapse
Affiliation(s)
- Pauline Delran
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; SAS inalve, Nice / Villefranche-sur-Mer, France; Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | - Laurie Barthe
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | - Pierre Yves Pontalier
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | | | - Christine Frances
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
2
|
Usai A, Theodoropoulos C, Di Caprio F, Altimari P, Cao G, Concas A. Structured population balances to support microalgae-based processes: Review of the state-of-art and perspectives analysis. Comput Struct Biotechnol J 2023; 21:1169-1188. [PMID: 36789264 PMCID: PMC9918424 DOI: 10.1016/j.csbj.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Design and optimization of microalgae processes have traditionally relied on the application of unsegregated mathematical models, thus neglecting the impact of cell-to-cell heterogeneity. However, there is experimental evidence that the latter one, including but not limited to variation in mass/size, internal composition and cell cycle phase, can play a crucial role in both cultivation and downstream processes. Population balance equations (PBEs) represent a powerful approach to develop mathematical models describing the effect of cell-to-cell heterogeneity. In this work, the potential of PBEs for the analysis and design of microalgae processes are discussed. A detailed review of PBE applications to microalgae cultivation, harvesting and disruption is reported. The review is largely focused on the application of the univariate size/mass structured PBE, where the size/mass is the only internal variable used to identify the cell state. Nonetheless, the need, addressed by few studies, for additional or alternative internal variables to identify the cell cycle phase and/or provide information about the internal composition is discussed. Through the review, the limitations of previous studies are described, and areas are identified where the development of more reliable PBE models, driven by the increasing availability of single-cell experimental data, could support the understanding and purposeful exploitation of the mechanisms determining cell-to-cell heterogeneity.
Collapse
Affiliation(s)
- Alessandro Usai
- Department of Chemical Engineering, University of Manchester, M13 9PL Manchester, United Kingdom,Biochemical and Bioprocess Engineering Group, University of Manchester, M13 9PL Manchester, United Kingdom
| | - Constantinos Theodoropoulos
- Department of Chemical Engineering, University of Manchester, M13 9PL Manchester, United Kingdom,Biochemical and Bioprocess Engineering Group, University of Manchester, M13 9PL Manchester, United Kingdom
| | - Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Pietro Altimari
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Giacomo Cao
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy,Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy,Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, CA, Italy
| | - Alessandro Concas
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy,Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy,Corresponding author at: Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy.
| |
Collapse
|
3
|
Carrageenan extraction from red seaweed (Kappaphycopsis cottonii) using the bead mill method. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Optimization and Comparison of Three Cell Disruption Processes on Lipid Extraction from Microalgae. Processes (Basel) 2021. [DOI: 10.3390/pr9020369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study reports on the optimization of the operating conditions using response surface methodology and a comparative study of three promising technologies of cell disruption (bead milling, microwaves and ultrasound) to increase the lipid extraction from Nannochloropsis oceanica, Nannochloropsis gaditana and Tetraselmis suecica. Central composite designs were used for the optimization of ultrasound and microwave processes. The performance of the cell disruption processes in breaking down microalgae cells is dependent on the strain of microalgae. Microwaves (91 °C for 25 min) were the most efficient for the recovery of lipids from N. oceanica, reaching a lipid content of 49.0% dry weight. For N. gaditana, ultrasound process (80% of amplitude for 30 min) was the most efficient in terms of lipid recovery (21.7% dry weight). The two aforementioned processes are ineffective in disturbing T. suecica whatever the operating conditions used. Only the bead milling process at low flow feed rate with 0.4 mm zirconia beads made it possible to extract 12.6% dry weight from T. suecica. The fatty acid profiles of N. oceanica and T. suecica are affected by the cell disruption process applied. The calculation of specific energy consumption has shown that this criterion should not be neglected. The choice of the most suitable cell disruption process can be defined according to numerous parameters such as the microalgae studied, the total lipid extracted, the fatty acids sought, or the energy consumption.
Collapse
|
5
|
Nitsos C, Filali R, Taidi B, Lemaire J. Current and novel approaches to downstream processing of microalgae: A review. Biotechnol Adv 2020; 45:107650. [PMID: 33091484 DOI: 10.1016/j.biotechadv.2020.107650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Biotechnological application of microalgae cultures at large scale has significant potential in the various fields of biofuels, food and feed, cosmetic, pharmaceutic, environmental remediation and water treatment. Despite this great potential application, industrialisation of microalgae culture and valorisation is still faced with serious remaining challenges in culture scale-up, harvesting and extraction of target molecules. This review presents a general summary of current techniques for harvesting and extraction of biomolecules from microalgae, their relative merits and potential for industrial application. The cell wall composition and its impact on microalgae cell disruption is discussed. Additionally, more recent progress and promising experimental methods and studies are summarised that would allow the reader to further investigate the state of the art. A final survey of energetic assessments of the different techniques is also made. Bead milling and high-pressure homogenisation seem to give clear advantages in terms of target high value compounds extraction from microalgae, with enzyme hydrolysis as a promising emerging technique. Future industrialisation of microalgae for high scale biotechnological processing will require the establishment of universal comparison-standards that would enable easy assessment of one technique against another.
Collapse
Affiliation(s)
- Christos Nitsos
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Rayen Filali
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Behnam Taidi
- LGPM, CentraleSupélec, Unierstiy of Paris Sacaly, Bât Gustave Eiffel, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France.
| | - Julien Lemaire
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| |
Collapse
|
6
|
Suarez Garcia E, Lo C, Eppink M, Wijffels R, van den Berg C. Understanding mild cell disintegration of microalgae in bead mills for the release of biomolecules. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|