1
|
Hu J, Xu B, Yan J, Fan G. Decarburization, denitrification characteristics and microbial community analysis of a full-scale two-stage anoxic-oxic process for treating refractory coking wastewater. RSC Adv 2025; 15:9398-9407. [PMID: 40151537 PMCID: PMC11948310 DOI: 10.1039/d5ra00218d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Coking wastewater is a representative intractable industrial wastewater, which contains plenty of organic pollutants and nutrient nitrogen and needs to be treated effectively. The decarburization, denitrification characteristics and microbial community composition and structure of coking wastewater treated by a full-scale two-stage anoxic-oxic (A/O) process were systematically investigated. The results showed that the full-scale two-stage A/O process exhibited outstanding decarburization and denitrification capability with a removal efficiency above 90% for chemical oxygen demand (COD), ammonium nitrogen (NH4 +-N), and total nitrogen (TN) in coking wastewater. Different biological reaction tanks in the two-stage A/O process played various roles in coking wastewater treatment. COD was mainly removed in the first stage anoxic tank (A1), TN was mainly removed in A1 and the second stage anoxic tank (A2), and NH4 +-N was mainly removed in the first stage oxic tank (O1). The function of different biological reaction tanks was highly associated with the composition and structure of the microbial community. The differential microorganisms in different biological reaction tanks were determined by multidimensional analysis. Thiobacillus, Thauera, Thioalkalispira, Pedomicrobium, Azoarcus, etc, were the key differential microorganisms in A1. Mycobacterium, Nitrospira, Acinetobacter, Pseudomonas, Nitrosomonas, etc, were the key differential microorganisms in O1. Bacillus, Thiobacillus, Mesorhizobium, Pusillimonas, etc, were the key differential microorganisms in A2. Truepera, Legionella, Sphingobium, Pseudomonas, etc, were the key differential microorganisms in the second stage oxic tank (O2). Augmenting the key microorganisms in different biological reaction tanks is crucial for boosting the treatment effect of actual coking wastewater.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Bing Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Jiabao Yan
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
2
|
Li Z, Feng Q, Zhang F, Zhao F, Lu M, Qin F, Guo R. Simultaneous denitrification enhancement and sludge reduction based on novel suspended carrier modified using activated carbon and magnetite at low carbon/nitrogen ratio. BIORESOURCE TECHNOLOGY 2024; 395:130360. [PMID: 38266786 DOI: 10.1016/j.biortech.2024.130360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A novel suspended carrier was prepared by sticking activated carbon (AC) and magnetite (Fe3O4) onto polypropylene slices. Although this carrier could not reverse the decreased denitrification capacity trends under anoxic conditions at an influent carbon/nitrogen (C/N) ratio of 2, it enhanced denitrification by stimulating sludge reduction and accelerating electron transfer to certain extent. The carrier stuck by mixed AC/Fe3O4 exhibited better performance in terms of sludge reduction, extracellular polymeric substances (EPS) secretion, and denitrification than that merely stuck by AC and Fe3O4 at an influent C/N ratio of 2. The carrier stuck by mixed AC/Fe3O4 increased the total nitrogen removal efficiency by 24.6 % ± 12.5 % in a 72-h denitrification batch experiment compared to the common polypropylene carrier. Moreover, the carrier improved EPS secretion and nitrogen metabolism and promoted the growth of Trichococcus and some denitrifying genera. This study provides a reference for the treatment of low C/N ratio sewage.
Collapse
Affiliation(s)
- Zhiwei Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China.
| | - Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| |
Collapse
|
3
|
Zhou X, Bi X, Yang T, Fan X, Shi X, Wang L, Zhang Y, Cheng L, Zhao F, Maletskyi Z, Hui X. Metagenomic insights into microbial nitrogen metabolism in two-stage anoxic/oxic-moving bed biofilm reactor system with multiple chambers for municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 361:127729. [PMID: 35931282 DOI: 10.1016/j.biortech.2022.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
To explore the microbial nitrogen metabolism of a two-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR), biofilms of the system's chambers were analyzed using metagenomic sequencing. Significant differences in microbial populations were found among the pre-anoxic, oxic and post-anoxic MBBRs (P < 0.01). Nitrospira and Nitrosomonas had positive correlations with ammonia nitrogen (NH4+-N) removal, and were also predominant in oxic MBBRs. These organisms were the hosts of functional genes for nitrification. The denitrifying genera were predominant in anoxic MBBRs, including Thiobacillus and Sulfurisoma in pre-anoxic MBBRs and Dechloromonas and Thauera in post-anoxic MBBRs. The four genera had positive correlations with total nitrate and nitrite nitrogen (NOX--N) removal and were the hosts of functional genes for denitrification. Specific functional biofilms with different microbial nitrogen metabolisms were formed in each chamber of this system. This work provides a microbial theoretical support for the two-stage A/O-MBBR system.
Collapse
Affiliation(s)
- Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China.
| | - Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Xing Fan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Yuan Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Lihua Cheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Fangchao Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| | - Zakhar Maletskyi
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003-IMT, Aas 1432, Norway
| | - Xiaoliang Hui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Jialingjiang Road 777, Qingdao 266520, China
| |
Collapse
|
4
|
Zhou X, Bi X, Fan X, Yang T, Wang X, Chen S, Cheng L, Zhang Y, Zhao W, Zhao F, Nie S, Deng X. Performance and bacterial community analysis of a two-stage A/O-MBBR system with multiple chambers for biological nitrogen removal. CHEMOSPHERE 2022; 303:135195. [PMID: 35667503 DOI: 10.1016/j.chemosphere.2022.135195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
A two-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR) system with multiple chambers was established for municipal wastewater treatment. At the total hydraulic retention time (HRT) of 11.2 h and nitrate recycling ratio of 1, the removal efficiencies reached 83.8%, 82.5%, and 77.8% for soluble chemical oxygen demand (SCOD), 98.0%, 97.5%, and 94.9% for ammonia nitrogen (NH4+-N), and 91.8%, 92.0%, and 87.7% for total inorganic nitrogen (TIN) in summer, autumn and winter, respectively. Biofilms with functional bacterial populations were formed in the pre-anoxic reactors, the pre-oxic reactors, the post-anoxic reactors and the post-oxic reactors of the two-stage A/O-MBBR system. The highest nitrification potential was found in the last oxic reactor of the first A/O-MBBR subsystem with the highest relative abundances of the functional genes including [EC:1.14.99.39] and [EC:1.7.2.6]). The highest denitrification potential was found in the post-anoxic reactors with the highest relative abundances of the functional genes including [EC:1.7.2.1], [EC:1.7.2.5] and [EC:1.7.2.4]. This work constructed an efficient municipal biological nitrogen removal technology to achieve high effluent nitrogen standards in winter, and investigated its working mechanism to provide a basis for its design and optimization.
Collapse
Affiliation(s)
- Xiaolin Zhou
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xing Fan
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Tang Yang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiaodong Wang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Shanshan Chen
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lihua Cheng
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Yuan Zhang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Weihua Zhao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Fangchao Zhao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd, Heze, 274000, PR China.
| | - Xiaoyu Deng
- Hynar Water Group Co, Ltd., Shenzhen, 518000, PR China.
| |
Collapse
|
5
|
Zhang Z, Zhong M, Sun Y, Liang Y, Liu M, Li J, Cui H, Meng F, Huang Z, Cui L. Efficient treatment of digested piggery wastewater via an improved anoxic/aerobic process with Myriophyllum spicatum and bionic aquatic weed. BIORESOURCE TECHNOLOGY 2021; 341:125825. [PMID: 34481299 DOI: 10.1016/j.biortech.2021.125825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The traditional anoxic/aerobic process (A/O) process is widely used for treating digested piggery wastewater, but the lack of carbon sources leads to poor efficiency. Therefore, the process needs optimization to achieve high-efficiency and low-cost operation mode. In this study, an improved A/O system with bionic aquatic weed and Myriophyllum sp. was established to decontaminate digested piggery wastewater. The average removal efficiencies of chemical oxygen demand (COD), NH4+-N, and total nitrogen (TN) by the improved A/O system was satisfactory. The average removal efficiencies of COD, NH4+-N, and TN were 62.1%, 87.5%, and 61.9%, respectively. High-throughput sequencing identified a number of dominant microorganisms. The relative abundance of Nitrosomonas (ammonia-oxidizing bacteria) and Nitrospira (nitrite-oxidizing bacteria) was 0.07%-3.52% and 0.32%-1.30%, respectively. Combining bionic aquatic weed and Myriophyllum sp. altered the microbial community structure and metabolic pathways. The results demonstrate a cost-effective method for treating digested piggery wastewater.
Collapse
Affiliation(s)
- Ze Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingjun Zhong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaping Sun
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mengxue Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhujian Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Lihua Cui
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| |
Collapse
|
6
|
Gao F, Liu G, She Z, Ji J, Gao M, Zhao Y, Guo L, Jin C. Effects of salinity on pollutant removal and bacterial community in a partially saturated vertical flow constructed wetland. BIORESOURCE TECHNOLOGY 2021; 329:124890. [PMID: 33662852 DOI: 10.1016/j.biortech.2021.124890] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of salinity on pollutant removal and bacterial community within a partially saturated vertical flow constructed wetland (PS-VFCW). High removal rates of NH4+-N (88.29 ± 4.97-100 ± 0%), total inorganic nitrogen (TIN) (50.00 ± 7.21-62.81 ± 7.21%) and COD (91.08 ± 2.66-100 ± 0%) were achieved at 0.4-2.4% salinity levels. The removal of ammonia, TIN and organic matter occurred mainly in unsaturated zone. Salt-adaptable microbes became the dominant bacteria with salinity elevated. The proportion of ammonia-oxidizing bacteria (AOB) in the 0-5 cm depth layer (unsaturated zone) decreased obviously as the salinity increased to 2.4%. Nitrite-oxidizing bacteria (NOB) in the 0-5 cm depth layer showed a decreasing trend with elevated salinity. Denitrifying bacteria (DNB) in the 0-5 cm depth layer maintained high abundance (27.70-53.60%) at 0.4-2.4% salinity levels. At 2.4% salinity, AOB, NOB and DNB were observed in the unsaturated zones and saturated zones, and showed higher abundance in the unsaturated zone.
Collapse
Affiliation(s)
- Feng Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Guochen Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
7
|
The Tolerance of Anoxic-Oxic (A/O) Process for the Changing of Refractory Organics in Electroplating Wastewater: Performance, Optimization and Microbial Characteristics. Processes (Basel) 2021. [DOI: 10.3390/pr9060962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to investigate the tolerance of an anoxic-oxic (A/O) process for the changing of refractory organics in electroplating wastewater, optimize the technological parameters, and reveal the microbial characteristics, a pilot-scale A/O process was carried out and the microbial community composition was analyzed by high-throughput sequencing. The results indicated that a better tolerance was achieved for sodium dodecyl benzene sulfonate, and the removal efficiencies of organic matter, ammonia nitrogen (NH4+-N), and total nitrogen (TN) were 82.87%, 66.47%, and 53.28% with the optimum hydraulic retention time (HRT), internal circulation and dissolved oxygen (DO) was 12 h, 200% and 2–3 mg/L, respectively. Additionally, high-throughput sequencing results demonstrated that Proteobacteria and Bacteroidetes were the dominant bacteria phylum, and the diversity of the microbial community in the stable-state period was richer than that in the start-up period.
Collapse
|
8
|
Pei Y, Tao C, Ling Z, Yu Z, Ji J, Khan A, Mamtimin T, Liu P, Li X. Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140435. [PMID: 32623159 DOI: 10.1016/j.scitotenv.2020.140435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial remediation is a promising method to treat Cr(VI) in industrial wastewater. The remediation efficiency and stress-resistance ability of Cr(VI) remediation genes in microbes are the limiting factors for their application in industrial wastewater treatment. To screen novel highly efficient Cr(VI) remediation genes, comparative metatranscriptomic and metagenomic analyses were performed on long-term Cr(VI)-contaminated riparian soil with/without additional Cr(VI) treatment. The most suitable Cr(VI) treatment time was determined to be 30 min according to the high quality RNA yield and fold changes in gene expression. Six novel genes, which had complete open reading frames (ORFs) in metagenomic libraries, were identified from unculturable microbes. In the phenotypic functional assay, all novel genes enhanced the Cr(VI) resistance/reduction ability of E. coli. In the industrial wastewater treatment, E-mcr and E-gsr presented at least 50% Cr(VI) removal efficiencies in the presence of 200-600 μM of Cr(VI), without a decrease in efficiency over 17 days. The stress resistance assay showed that gsr increased the growth rate of E. coli by at least 30% under different extreme conditions, and thus, gsr was identified as a general stress-response gene. In the Cr valence distribution assay, E-mcr presented ~40 μM higher extracellular Cr (III) compared to E-yieF. Additionally, transmission electron microscopy (TEM) of E-mcr showed bulk black agglomerates on the cell surface. Thus, mcr was identified as a membrane chromate reductase gene. This research provides a new idea for studying novel highly efficient contaminant remediation genes from unculturable microbes.
Collapse
Affiliation(s)
- Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Chen Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqinglu #18, Beijing 100085, China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Zhengsheng Yu
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Jing Ji
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Aman Khan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China.
| |
Collapse
|
9
|
Lin Z, Huang W, Zhou J, He X, Wang J, Wang X, Zhou J. The variation on nitrogen removal mechanisms and the succession of ammonia oxidizing archaea and ammonia oxidizing bacteria with temperature in biofilm reactors treating saline wastewater. BIORESOURCE TECHNOLOGY 2020; 314:123760. [PMID: 32634643 DOI: 10.1016/j.biortech.2020.123760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
To reveal nitrogen removal mechanisms under environmental stresses, biofilm reactors were operated at different temperatures (10 °C-35 °C) treating saline wastewater (salinity 3%). The results showed nitrogen removal efficiency was 98.46% at 30 °C and 60.85% at 10 °C, respectively. Both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) participated in nitrification. 94.9% of the overall ammonia oxidation was attributed to AOA at 10 °C, but only 48.2% of that was undertaken by AOA at 35 °C. AOA had a greater contribution at low temperature, which demonstrated that nitrogen removal pathway varied with temperature. Aerobic denitrification was more stable than anoxic denitrification. High-throughput sequencing showed Crenarchaeota was the dominant AOA (97.02-34.47%), cooperating with various heterotrophic AOB. Real-time PCR indicated that AOA was three orders of magnitude more abundant than AOB. AOA was more resistant to low temperature and high-saline stresses. Ammonia oxidizers had distinct responses to temperature change and showed diverse relationships at different temperatures.
Collapse
Affiliation(s)
- Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiale Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiantao Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
10
|
Huang X, Zhu J, Duan W, Gao J, Li W. Biological nitrogen removal and metabolic characteristics in a full-scale two-staged anoxic-oxic (A/O) system to treat optoelectronic wastewater. BIORESOURCE TECHNOLOGY 2020; 300:122595. [PMID: 31887583 DOI: 10.1016/j.biortech.2019.122595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
In order to explore the treatment efficiency of optoelectronic wastewater and pollutant degradation mechanism of full-scale two-stage AO process, 160 d monitoring was conducted in this study. The results showed that the two-stage AO process owned relatively stable nitrogen and organic matter removal performance. The average concentration of COD, NH4+-N, and TN in effluent was 54, 3.78 and 13.77 mg L-1, respectively, and the removal rate was over 80%. The results of high-throughput sequencing demonstrated that the dominant microorganism was Proteobacteria, Bacteroidetes, Firmicutes, Chlorofeli, and Acidobacteria, and differences of interaction networks exited between aerobic and anoxic units. Meanwhile, the microorganism metabolism in aerobic units was significantly different from that in anoxic unit, and the metabolism of the microbial community for treating optoelectronic wastewater was significantly different from that for treating urban domestic sewage.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jia Zhu
- Department of Architecture and Environment, Shenzhen Polytechnic College, Shenzhen 518055, Guangdong, China.
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jingsi Gao
- Department of Architecture and Environment, Shenzhen Polytechnic College, Shenzhen 518055, Guangdong, China
| | - Weijin Li
- Department of Architecture and Environment, Shenzhen Polytechnic College, Shenzhen 518055, Guangdong, China
| |
Collapse
|
11
|
Wu X, Li H, Lei L, Ren J, Li W, Liu Y. Tolerance to short-term saline shocks by aerobic granular sludge. CHEMOSPHERE 2020; 243:125370. [PMID: 31759216 DOI: 10.1016/j.chemosphere.2019.125370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In industrial wastewaters, rapid shifts of salinity leading to transient shocks caused damages on biological treatments. Aerobic granular sludge is a promising technology that showed its greater resistance to adverse conditions. However, the impact of short-term saline shocks on the performance of aerobic granular sludge process was not studied sufficiently. This study investigated salt-tolerance ability of aerobic granular sludge from aspects of chemical oxygen demand (COD) removal efficiency and sludge concentration under different saline shocks that shock concentration ranged from 0 to 60 gNaCl/L and shock duration was set at 6 h. The results showed that no obvious change of sludge concentration after all saline shocks. Moreover, COD removal efficiencies could revert to 90.7% and 87.5% that was near to the previous level (90.9%) in short-term recovery after 20 g/L and 40 g/L saline shocks. However, stable COD removal efficiency (73.8%) could not recover to the previous level (90.9%) after 60 g/L saline shock. These results suggest aerobic granular sludge has an excellent ability to withstand up to 40 g/L saline shock. The corresponding salt-tolerance reasons could be explained from three aspects. After 40 g/L saline shock, the specific oxygen uptake rate of aerobic granular sludge could recover to ensure biological activity. Aerobic granular sludge with the integrity coefficients of 87.6% maintained compact structure. In addition, aerobic granular sludge with relative small DNA leakage of 177.2% has advantages to diminish damage on cell structure. These results provide further insight into the application of aerobic granular sludge for saline-shock wastewater treatments.
Collapse
Affiliation(s)
- Xiao Wu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lei Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiongqiu Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wei Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
12
|
Removal of chemical oxygen demand and ammonia nitrogen from lead smelting wastewater with high salts content using electrochemical oxidation combined with coagulation–flocculation treatment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wang C, Xu Y, Hou J, Wang P, Zhang F, Zhou Q, You G. Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: Performance and potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1044-1053. [PMID: 31466145 DOI: 10.1016/j.scitotenv.2019.06.488] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
In this work, the feasibility and performance of zero valent iron (ZVI) coupled anaerobic microorganisms in nitrogen removal under low organic carbon condition were investigated, through the comparison of mono-ZVI system and mono-cell system. Coupled system showed the highest total nitrogen (TN) removal efficiency of 67.85% with the addition of 15 g L-1 iron shavings at pH 7.0, which was higher than 29.62% in the mono-ZVI system and 43.86% in the mono-cell system. Besides, the activities of nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide reductase (NOR) and nitrous oxide reductase (N2OR) were significantly improved at ZVI dosage of 15 g L-1 and pH 7.0, which contributed to the higher TN removal efficiency in coupled system. The extent of sludge granulation was greater in the coupled system than mono-cell system, which benefited to the high operational performance and stability of coupled system. The promoted generation of extracellular polymeric substances (EPS) and formation of iron oxides in the coupled system also took advantages on nitrogen removal through adsorption. In addition, ZVI could largely enrich the functional species related to nitrogen removal in the system at phyla and genera level, which could be reasoned for the enhanced nitrogen removal efficiency. In conclusion, this study will improve the understandings of nitrogen removal in the coupled system and be useful to ensure the application of ZVI-supported biological process in the remediation of farmland drainage.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, NanJing, People's Republic of China, 210098
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, NanJing, People's Republic of China, 210098
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, NanJing, People's Republic of China, 210098.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, NanJing, People's Republic of China, 210098
| | - Fei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, NanJing, People's Republic of China, 210098
| | - Qing Zhou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, NanJing, People's Republic of China, 210098
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, NanJing, People's Republic of China, 210098
| |
Collapse
|
14
|
Ping L, Zhuang H, Shan S. New insights into pollutants removal, toxicity reduction and microbial profiles in a lab-scale IC-A/O-membrane reactor system for paper wastewater reclamation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:374-382. [PMID: 31005839 DOI: 10.1016/j.scitotenv.2019.04.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, an internal circulation-anoxic/aerobic (IC-A/O) process followed by ultrafiltration (UF) and reverse osmosis (RO) system was applied for paper wastewater reclamation. The IC-AO system presented a stable and efficient performance, achieving high removal of chemical oxygen demand (COD), total organic carbon (TOC) and total nitrogen (TN) with methane production rate of 132.8 mL/d. Acute toxicity to Daphnia magna (D. magna) was reduced significantly (83.2%) and the spearman's rank correlation analysis indicated that the toxicity of effluents from each reactor were positively correlated with COD and TOC. Hexadecanoic acid, octadecanoic acid and benzophenone were the main toxic contributors for biological effluent. Microbial community revealed that Anaerolinea was significantly related with organic pollutants. The UF-RO system further removed pollutants and toxicity with the final effluent COD, TOC, ammonium nitrogen (NH4+-N) and TN of 32.6, 18.8, 0.3 and 9.2 mg/L, respectively, which proved that it was feasible for paper wastewater reuse. This study presented an efficient, practical and environmentally competitive system, and paved a foundation for the treatment and reuse of paper wastewater.
Collapse
Affiliation(s)
- Lifeng Ping
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haifeng Zhuang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
15
|
Wang C, Liu Y, Lv W, Xia S, Han J, Wang Z, Yu X, Cai L. Enhancement of nitrogen removal by supplementing fluidized-carriers into the aerobic tank in a full-scale A 2/O system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:817-825. [PMID: 30743967 DOI: 10.1016/j.scitotenv.2019.01.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Fluidized-carriers were supplemented into the aerobic tank of a full-scale wastewater treatment plant (WWTP) using an anaerobic/anoxic/aerobic (A2/O) system to improve the nitrogen removal efficiency in effluents. The effects of carrier supplementation on denitrification ability and the bacterial community structures were investigated over 10 months. The results showed that the average effluent concentration of total nitrogen (TN) was maintained at 9.46 ± 1.14 mg/L, which was lower than 15.17 ± 2.00 mg/L in the effluent without carrier supplementation, indicating that adding fluidized-carriers into the aerobic tank contributed to nitrogen removal efficiency. A thick biofilm was formed after 4 months, which provided a good anoxic-aerobic microenvironment to the microbes. Illumina sequencing analysis showed a higher bacterial diversity in the biofilm. The relative abundance of nitrifying bacteria, denitrifying bacteria, and aerobic denitrifying bacteria in the biofilms was 13.68-39%, 11.56-12.17%, and 9.76-12.50%, respectively, which was beneficial for nitrogen removal in the system. The most prevalent genera were Nitrospira, Bacillus, Thauera, Hyphomicrobium, Acinetobacter, Zoogloea, Pseudomonas, and Paracoccus, which can metabolize nitrogenous or aromatic compounds and were the major functional bacterial genera, suggesting that these organisms play key roles in biodegradation processes in the carrier-added A2/O wastewater treatment system.
Collapse
Affiliation(s)
- Cong Wang
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenzhou Lv
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Juncheng Han
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Ziyun Wang
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Xinxian Yu
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| | - Luhao Cai
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Liu X, Wang L, Pang L. Application of a novel strain Corynebacterium pollutisoli SPH6 to improve nitrogen removal in an anaerobic/aerobic-moving bed biofilm reactor (A/O-MBBR). BIORESOURCE TECHNOLOGY 2018; 269:113-120. [PMID: 30153549 DOI: 10.1016/j.biortech.2018.08.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
A novel bacterium Corynebacterium pollutisoli SPH6 was added in A/O-MBBR system to explore its potential in nitrogen removal. Sodium acetate was found to be its favorable carbon sources compared to glucose, sucrose and methanol. Response surface methodology analysis revealed that SPH6 has the maximum specific degradation rate of total nitrogen (4.9302 mg N/(mg·cells·h-1)) with the temperature of 30.5 °C, pH of 7.97, inoculation ratio of 7.73% and the ratio of chemical oxygen demand and total nitrogen (COD/TN) of 7.77. The inoculation of SPH6 in A/O-MBBR demonstrated that the strain SPH6 could substantially improve the TN removal efficiency with 20% averagely. The results of high-throughput sequencing showed that the inoculation of SPH6 would essentially improve the microbial community involving nitrogen removal genus such as Hydrogenophaga, Desulfuromonas, and Desulfomicrobium. This study is of importance in providing microbial sources for bioaugmentation in nitrogen removal of wastewater treatment.
Collapse
Affiliation(s)
- Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610200, PR China
| | - Ling Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610200, PR China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu 610200, PR China.
| |
Collapse
|