1
|
Kumar V, Kumar P, Maity SK, Agrawal D, Narisetty V, Jacob S, Kumar G, Bhatia SK, Kumar D, Vivekanand V. Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:72. [PMID: 38811976 PMCID: PMC11137917 DOI: 10.1186/s13068-024-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Pankaj Kumar
- Department of Chemical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
2
|
Mitrea L, Teleky BE, Nemes SA, Plamada D, Varvara RA, Pascuta MS, Ciont C, Cocean AM, Medeleanu M, Nistor A, Rotar AM, Pop CR, Vodnar DC. Succinic acid - A run-through of the latest perspectives of production from renewable biomass. Heliyon 2024; 10:e25551. [PMID: 38327454 PMCID: PMC10848017 DOI: 10.1016/j.heliyon.2024.e25551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Succinic acid (SA) production is continuously rising, as its applications in diverse end-product generation are getting broader and more expansive. SA is an eco-friendly bulk product that acts as a valuable intermediate in different processes and might substitute other petrochemical-based products due to the inner capacity of microbes to biosynthesize it. Moreover, large amounts of SA can be obtained through biotechnological ways starting from renewable resources, imprinting at the same time the concept of a circular economy. In this context, the target of the present review paper is to bring an overview of SA market demands, production, biotechnological approaches, new strategies of production, and last but not least, the possible limitations and the latest perspectives in terms of natural biosynthesis of SA.
Collapse
Affiliation(s)
- Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemes
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Diana Plamada
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Mihaela-Stefana Pascuta
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Calina Ciont
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Ana-Maria Cocean
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Madalina Medeleanu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Alina Nistor
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Ancuta-Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Carmen-Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Li S, Song C, Zhang H, Qin Y, Jiang M, Shen N. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO 3 in Actinobacillus succinogenes GXAS137. Pol J Microbiol 2023; 72:399-411. [PMID: 38000010 PMCID: PMC10725169 DOI: 10.33073/pjm-2023-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.
Collapse
Affiliation(s)
- Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Chaodong Song
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yan Qin
- National Non-Grain Bio-Energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
4
|
Guo L, Liu J, Wang Q, Yang Y, Yang Y, Guo Q, Zhao H, Liu W. Evaluation of the Potential of Duckweed as a Human Food, Bioethanol Production Feedstock, and Antileukaemia Drug. J Food Biochem 2023. [DOI: 10.1155/2023/6065283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This study evaluated the potential of duckweed as a human food, ethanol feedstock, and anticancer drug. First, the nutritional value of wild duckweed was reported for the first time. Its main composition was similar to that of artificially cultivated duckweed, and thus, wild duckweed can serve as a great human food source. In addition, high-starch duckweed induced by nutrient starvation was fermented into bioethanol. A yield of 0.262 g/g, the highest duckweed-ethanol yield reported thus far, was achieved, indicating that duckweed is an excellent feedstock for ethanol production. Finally, the anticancer effects of duckweed flavonoids (DFs) were assessed for the first time using acute myeloid leukaemia (AML) cells as models in vitro and in vivo. The results revealed that DFs possessed antileukaemia activity and were safe and effective for AML therapy. In conclusion, duckweed was demonstrated to be helpful for humans for food security, energy crisis remediation, and tumour treatment.
Collapse
|
5
|
Putri DN, Pratiwi SF, Perdani MS, Rosarina D, Utami TS, Sahlan M, Hermansyah H. Utilizing rice straw and sugarcane bagasse as low-cost feedstocks towards sustainable production of succinic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160719. [PMID: 36481134 DOI: 10.1016/j.scitotenv.2022.160719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Succinic acid (SA) has been produced from rice straw (RS) and sugarcane bagasse (SB) as low-cost feedstocks in this study through sequential peracetic acid (PA) and alkaline peroxide (AP) pretreatment assisted by ultrasound and pre-hydrolysis followed by simultaneous saccharification and fermentation (PSSF). The effect of yeast extract (YE) concentration, inoculum concentration, and biomass type on SA production was investigated. The results showed that SA production from RS and SB was significantly affected by the YE concentration. Final concentration and yield of SA produced were significantly increased along with the increasing of YE concentration. Moreover, inoculum concentration significantly affected the SA production from SB. Higher inoculum concentration led to higher SA production. On the other hand, SA production from RS was not significantly affected by the inoculum concentration. Using RS as the feedstock, the highest SA production was achieved on the medium containing 15 g/L YE with 5 % v/v inoculum, obtaining SA concentration and yield of 3.64 ± 0.1 g/L and 0.18 ± 0.05 g/g biomass, respectively. Meanwhile, the highest SA production from SB was acquired on the medium containing 10 g/L YE with 7.5 % v/v inoculum, resulting SA concentration and yield of 5.1 ± 0.1 g/L and 0.25 ± 0.05 g/g biomass, respectively. This study suggested that RS and SB are potential to be used as low-cost feedstocks for sustainable and environmentally friendly SA production through ultrasonic-assisted PA and AP pretreatment and PSSF.
Collapse
Affiliation(s)
- Dwini Normayulisa Putri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | | | - Meka Saima Perdani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang 41361, Indonesia
| | - Desy Rosarina
- Department of Industrial Engineering, Faculty of Engineering, Universitas Muhammadiyah Tangerang, Tangerang 15118, Indonesia
| | - Tania Surya Utami
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Heri Hermansyah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| |
Collapse
|
6
|
Shen N, Li S, Li S, Wang Y, Zhang H, Jiang M. Reduced acetic acid formation using NaHSO 3 as a steering agent by Actinobacillus succinogenes GXAS137. J Biosci Bioeng 2023; 135:203-209. [PMID: 36628842 DOI: 10.1016/j.jbiosc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
The high production of acetic acid (AC) as a by-product leads to difficult separation and purification of succinic acid (SA) and increases production costs in SA fermentation by Actinobacillus succinogenes. NaHSO3 as a steering agent was used to reduce AC production. Herein, the optimum fermentation conditions were achieved by single-factor and orthogonal tests as follows: glucose 60 g/L; MgCO3 60 g/L; NaHSO3 0.15% (w/v); and NaHSO3 addition time, 8 h after inoculation. After optimization, the SA and AC contents were 44.42 and 5.73 g/L. The SA improved by 100.72%, the AC decreased by 21.18% compared with the unfermented. The acetate kinase activity decreased by 14.36% and acetyl-CoA content improved by 97.55% in the group of NaHSO3 addition compared with control check (CK). The mechanism of NaHSO3 is formation acetaldehyde-sodium bisulfite compound and reduction the activity of acetate kinase. These findings indicated a new way of using NaHSO3 as a steering agent to reduce AC generation and may help promote the development of SA industrial production.
Collapse
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Shuyan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yibing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China.
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| |
Collapse
|
7
|
Development of a Simple and Robust Kinetic Model for the Production of Succinic Acid from Glucose Depending on Different Operating Conditions. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Succinic acid (SA) is one of the main identified biomass-derived chemical building blocks. In this work we approach the study of its production by Actinobacillus succinogenes DSM 22257 from glucose, focusing on the development and application of a simple kinetic model capable of representing the evolution of the process over time for a great diversity of process variables key to the production of this platform bio-based chemical: initial biomass concentration, yeast extract concentration, agitation speed, and carbon dioxide flow rate. All these variables were studied experimentally, determining the values of key fermentation parameters: titer (23.8–39.7 g·L−1), yield (0.59–0.72 gSA·gglu−1), productivity (0.48–0.96 gSA·L−1·h−1), and selectivity (0.61–0.69 gSA·gglu−1). Even with this wide diversity of operational conditions, a non-structured and non-segregated kinetic model was suitable for fitting to experimental data with high accuracy, considering the values of the goodness-of-fit statistical parameters. This model is based on the logistic equation for biomass growth and on potential kinetic equations to describe the evolution of SA and the sum of by-products as production events that are not associated with biomass growth. The application of the kinetic model to diverse operational conditions sheds light on their effect on SA production. It seems that nitrogen stress is a good condition for SA titer and selectivity, there is an optimal inoculum mass for this purpose, and hydrodynamic stress starts at 300 r.p.m. in the experimental set-up employed. Due to its practical importance, and to validate the developed kinetic model, a fed-batch fermentation was also carried out, verifying the goodness of the model proposed via the process simulation (stage or cycle 1) and application to further cycles of the fed-batch operation. The results showed that biomass inactivation started at cycle 3 after a grace period in cycle 2.
Collapse
|
8
|
Kumar V, Brancoli P, Narisetty V, Wallace S, Charalampopoulos D, Kumar Dubey B, Kumar G, Bhatnagar A, Kant Bhatia S, J Taherzadeh M. Bread waste - A potential feedstock for sustainable circular biorefineries. BIORESOURCE TECHNOLOGY 2023; 369:128449. [PMID: 36496119 DOI: 10.1016/j.biortech.2022.128449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The management of staggering volume of food waste generated (∼1.3 billion tons) is a serious challenge. The readily available untapped food waste can be promising feedstock for setting up biorefineries and one good example is bread waste (BW). The current review emphasis on capability of BW as feedstock for sustainable production of platform and commercially important chemicals. It describes the availability of BW (>100 million tons) to serve as a feedstock for sustainable biorefineries followed by examples of platform chemicals which have been produced using BW including ethanol, lactic acid, succinic acid and 2,3-butanediol through biological route. The BW-based production of these metabolites is compared against 1G and 2G (lignocellulosic biomass) feedstocks. The review also discusses logistic and supply chain challenges associated with use of BW as feedstock. Towards the end, it is concluded with a discussion on life cycle analysis of BW-based production and comparison with other feedstocks.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| | - Pedro Brancoli
- Swedish Centre for Resource Recovery, University of Borås, Borås 501 90, Sweden
| | - Vivek Narisetty
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Unied Kingdom
| | | | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | | |
Collapse
|
9
|
Novel chromatographic purification of succinic acid from whey fermentation broth by anionic exchange resins. Bioprocess Biosyst Eng 2022; 45:2007-2017. [DOI: 10.1007/s00449-022-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
10
|
Narisetty V, Okibe MC, Amulya K, Jokodola EO, Coulon F, Tyagi VK, Lens PNL, Parameswaran B, Kumar V. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. BIORESOURCE TECHNOLOGY 2022; 360:127513. [PMID: 35772717 DOI: 10.1016/j.biortech.2022.127513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Succinic acid (SA) is used as a commodity chemical and as a precursor in chemical industry to produce other derivatives such as 1,4-butaneidol, tetrahydrofuran, fumaric acid, and bio-polyesters. The production of bio-based SA from renewable feedstocks has always been in the limelight owing to the advantages of renewability, abundance and reducing climate change by CO2 capture. Considering this, the current review focuses on various 2G feedstocks such as lignocellulosic biomass, crude glycerol, and food waste for cost-effective SA production. It also highlights the importance of producing SA via separate enzymatic hydrolysis and fermentation, simultaneous saccharification and fermentation, and consolidated bioprocessing. Furthermore, recent advances in genetic engineering, and downstream SA processing are thoroughly discussed. It also elaborates on the techno-economic analysis and life cycle assessment (LCA) studies carried out to understand the economics and environmental effects of bio-based SA synthesis.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | | - K Amulya
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | | | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
11
|
Shen N, Li S, Qin Y, Jiang M, Zhang H. Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2095303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Yan Qin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| |
Collapse
|
12
|
Highly efficient fermentation of glycerol and 1,3-propanediol using a novel starch as feedstock. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Igbokwe VC, Ezugworie FN, Onwosi CO, Aliyu GO, Obi CJ. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114333. [PMID: 34952394 DOI: 10.1016/j.jenvman.2021.114333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The transition from a fossil-based linear economy to a circular bioeconomy is no longer an option but rather imperative, given worldwide concerns about the depletion of fossil resources and the demand for innovative products that are ecocompatible. As a critical component of sustainable development, this discourse has attracted wide attention at the regional and international levels. Biorefinery is an indispensable technology to implement the blueprint of the circular bioeconomy. As a low-cost, non-waste innovative concept, the biorefinery concept will spur a myriad of new economic opportunities across a wide range of sectors. Consequently, scaling up biorefinery processes is of the essence. Despite several decades of research and development channeled into upscaling biorefinery processes, the commercialization of biorefinery technology appears unrealizable. In this review, challenges limiting the commercialization of biorefinery technologies are discussed, with a particular focus on biofuels, biochemicals, and biomaterials. To counteract these challenges, various process intensification strategies such as consolidated bioprocessing, integrated biorefinery configurations, the use of highly efficient bioreactors, simultaneous saccharification and fermentation, have been explored. This study also includes an overview of biomass pretreatment-generated inhibitory compounds as platform chemicals to produce other essential biocommodities. There is a detailed examination of the technological, economic, and environmental considerations of a sustainable biorefinery. Finally, the prospects for establishing a viable circular bioeconomy in Nigeria are briefly discussed.
Collapse
Affiliation(s)
- Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Materials Science and Engineering, Université de Pau et des Pays de l'Adour, 64012, Pau Cedex, France
| | - Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Godwin O Aliyu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinonye J Obi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
14
|
Thakur S, Chaudhary J, Singh P, Alsanie WF, Grammatikos SA, Thakur VK. Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. BIORESOURCE TECHNOLOGY 2022; 344:126156. [PMID: 34695587 DOI: 10.1016/j.biortech.2021.126156] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
As a result of environmental concerns and the depletion of biomass assets, eco-friendly, renewable biomass-based chemical extraction has recently received significant attention. Bio-based chemicals can be prepared using different renewable feedstockbio-resources through microbial fermentation. Chemicals produced from renewable feedstockscan reduce ecological consequences from improper disposal and repurpose them into valuable products. Biodegradability, biocompatibility and non-toxicity, particularly in biomedical applications, have inspired researchers towards developing novel technologies that have social benefit. Among semi-synthetic and synthetic polymeric materials, utilization of natural bio-based monomeric materials can provide opportunities for sustainable development of novel non-toxic, biodegradable and biocompatible products. The purpose of this work is to give a summary of research into the generation of natural bio-based succinic acid (SA) monomer, the development of poly(butylene succinate) (PBS) as biodegradable polymer, PBS-based nanocomposites and their innovative uses.
Collapse
Affiliation(s)
- Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Jyoti Chaudhary
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sotirios A Grammatikos
- ASEMlab - Advanced and Sustainable Engineering Materials Laboratory, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Gjøvik 2815, Norway
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India.
| |
Collapse
|
15
|
Omwene PI, Sarihan ZBO, Karagunduz A, Keskinler B. Bio-based succinic acid recovery by ion exchange resins integrated with nanofiltration/reverse osmosis preceded crystallization. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
17
|
Omwene PI, Yağcıoğlu M, Öcal-Sarihan ZB, Ertan F, Keris-Sen ÜD, Karagunduz A, Keskinler B. Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition. 3 Biotech 2021; 11:389. [PMID: 34458059 DOI: 10.1007/s13205-021-02939-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
Bio-based succinic acid production has attracted global attention since its consideration as a potential replacement to petroleum-based platform chemicals. This study used three different CO2 sources, namely NaHCO3, K2CO3 and MgCO3 for fermentation of succinic acid (SA) by Actinobacillus succinogenes under three distinct substrate conditions i.e. lactose, whey and whey devoid of any supplements. Batch experiments were performed in both anaerobic flasks and 5L benchtop fermenter. SA fermentation in anaerobic flasks was unfettered by supplementary nutrients. However, fermentation in the benchtop fermenter devoid of supplementary nutrients resulted into 42% reduction in SA yield as well as lower SA productivities. Furthermore, a significant reduction of cell growth occurred in anerobic flasks at pH < 6.0, and complete termination of bacterial activity was noted at pH < 5.3. The highest SA titer, yield and productivity of 15.67 g/L, 0.54 g/g and 0.33 g/L/h, respectively, was recorded from whey fermentation with MgCO3. The present study further highlights significant inhibitory effect of K2CO3 buffered medium on Actinobacillus succinogenes. Thus, we can claim that environmental pollution as well as costs of SA production from whey can be reduced by leveraging on whey residual nutrients to support the activity of Actinobacillus succinogenes.
Collapse
Affiliation(s)
- Philip Isaac Omwene
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
- Faculty of Agriculture and Environmental Sciences, Muni University, P.O.Box 725, Arua, Uganda
| | - Meltem Yağcıoğlu
- Institute of Earth and Marine Sciences, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Zehra Betül Öcal-Sarihan
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
| | - Fatma Ertan
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Ülker Diler Keris-Sen
- Institute of Earth and Marine Sciences, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
| | - Bülent Keskinler
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
| |
Collapse
|
18
|
Chen G, Stepanenko A, Borisjuk N. Mosaic Arrangement of the 5S rDNA in the Aquatic Plant Landoltia punctata (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:678689. [PMID: 34249048 PMCID: PMC8264772 DOI: 10.3389/fpls.2021.678689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds are a group of monocotyledonous aquatic plants in the Araceae superfamily, represented by 37 species divided into five genera. Duckweeds are the fastest growing flowering plants and are distributed around the globe; moreover, these plants have multiple applications, including biomass production, wastewater remediation, and making pharmaceutical proteins. Dotted duckweed (Landoltia punctata), the sole species in genus Landoltia, is one of the most resilient duckweed species. The ribosomal DNA (rDNA) encodes the RNA components of ribosomes and represents a significant part of plant genomes but has not been comprehensively studied in duckweeds. Here, we characterized the 5S rDNA genes in L. punctata by cloning and sequencing 25 PCR fragments containing the 5S rDNA repeats. No length variation was detected in the 5S rDNA gene sequence, whereas the nontranscribed spacer (NTS) varied from 151 to 524 bp. The NTS variants were grouped into two major classes, which differed both in nucleotide sequence and the type and arrangement of the spacer subrepeats. The dominant class I NTS, with a characteristic 12-bp TC-rich sequence present in 3-18 copies, was classified into four subclasses, whereas the minor class II NTS, with shorter, 9-bp nucleotide repeats, was represented by two identical sequences. In addition to these diverse subrepeats, class I and class II NTSs differed in their representation of cis-elements and the patterns of predicted G-quadruplex structures, which may influence the transcription of the 5S rDNA. Similar to related duckweed species in the genus Spirodela, L. punctata has a relatively low rDNA copy number, but in contrast to Spirodela and the majority of other plants, the arrangement of the 5S rDNA units demonstrated an unusual, heterogeneous pattern in L. punctata, as revealed by analyzing clones containing double 5S rDNA neighboring units. Our findings may further stimulate the research on the evolution of the plant rDNA and discussion of the molecular forces driving homogenization of rDNA repeats in concerted evolution.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
19
|
Billerach G, Preziosi-Belloy L, Lin CSK, Fulcrand H, Dubreucq E, Grousseau E. Impact of nitrogen deficiency on succinic acid production by engineered strains of Yarrowia lipolytica. J Biotechnol 2021; 336:30-40. [PMID: 34090952 DOI: 10.1016/j.jbiotec.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Yarrowia lipolytica strains PGC01003 and PGC202 engineered for succinic acid production were studied and compared to the wild type strain W29. For the first time, these two strains were characterized in a chemically defined medium. Strain growth and organic acid production were investigated in fed-batch mode with glycerol as carbon and energy source. This study evaluated the impact of nitrogen deficiency strategy to redirect carbon flux toward succinic acid synthesis. Strain PGC01003 produced 19 g L-1 succinic acid with an overall yield of 0.23 g g-1 and an overall productivity of 0.23 g L-1 h-1, while strain PGC202 produced 33 g L-1 succinic acid with an overall yield of 0.12 g g-1 and a productivity of 0.57 g L-1 h-1. Nitrogen limitation effectively stopped biomass growth and increased succinic acid yield of PGC01003 and PGC202 by 18 % and 62 %, respectively. However, the specific succinic acid production rate was reduced by 77 % and 66 %, respectively.
Collapse
Affiliation(s)
- Guillaume Billerach
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Laurence Preziosi-Belloy
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| | - Hélène Fulcrand
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Eric Dubreucq
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| | - Estelle Grousseau
- UMR IATE (INRAE, L'Institut Agro-Montpellier SupAgro, University of Montpellier), Montpellier, France.
| |
Collapse
|
20
|
Mokwatlo SC, Brink HG, Nicol W. Effect of shear on morphology, viability and metabolic activity of succinic acid-producing Actinobacillus succinogenes biofilms. Bioprocess Biosyst Eng 2020; 43:1253-1263. [DOI: 10.1007/s00449-020-02322-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 11/30/2022]
|
21
|
Impact of metabolite accumulation on the structure, viability and development of succinic acid–producing biofilms of Actinobacillus succinogenes. Appl Microbiol Biotechnol 2019; 103:6205-6215. [DOI: 10.1007/s00253-019-09888-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
22
|
Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 2018; 102:9893-9910. [PMID: 30259101 DOI: 10.1007/s00253-018-9379-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.
Collapse
|
23
|
Chen X, Zhou Y, Zhang D. EngineeringCorynebacterium crenatumfor enhancing succinic acid production. J Food Biochem 2018. [DOI: 10.1111/jfbc.12645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoju Chen
- College of Chemistry and Material Engineering Chaohu University Chaohu China
| | - Yaojie Zhou
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Di Zhang
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
24
|
Zhang H, Shen N, Qin Y, Zhu J, Li Y, Wu J, Jiang MG. Complete Genome Sequence of Actinobacillus succinogenes GXAS137, a Highly Efficient Producer of Succinic Acid. GENOME ANNOUNCEMENTS 2018; 6:e01562-17. [PMID: 29472344 PMCID: PMC5824005 DOI: 10.1128/genomea.01562-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 01/05/2023]
Abstract
The bacterium Actinobacillus succinogenes GXAS137, an efficient producer of succinic acid, was isolated from bovine rumen in Nanning, Guangxi Province, China. Here, we present the 2.3-Mb genome assembly of this strain, which consists of 2,314,479 bp (G+C content of 44.89%) with a circular chromosome, 2,235 DNA coding sequences, 57 tRNAs, and 15 rRNAs.
Collapse
Affiliation(s)
- Hongyan Zhang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
- Biology Institute, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Naikun Shen
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yan Qin
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jing Zhu
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yi Li
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jiafa Wu
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Ming-Guo Jiang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| |
Collapse
|