1
|
Li J, Ye G, Wang J, Gong T, Wang J, Zeng D, Cifuentes A, Ibañez E, Zhao H, Lu W. Recent advances in pressurized hot water extraction/modification of polysaccharides: Structure, physicochemical properties, bioactivities, and applications. Compr Rev Food Sci Food Saf 2025; 24:e70104. [PMID: 39812161 DOI: 10.1111/1541-4337.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Pressurized hot water, as a green and efficient physical treatment technology, has been widely utilized for the extraction and modification of polysaccharides, with the objective of enhancing the physicochemical properties and biological activities of polysaccharides applied in food systems. This article reviews the recent advances regarding the effects of pressurized hot water treatment (extraction and modification) on polysaccharide extraction rates, structure, physicochemical properties, and bioactivities. The potential modes and mechanisms of polysaccharides subjected to pressurized hot water treatment and the relevant applications of these treated polysaccharides are also thoroughly discussed. Finally, the challenges that it may encounter in commercial applications are analyzed, and the future trends in this field are envisioned. This article will be of great value for the scientific elucidation of polysaccharides treated with pressurized hot water and their potential food applications.
Collapse
Affiliation(s)
- Jiangfei Li
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Guanjun Ye
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Junwen Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ting Gong
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Jianlong Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Deyong Zeng
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Haitian Zhao
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| |
Collapse
|
2
|
Struckmann Poulsen J, Trueba Santiso A, Lema JM, Gregersen Echers S, Wimmer R, Lund Nielsen J. Assessing labelled carbon assimilation from poly butylene adipate-co-terephthalate (PBAT) monomers during thermophilic anaerobic digestion. BIORESOURCE TECHNOLOGY 2023:129430. [PMID: 37399952 DOI: 10.1016/j.biortech.2023.129430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
PBAT (poly butylene adipate-co-terephthalate) is a widely used biodegradable plastic, but the knowledge about its metabolization in anaerobic environments is very limited. In this study, the anaerobic digester sludge from a municipal wastewater treatment plant was used as inoculum to investigate the biodegradability of PBAT monomers in thermophilic conditions. The research employs a combination of 13C-labelled monomers and proteogenomics to track the labelled carbon and identify the microorganisms involved. A total of 122 labelled peptides of interest were identified for adipic acid (AA) and 1,4-butanedio (BD). Through the time-dependent isotopic enrichment and isotopic profile distributions, Bacteroides, Ichthyobacterium, and Methanosarcina were proven to be directly involved in the metabolization of at least one monomer. This study provides a first insight into the identity and genomic potential of microorganisms responsible for biodegradability of PBAT monomers during anaerobic digestion under thermophilic conditions.
Collapse
Affiliation(s)
- Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Alba Trueba Santiso
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark; CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M Lema
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Simon Gregersen Echers
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark.
| |
Collapse
|
3
|
Abik F, Palasingh C, Bhattarai M, Leivers S, Ström A, Westereng B, Mikkonen KS, Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2667-2683. [PMID: 36724217 PMCID: PMC9936590 DOI: 10.1021/acs.jafc.2c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.
Collapse
Affiliation(s)
- Felix Abik
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Mamata Bhattarai
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo 00076, Finland
| | - Shaun Leivers
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Anna Ström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Bjørge Westereng
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Kirsi S. Mikkonen
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, Gothenburg 41296, Sweden
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 00760, Finland
| |
Collapse
|
4
|
Borovkova VS, Malyar YN, Sudakova IG, Chudina AI, Zimonin DV, Skripnikov AM, Miroshnikova AV, Ionin VA, Kazachenko AS, Sychev VV, Ponomarev IS, Issaoui N. Composition and Structure of Aspen ( Pópulus trémula) Hemicelluloses Obtained by Oxidative Delignification. Polymers (Basel) 2022; 14:4521. [PMID: 36365515 PMCID: PMC9655666 DOI: 10.3390/polym14214521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, hemicelluloses of aspen wood (Pópulus trémula) were obtained by oxidative delignification in an acetic acid-water-hydrogen peroxide medium at temperatures of 70-100 °C and a process time of 1-4 h. The maximum polysaccharide yield of up to 9.68 wt% was reported. The composition and structure of the hemicelluloses were studied using a complex of physicochemical methods: gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, 2D nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The xylose, mannose, galactose, and glucose monomer units were identified in the hemicelluloses by gas chromatography. The weight average molecular weight Mw of the products determined by gel permeation chromatography was found to range within 8932-33,142 g/mol. The reported Fourier-transform spectra of the hemicelluloses contain all the bands characteristic of heteropolysaccharides; a weak lignin absorption signal in the spectra at 1500-1510 cm-1 is attributed to a minor content of phenolic fragments in the structure of the obtained hemicelluloses. The use of thermogravimetric analysis established that the hemicelluloses isolated from aspen wood are resistant against heating to temperatures of up to 90-100 °C and, upon further heating up to 400 °C, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses was examined using the compounds that mimic free radicals (1,1-diphenyl-2-picrylhydrazyl) and hydroxyl radicals (salicylic acid). It was found that the activity of all polysaccharides in neutralizing DPPH and hydroxyl radicals is lower than the absorption capacity of vitamin C at all the tested concentrations (0.5, 2, and 5 mg/mL) and attains 81.7 and 82.9%, respectively.
Collapse
Affiliation(s)
- Valentina S. Borovkova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Yuriy N. Malyar
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Irina G. Sudakova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
| | - Anna I. Chudina
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
| | - Dmitriy V. Zimonin
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Andrey M. Skripnikov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Angelina V. Miroshnikova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Vladislav A. Ionin
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Alexander S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
| | - Valentin V. Sychev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Ilya S. Ponomarev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| |
Collapse
|
5
|
Tongtummachat T, Jaree A, Akkarawatkhoosith N. Continuous hydrothermal furfural production from xylose in a microreactor with dual-acid catalysts. RSC Adv 2022; 12:23366-23378. [PMID: 36090416 PMCID: PMC9382363 DOI: 10.1039/d2ra03609f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
An effective continuous furfural production from xylose in a microreactor over dual-acid catalysts was proposed. In this work, furfural was synthesized in an organic solvent-free system using formic acid and aluminum chloride as catalyst. The role of these catalysts in the consecutive reactions was examined and verified. The influence of operating conditions including xylose concentration, reaction temperature, residence time, total catalyst concentration, and catalyst ratio on the yield of furfural was investigated and optimized. The furfural yield of 92.2% was achieved at the reaction temperature of 180 °C, residence time of 15 min, catalyst molar ratio of 1 : 1, xylose concentration of 1 g L−1, and total catalyst concentration of 16 mM. The superior production performance of our process was highlighted in terms of the low catalyst concentration and short residence time compared to those of other systems based on the literature. In addition, a continuous in situ catalyst removal (purification) was demonstrated, providing further insights into the practical development of continuous furfural production. An effective continuous furfural production from xylose in a microreactor over dual-acid catalysts was proposed. In this work, furfural was synthesized in an organic solvent-free system using formic acid and aluminum chloride as catalyst.![]()
Collapse
Affiliation(s)
- Tiprawee Tongtummachat
- Bio-Based Chemical and Biofuel Engineering Laboratory, Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Phuttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Attasak Jaree
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nattee Akkarawatkhoosith
- Bio-Based Chemical and Biofuel Engineering Laboratory, Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Phuttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
6
|
Paini J, Benedetti V, Menin L, Baratieri M, Patuzzi F. Subcritical water hydrolysis coupled with hydrothermal carbonization for apple pomace integrated cascade valorization. BIORESOURCE TECHNOLOGY 2021; 342:125956. [PMID: 34852438 DOI: 10.1016/j.biortech.2021.125956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates an integrated biorefinery approach based on the waste hierarchy for the valorization of biodegradable waste, focusing on apple processing residues. Firstly, subcritical water hydrolysis was investigated at different experimental conditions (temperature 80 to 120 °C, dilution factor 10 to 30, residence time 10 to 30 min, initial pressure 10 to 30 bar) with the coincident aim of dissolving fermentable sugars and assess the effects of such treatment on the downstream solids. Secondly, spent solids were further processed by hydrothermal carbonization in the same reactor at fixed conditions (i.e., 180 °C, 3 h). The results showed that not only up to nearly 500 g kgdb-1 of sugars are dissolved but also lignocellulosic structure is amended, improving products valorization potential. Depending on pretreatment conditions, the proposed approach can deliver hydrochar with potential either as soil amendment or for long-term applications, sustainably valorizing food waste.
Collapse
Affiliation(s)
- Jacopo Paini
- Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy.
| | - Vittoria Benedetti
- Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Menin
- Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Marco Baratieri
- Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Francesco Patuzzi
- Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| |
Collapse
|
7
|
Scapini T, Dos Santos MSN, Bonatto C, Wancura JHC, Mulinari J, Camargo AF, Klanovicz N, Zabot GL, Tres MV, Fongaro G, Treichel H. Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. BIORESOURCE TECHNOLOGY 2021; 342:126033. [PMID: 34592451 DOI: 10.1016/j.biortech.2021.126033] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The hemicellulosic fraction recovery is of interest for integrated processes in biorefineries, considering the possibility of high economic value products produced from their structural compounds of this polysaccharide. However, to perform an efficient recovery, it is necessary to use biomass fractionation techniques, and hydrothermal pretreatment is highlighted as a valuable technique in the hemicellulose recovery by applying high temperatures and pressure, causing dissolution of the structure. Considering the possibility of this pretreatment technique for current approaches to hemicellulose recovery, this article aimed to explore the relevance of hydrothermal pretreatment techniques (sub and supercritical water) as a strategy for recovering the hemicellulosic fraction from lignocellulosic biomass. Discussions about potential products to be generated, current market profile, and perspectives and challenges of applying the technique are also addressed.
Collapse
Affiliation(s)
- Thamarys Scapini
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, RS, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Jéssica Mulinari
- Laboratory of Membrane Processes, Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline F Camargo
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Natalia Klanovicz
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, SP, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, RS, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, RS, Brazil
| | - Gislaine Fongaro
- Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
8
|
Abstract
The development of biorefinery processes to platform chemicals for most lignocellulosic substrates, results in side processes to intermediates such as oligosaccharides. Agrofood wastes are most amenable to produce such intermediates, in particular, cellooligo-saccharides (COS), pectooligosaccharides (POS), xylooligosaccharides (XOS) and other less abundant oligomers containing mannose, arabinose, galactose and several sugar acids. These compounds show a remarkable bioactivity as prebiotics, elicitors in plants, food complements, healthy coadyuvants in certain therapies and more. They are medium to high added-value compounds with an increasing impact in the pharmaceutical, nutraceutical, cosmetic and food industries. This review is focused on the main production processes: autohydrolysis, acid and basic catalysis and enzymatic saccharification. Autohydrolysis of food residues at 160–190 °C leads to oligomer yields in the 0.06–0.3 g/g dry solid range, while acid hydrolysis of pectin (80–120 °C) or cellulose (45–180 °C) yields up to 0.7 g/g dry polymer. Enzymatic hydrolysis at 40–50 °C of pure polysaccharides results in 0.06–0.35 g/g dry solid (DS), with values in the range 0.08–0.2 g/g DS for original food residues.
Collapse
|
9
|
Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hardest obstacle to make use of lignocellulosic biomass by using green technology is the existence of lignin. It can hinder enzyme reactions with cellulose or hemicellulose as a substrate. Oil palm empty fruit bunches (OPEFBs) consist of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. Several pretreatment processes were explored to increase sugar recovery from lignocellulosic biomass. Considering that hemicellulose is more susceptible to heat than cellulose, the hydrothermal process was applied to OPEFB before it was hydrolyzed enzymatically. The purpose of this study was to investigate the effect of temperature, solid loading, and pretreatment time on the OPEFB hydrothermal process. The xylose concentration in OPEFB hydrolysate was analyzed using high-performance liquid chromatography (HPLC). The results indicated that temperature was more important than pretreatment time and solid loading for OPEFB sugar recovery. The optimum temperature, solid loading, and pretreatment time for maximum xylose recovery from pretreated OPEFB were 165 °C, 7%, and 60 min, respectively, giving a xylose recovery of 0.061 g/g of pretreated OPEFB (35% of OPEFB xylan was recovered).
Collapse
|
10
|
Ramos-Andrés M, Andrés-Iglesias C, García-Serna J. Production of molecular weight fractionated hemicelluloses hydrolyzates from spent coffee grounds combining hydrothermal extraction and a multistep ultrafiltration/diafiltration. BIORESOURCE TECHNOLOGY 2019; 292:121940. [PMID: 31419707 DOI: 10.1016/j.biortech.2019.121940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 05/24/2023]
Abstract
Spent coffee grounds are a huge residual stream from instant coffee makers. The production of spent coffee oil and molecular weight fractionated hemicellulose hydrolysates via supercritical CO2 and a hydrothermal treatment followed by concentration, separation, and purification through cascade ultrafiltration/diafiltration (30-10-5 kDa) was studied. Hemicelluloses extraction yield reached 3.49 g/100 g of dry defatted spent coffee after 40 min at 160 °C. The ultrafiltration system allowed concentrating up to 5-fold certain groups of hemicellulose, being most of them retained in the first membrane. Hemicellulose concentration and molecular weight of the feed exerted a great influence on the mass transfer through the membrane due to the formation of aggregates. However, purification through diafiltration allowed both to decrease by-products retentions from 45.6% to 8.7%, increasing the molecular weight of each fraction. Six hemicellulose products were obtained with purities between 83.7 and 97.8 wt% and weight-average molecular weights between 1641 and 49,733 Da.
Collapse
Affiliation(s)
- Marta Ramos-Andrés
- High Pressure Processes Group, BioEcoUVa Research Institute on Bioeconomy and Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain
| | - Cristina Andrés-Iglesias
- High Pressure Processes Group, BioEcoUVa Research Institute on Bioeconomy and Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain
| | - Juan García-Serna
- High Pressure Processes Group, BioEcoUVa Research Institute on Bioeconomy and Department of Chemical Engineering and Environmental Technology, EII Sede Mergelina, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
11
|
Pola L, Collado S, Oulego P, Díaz M. Production of carboxylic acids from the non-lignin residue of black liquor by hydrothermal treatments. BIORESOURCE TECHNOLOGY 2019; 284:105-114. [PMID: 30927647 DOI: 10.1016/j.biortech.2019.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The present study assesses, for the first time, the use of the non-lignin residue from Kraft black liquor as a renewable source of carboxylic acids. For this purpose, the liquid fraction obtained after separating the lignin from the black liquor by acid precipitation was subjected to different hydrothermal treatments. It was found that the formation of carboxylic acids can be maximized at 190 °C, 70 bar and under an inert atmosphere, with concentrations after 2 h of 29.0 g/l of oxalic acid, 1.8 g/L of malic acid, 10.0 g/L of lactic acid, 4.1 g/L of formic acid, 11.8 g/L of acetic acid and 3.4 g/L of propionic acid. The presence of an oxidizing atmosphere generated a less concentrated, but more purified, stream of acids than that obtained by thermal hydrolysis, simplifying the subsequent downstream processing.
Collapse
Affiliation(s)
- Lucía Pola
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, 33071 Oviedo, Spain.
| |
Collapse
|