1
|
Wang L, Li X, Huang J, Tuo J, Li X, Qian X, Abolfathi S. The operating performance of Modified Basalt Fibers (MBF) bio-nest reactor exposed to nano-plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136042. [PMID: 39378593 DOI: 10.1016/j.jhazmat.2024.136042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Biological nests made of Modified Basalt Fiber (MBF bio-nests) serve as effective carriers for enhancing wastewater treatment. However, little is known about their performance when exposed to nano-plastics. This study investigates the decontamination efficiency and microbial functionality of four types of MBF and traditional Basalt Fibers (BF) as carriers in contact oxidation reactors. Compared to BF, MBF demonstrated superior growth effects and biocompatibility within the bio-nest. Ca-MBF and Mn-MBF bio-nests exhibited the highest and most uniform absorption capacities, respectively, alongside increased secretion of total Extracellular Polymeric Substances (EPS) and higher Protein to Sugar (PN/PS) ratios. In sewage environments, all MBF groups displayed stable performance in removing NH4+-N and COD. Significant removal of TN and TP was notably observed in Mn-MBF treatments. Mn and Ca treatments predominantly influenced the Proteobacteria and Bacteroidetes phyla, crucial for nitrogen and phosphorus removal. Following exposure to nano-plastics, Mn-MBF and Ca-MBF treatments maintained high decontamination efficiency, particularly for TP and COD (48.64 % to 57.78 % and 90.91 % to 92.89 %, respectively). The significant removal of NH4+-N and TP only occurred in Mn-MBF and Ca-MBF treatments, which stimulated the growth of bacteria resistant to nano-plastics. Key genera such as Zoogloea and Meganema were identified as dominant, contributing to organic matter decomposition, EPS secretion, biofilm condensation, and enhanced microbial attachment. The findings underscore the structural stability enhancement of Mn-MBF and Ca-MBF bio-nests in contact oxidation reactors, demonstrating their resilience against nano-plastic pollution.
Collapse
Affiliation(s)
- Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xuan Li
- Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co. Ltd., Nanjing 210019, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Jing Tuo
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xinwei Li
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | | |
Collapse
|
2
|
Qian X, Huang J, Cao C, Yao J. Innovative application of basalt fibers as biological carrier in constructed wetland-microbial fuel cell for improvement of performance under perfluorooctanoic acid exposure. BIORESOURCE TECHNOLOGY 2024; 406:131019. [PMID: 38908764 DOI: 10.1016/j.biortech.2024.131019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Basalt fiber (BF) was filled in constructed wetland-microbial fuel cell (CW-MFC) as bio-carrier for enhancement of operation performance under perfluorooctanoic acid (PFOA) exposure. In this study, although PFOA caused significant decline of ammonium removal by 7.5-7.7 %, slight promotion on nitrogen and phosphorus removal was observed with BF filling, compared to control. PFOA removal also increased by 1.7-3.4 % in BF filling group. Besides, improved electrochemical performance was discovered with BF filling, in which the highest power density increased by 86.6 % than control, even under PFOA stress. Enhanced stability and performance of CW-MFC resulted from stimulation of functional bacteria on electrodes like Dechloromonas, Thauera, Zoogloea, Gemmobacter, and Pseudomonas, which were further enriched on BF carrier. Higher abundance of nitrogen metabolism and related genes on electrodes and BF carrier was also discovered with BF filling. This study offered new findings on application of BF in CW-MFC systems with PFOA exposure.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiawei Yao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Chen H, Yin L, He Y, Bai L, Wu Y, Zhao Y, Reguyal F, Sarmah AK, Yang X, Ge C, Wang H. Biogas slurry-derived dissolved organic matter inhibited oxytetracycline adsorption by tropical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174785. [PMID: 39009170 DOI: 10.1016/j.scitotenv.2024.174785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The increasing presence of oxytetracycline (OTC) in agricultural soils has raised global environmental concerns. We investigated the environmental behavior and fate of OTC in two types of tropical agricultural soils, focusing on the impact of dissolved organic matter (DOM) from biogas slurry. Techniques such as three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and Ultraviolet-visible spectrophotometer (UV-vis) were used to explore the adsorption mechanisms. Our findings revealed that biogas slurry-derived DOM decreased the OTC adsorption on soils and extended the time to reach adsorption equilibrium. Specifically, the equilibrium adsorption of OTC by the two soils decreased by 19.41 and 15.32 %, respectively. These adsorption processes were effectively modelled by Elovich, intraparticle diffusion, linear, and Freundlich thermodynamic models. Thermodynamic parameters suggested that OTC adsorption onto soils was spontaneous and endothermic, with competitive interactions between biogas slurry-derived DOM and OTC molecules intensifying at higher DOM concentrations. The adsorption mechanisms were governed by both physical and chemical processes. Furthermore, the presence of Ca2+ and Na+ ions significantly inhibited OTC adsorption. These insights advanced our understanding of the fate and risk of OTC in soil environments influenced by DOM, contributing to more informed agricultural and environmental management practices.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingfei Yin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuan He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Liangtai Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuejun Wu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Ma X, Yang W, Zhao H, Tan Q. Effects of carbon to nitrogen ratio on nitrogen removal in a single-stage microaerobic system: A model-based evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121007. [PMID: 38703646 DOI: 10.1016/j.jenvman.2024.121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Single-stage microaerobic systems have been proven to be effective for concurrent removal of ammonium and organic carbon from sewage. While mechanistic models derived from activated sludge models (ASMs) have simulated nutrients removal under microaerobic conditions, classic ASMs exhibit limitations in capturing the intricate effects of carbon to nitrogen (C/N) ratio on nitrogen removal performance. To address this issue, a mechanistic model modified from the classic ASMs was proposed to capture the combined inhibitory effects of carbon and ammonium on microaerobic systems. This modified model was established based on experimental data from a single-stage microaerobic reactor encompassing simultaneous nitrification-denitrification and anammox processes. The inhibition coefficient of C/N ratio was integrated into the process rate equations, and its effectiveness was validated through model performance evaluation. Compared to the classic models, the modified one achieved superior predictions for nitrite and nitrate nitrogen concentrations. Simulations revealed that under optimized conditions with a C/N of 4.57 and a dissolved oxygen (DO) of 0.41 mg/L, the system could achieve up to 95.5% of total nitrogen (TN) removal efficiency. Based on the simulation of substrate uptake/production rate, increasing the nitrogen loading rate (NLR) rather than organic loading rate (OLR) was crucial for efficient nitrogen removal. The proposed modified model served as a valuable tool for designing and optimizing similar biological wastewater treatment systems.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Yang
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China
| | - Haixiao Zhao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Qian X, Huang J, Ji X, Yan C, Cao C, Wu Y, Wang X. Modified basalt fibers boost performance of constructed wetlands: Comparison between surface coating and chemical grafting. BIORESOURCE TECHNOLOGY 2024; 397:130492. [PMID: 38408500 DOI: 10.1016/j.biortech.2024.130492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Modified basalt fiber (MBF) is a potential material that has been applied in wastewater treatment fields. In this study, superior performances of MBFs by calcium (Ca-MBF) and polyethyleneimine modification (PEI-MBF) were compared in constructed wetlands (CWs). Via chemical grafting, higher biofilm contents were observed on the surface of PEI-MBF, compared to Ca-MBF. Moreover, MBF increased key enzyme activities particularly in lower substrate layer, contributing to positive responses of microbial community in CWs. For instance, PEI-MBF boosted microbial richness and diversity and improved the abundances of denitrifying functional bacteria and biomarkers like Thauera, Vulcanibacillus, and Maritimimonas, probably promoting nitrate removal compared with Ca-MBF group. By contrast, Ca-MBF enriched more functional genera involved in nutrients removal, with the highest removal of ammonium (43.9 %), total nitrogen (66.2 %), and total phosphorus (37.1 %). Overall, this work provided new findings on improved performance of CWs with MBF.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Xiaoyu Ji
- Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd, Shanghai 744000, China
| | - Chunni Yan
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xinyue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Wang J, Zhang C, Li P, Xu H, Wang W, Yin W, Wu J, Hu Z. Bioaugmentation with Tetrasphaera to improve biological phosphorus removal from anaerobic digestate of swine wastewater. BIORESOURCE TECHNOLOGY 2023; 373:128744. [PMID: 36791978 DOI: 10.1016/j.biortech.2023.128744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Tetrasphaera-enhanced biological phosphorus removal (T-EBPR) was developed by augmenting conventional EBPR (C-EBPR) with Tetrasphaera to improve phosphorus removal from anaerobic digestate of swine wastewater. At influent total phosphorus (TP) concentrations of 45-55 mg/L, T-EBPR achieved effluent TP concentration of 4.17 ± 1.02 mg/L, 54 % lower than that in C-EBPR (8.98 ± 0.76 mg/L). The enhanced phosphorous removal was presumably due to the synergistic effect of Candidatus Accumulibacter and Tetrasphaera occupying different ecological niches. Bioaugmentation with Tetrasphaera promoted the polyphosphate accumulation metabolism depending more on the glycolysis pathway, as evidenced by an increase in intracellular storage compounds of glycogen and polyhydroxyalkanoates by 0.87 and 0.34 mmol C/L, respectively. The enhanced intracellular storage capacity was coincidentally linked to the increase in phosphorus release and uptake rates by 1.23 and 1.01 times, respectively. These results suggest bioaugmentation with Tetrasphaera could be an efficient way for improved phosphorus removal from high-strength wastewater.
Collapse
Affiliation(s)
- Jiaxin Wang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chiqian Zhang
- Department of Civil and Environmental Engineering, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | - Ping Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China; Zhongshan Institute of Modern Industrial Technology of South China University of Technology, Zhongshan 528400, China.
| | - Hui Xu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Weiwu Wang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinhua Wu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Bao H, Liu M, Li X, Ren N, Li J. Removal of nutrients and veterinary antibiotics from manure-free piggery wastewater in a packed-bed A/O process at normal atmospheric temperature. ENVIRONMENTAL TECHNOLOGY 2023; 44:579-590. [PMID: 34503402 DOI: 10.1080/09593330.2021.1979107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
A packed-bed anaerobic-aerobic reactor (PBAOR) with two anaerobic and two aerobic compartments was constructed to treat manure-free piggery wastewater which was characterized by high ammonium (NH4+-N) and low ratio of chemical oxygen demand (COD) to total nitrogen (TN). Performed for 60 days at the normal atmospheric temperature of 25 °C with a constant hydraulic retention time of 32 h and reflux ratio of 2.0, a stable state in pollutants removal was obtained in the PBAOR. Within the next routine operation process, the removal of COD, NH4+-N and TN was above 85.7%, 98.2% and 85.8%, with a residual less than 81.7, 7.2 and 39.9 mg L-1 in effluent, respectively. Twelve veterinary antibiotics classified into tetracyclines (TCs), sulphonamides (SAs) and fluoroquinolones (FQs) were detected from the piggery wastewater. The PBAOR was effective in removing TCs and SAs with an average removal of 74.8% and 93.3%, respectively, but presented a negative removal for FQs. Most COD in the piggery wastewater was mainly removed in the first two anaerobic compartments along with an obvious removal of TCs and SAs, while the TN were mainly removed in the last two aerobic compartments with the negative removal of FQs.
Collapse
Affiliation(s)
- Hongxu Bao
- School of Environment, Liaoning University, Shenyang, People's Republic of China
| | - Min Liu
- School of Environment, Liaoning University, Shenyang, People's Republic of China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
8
|
Sun Z, Li J, Fan Y, Meng J. A quantified nitrogen metabolic network by reaction kinetics and mathematical model in a single-stage microaerobic system treating low COD/TN wastewater. WATER RESEARCH 2022; 225:119112. [PMID: 36166999 DOI: 10.1016/j.watres.2022.119112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A single-stage intermittent aeration microaerobic reactor (IAMR) has been developed for the cost-effective nitrogen removal from piggery wastewater with a low ratio of chemical oxygen demand (COD) to total nitrogen (TN). In this study, a quantified nitrogen metabolic network was constructed based on the metagenomics, reaction kinetics and mathematical model to provide a revealing insight into the nitrogen removal mechanism in the IAMR. Metagenomics revealed that a complex nitrogen metabolic network, including aerobic ammonia and nitrite oxidation, anammox, denitrification via nitrate and nitrite, and nitrate respiration, existed in the IAMR. A novel method for solving kinetic parameters with high stability was developed based on a genetic algorithm. Use this method to calculate the kinetics of various reactions involved in nitrogen metabolism. Kinetics revealed that simultaneous partial nitritation-anammox (PN/A) and partial denitrification-anammox (PDN/A) were the dominant approaches to nitrogen removal in the IAMR. Finally, a kinetics-based model was proposed for quantitatively describing the nitrogen metabolic network under the limitation of COD. 58% ∼ 67% of nitrogen was removed via the anammox-based processes (PN/A and PDN/A), but only 7% ∼ 12% and 1% ∼ 2% of nitrogen were removed via heterotrophic denitrification of nitrite and nitrate, respectively. The half-inhibition constant of dissolved oxygen (DO) on anammox was simulated as 0.37 ∼ 0.60 mg L-1, filling the gap in quantifying DO inhibition on anammox. High-frequency intermittent aeration was identified as the crucial measure to suppress nitrite-oxidizing bacteria, although it has a high affinity for DO and NO2--N. In continuous aeration mode, the simulated NO3--N in the IAMR would rise by 39.6%. The research provides a novel insight into the nitrogen removal mechanism in single-stage microaerobic systems and provides a reliable approach to practicing PN/A and PDN/A for cost-effective nitrogen removal.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
9
|
Chen Y, Wang H, Gao X, Li X, Dong S, Zhou H, Tan Z. COD/TN ratios shift the microbial community assembly of a pilot-scale shortcut nitrification-denitrification process for biogas slurry treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49335-49345. [PMID: 35220533 DOI: 10.1007/s11356-022-19285-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In this study, effects of carbon to nitrogen (COD/TN) ratios of biogas slurry on shortcut nitrification-denitrification in a pilot-scale integrated fixed film activated sludge (IFAS) system were investigated. Lowering the COD/TN ratio from 11.7 to 6.2 exerted a negative impact on shortcut nitrification-denitrification performance. Accordingly, the NH3-N and TN removal rates decreased from 94.4 to 91.2% and 92.3 to 85.9%, respectively. The dynamics of microbial assembly was analyzed by MiSeq sequencing, and the denitrifying functional genes were quantified by qPCR. The results showed that ammonia oxidizing bacteria and amoA gene were more abundant on the biofilm of oxic tank, indicating they play a key role in NH3-N removal. Autotrophic, endogenous, and fast heterotrophic kinetics denitrifiers were coexisted and enriched in the IFAS system with a decreasing of COD/TN ratio. TN removal was mainly affected by denitrifiers (including Arenimonas, Acidovorax, and Thaurea) harboring narG and nirS genes. Canonical correspondence analysis proved that COD/TN ratio was the most critical factor driving the succession of microbial community. Dissolved oxygen (DO) and pH were found positively correlated with denitrifiers at low COD/TN ratio conditions. As a result, NH3-N and TN removal were effectively enhanced when the DO level in the oxic tank of IFAS system was increased to 1.0-3.0 mg/L.
Collapse
Affiliation(s)
- Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huan Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xingdong Gao
- CAS Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shiyang Dong
- CAS Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
10
|
Tian Y, Li J, Fan Y, Li J, Meng J. Performance and nitrogen removal mechanism in a novel aerobic-microaerobic combined process treating manure-free piggery wastewater. BIORESOURCE TECHNOLOGY 2022; 345:126494. [PMID: 34883191 DOI: 10.1016/j.biortech.2021.126494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
A novel combined sequencing batch reactor (SBR) - up-flow microaerobic sludge reactor (UMSR) process was developed to treat manure-free piggery wastewater characterized by low COD/TN ratio and high NH4+-N. The front-end SBR was designed to get an effluent with COD/TN ≤ 1 by removing COD, allowing the back-end UMSR to practice anammox for the simultaneous removal of TN and NH4+-N. Fed with the raw piggery wastewater, the combined SBR-UMSR process was started up at 27℃ with a reflux ratio of 15:1 in the UMSR. After 230-days running, the removal of COD, TN, and NH4+-N in the combined SBR-UMSR process reached 78.41%,85.05%, and 92.21%, respectively. 50.22% of COD in the wastewater was removed in the SBR, while 87.11% of NH4+-N and 79.69% of TN were removed in the UMSR. Stoichiometry and bacterial function analysis revealed that the partial nitrification - anammox process was the dominant nitrogen removal approach in the UMSR.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
11
|
Li J, Deng K, Meng J, Li J, Zheng M. Synergistic denitrification, partial nitrification - Anammox in a novel A 2/O 2 reactor for efficient nitrogen removal from low C/N wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114069. [PMID: 34763191 DOI: 10.1016/j.jenvman.2021.114069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
A biofilm-based anaerobic-aerobic (A2O2) reactor was constructed to treat manure-free piggery wastewater. The reactor contained four compartments, among which the first two were anaerobic (A phase) and the last two were aerobic (O phase). Throughout around one-year operation, high-level nutrient removal was demonstrated. At an optimal reflux ratio of 100%, the average NH4+-N, TN, and COD removal efficiencies were high as 99.4%, 91.7%, and 79.4%, respectively, with the influent concentration of 220.6, 231.6 and 332 mg/L, respectively. The NH4+-N, TN, and COD concentrations in the final effluent were only 1.4, 18.5 and 65 mg/L, respectively. COD and nitrogen removal were mainly removed in the A phase and O phase, respectively. This result revolutionizes the previous perception that nitrogen is only removed in the A phase of conventional A-O configuration. Achievement of PN/A in the O phase was critical to the efficient nitrogen removal. Heterotrophic denitrification in the anaerobic compartments removed the nitrate produced by anammox, ensuring the high-level nitrogen removal. Anaerobic organic degradation was a major pathway for COD removal, as abundant methanogens detected in the A phase. This study provides a feasible technical scheme for the efficient nutrient removal from ammonium-rich wastewater.
Collapse
Affiliation(s)
- Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China.
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
12
|
Huang W, Zhou J, He X, He L, Lin Z, Shi S, Zhou J. Simultaneous nitrogen and phosphorus removal from simulated digested piggery wastewater in a single-stage biofilm process coupling anammox and intracellular carbon metabolism. BIORESOURCE TECHNOLOGY 2021; 333:125152. [PMID: 33872997 DOI: 10.1016/j.biortech.2021.125152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
A Single-stage biofilm process coupling Anammox and Intracellular Carbon metabolism (SAIC) was constructed for treating simulated digested piggery wastewater with low carbon/nitrogen ratio (C/N) in this study. TN removal in SAIC system increased by more than 12.77% compared to the reference, and the maximum total phosphorus (TP) removal efficiency reached to 83.70% (C/N = 1.5). Denitrification driven by intracellular carbon, mainly poly-β-hydroxybutyrate (PHB, 78.57%), contributed 32.60% of TN elimination at most, and at least 67.40% should be attributed to anammox. Phosphorus was thought to be mainly removed through biological route, while chemical precipitation also explained around 10% of removed TP. Furthermore, commensalism of glycogen accumulating organisms (GAOs), phosphate accumulating organisms (PAOs), nitrifiers and anammox bacteria was revealed by combining 16S rRNA amplicon sequencing and metagenomics. As a result, multiple metabolic pathways including anammox, (partial) nitrification, endogenous (partial) denitrification and biological P-removal played synergistic effect in SAIC system.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
13
|
Xiao J, Huang J, Wang M, Huang M, Wang Y. The fate and long-term toxic effects of NiO nanoparticles at environmental concentration in constructed wetland: Enzyme activity, microbial property, metabolic pathway and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125295. [PMID: 33609865 DOI: 10.1016/j.jhazmat.2021.125295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Although the potential threats of metallic oxide nanoparticles (MNPs) to constructed wetland (CW) have been broadly reported, limited information is available regarding the long-term impact of nickel oxide nanoparticles (NiO NPs) on CWs at the environmentally relevant concentrations. Here, we comprehensively elucidated the responses in the treatment performance, enzyme activities, microbial properties, metabolic pathways and functional genes of CWs to chronic exposure of NiO NPs (0.1 and 1 mg/L) for 120 days, with a quantitative analysis on the fate and migration of NiO NPs within CWs. Nitrogen removal evidently declined under the long-term exposure to NiO NPs. Besides, NiO NPs induced a deterioration in phosphorus removal, but gradually restored over time. The activities of dehydrogenase (DHA), phosphatase (PST), urease (URE), ammonia oxygenase (AMO) and nitrate reductase (NAR) were inhibited to some extent under NiO NPs stress. Furthermore, NiO NPs exposure reduced bacterial diversity, shifted microbial composition and obviously inhibited the transcription of the ammonia oxidizing and denitrifying functional genes. The results of nickel mass balance indicated that the major removal mechanism of NiO NPs in CWs was through substrate adsorption and plants uptake. Thus, the ecological impacts of prolonged NiO NPs exposure at environmental concentrations should not be neglected.
Collapse
Affiliation(s)
- Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Mingyu Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Minjie Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
14
|
Lai C, Sun Y, Guo Y, Cai Q, Yang P. A novel integrated bio-reactor of moving bed and constructed wetland (MBCW) for domestic wastewater treatment and its microbial community diversity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2653-2668. [PMID: 31902307 DOI: 10.1080/09593330.2019.1709904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
An MBBR and CW combo bio-reactor (MBCW) was designed as a novel hybrid process for simultaneous organic, nitrogen and phosphate removal through the long-term operation. The effect of the internal recycling rate (IRR), hydraulic retention time (HRT) and chemical oxygen demand/total nitrogen (C/N) ratio were all discussed, and the recommended values were 5:1, 12 h and >6, respectively. A higher C/N ratio was a key factor for achieving a higher TN removal. The mixed biocarrier system was realized by inoculating porous polymer carriers (PPC) and cylindrical polyethylene carriers (CPC) and achieving a higher organic biodegradation and nitrification rate compared to a single carrier system. Microorganism activities and plants' uptake or utilization both contributed to the nutrient removal in a constructed wetland. High-throughput sequencing results revealed an abundant microbial diversity and a distinct microbial distribution in the whole system where Flavobacterium (14.2%), Acinetobacter (12.87%) and Rhodobacter (10.83%) dominated on PPC, Terrimonas (8.88%), Reyranella (6.61%) and Rubinisphaera (5.63%) dominated on CPC, Comamonas (4.18%), Gemmobacter (4.02%) and Hydrogenophaga (3.97%) dominated on CWs, as well as Citrobacter (53.13%) on suspended floc.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
15
|
Sun Z, Li J, Fan Y, Meng J, Deng K. Efficiency and mechanism of nitrogen removal from piggery wastewater in an improved microaerobic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:144925. [PMID: 33610988 DOI: 10.1016/j.scitotenv.2020.144925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/12/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Characterized by high ammonium (NH4+ - N) and low ratio of chemical oxygen demand (COD) to total nitrogen (COD/TN), discharge of piggery wastewater has been identified as a primary pollution source resulting in water eutrophication. An improved microaerobic reactor, internal aerating microaerobic reactor (IAMR), was constructed to treat manure-free piggery wastewater without effluent recycle at dissolved oxygen of 0.3 mg/L and 32 °C. A removal rate of COD, NH4+ - N and TN averaged 77.9%, 94.6% and 82.6% was obtained in the reactor, with the concentration of 258.5, 235.5 and 335.2 mg/L in influent, respectively. 16S rDNA amplicon sequencing, carbon and nitrogen mass balance and stoichiometry indicated that heterotrophic nitrification-anammox was the dominant approach to nitrogen removal. Microbiome phenotypes showed that aerobic bacteria were the dominant microorganisms, and the microbiome oxidative stress tolerance was intensified along with the continuous operation of the IAMR, resulting in the survival of various facultative and anaerobic bacteria for nutrients removal. With the good nutrients removal, less energy consumption, and high tolerance to influent fluctuation, the improved IAMR was confirmed as a promising process for treating wastewater with high NH4+ - N and low COD/TN.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| |
Collapse
|
16
|
Burov VE, Li J, Meng J. Nitrogen removal from domestic wastewater in a novel hybrid anoxic-oxic biofilm reactor at different reflux ratios. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:865-874. [PMID: 33155359 DOI: 10.1002/wer.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A lab-scale hybrid anoxic-oxic biofilm reactor (HAOBR) with one anoxic compartment and two oxic compartments in sequence was constructed to treat domestic wastewater in this study. Performance of the HAOBR was evaluated at 25°C and hydraulic retention time 12 hr with reflux ratio increased from 100% to 300% by stages. The results showed that COD, NH 4 + - N , and TN removal presented an increasing trend with the increase of reflux ratio by stages. At the optimal reflux ratio of 300%, removal of COD, NH 4 + - N , and TN averaged 83.9%, 99.0%, and 80.8%, respectively. Analysis about pollutant concentration in each compartment of the HAOBR revealed that the excellent pollutant removal was mainly achieved by the cooperation of nitrification in 3rd oxic compartment and denitrification in 1st anoxic compartment. Denitrification in the anoxic zone of 2nd oxic compartment would also contribute to the nitrogen removal. The higher nitrogen removal of the HAOBR at the reflux ratio of 300% is attributed to the presence of the anammox in the 1st anoxic compartment, which is mainly due to the lower COD concentration in the compartment at the higher reflux ratio. PRACTITIONER POINTS: A hybrid anoxic-oxic baffled reactor was built to treat domestic wastewater. Effect of reflux ratio and mechanism of nitrogen removal were investigated. Reflux ratio 300% was favorable for COD, NH 4 + and TN removal. The removal of COD, NH 4 + and TN averaged 84.4%, 99.0% and 80.8%, respectively. Cooperation of nitrification, denitrification and anammox dominated the high nitrogen removal at the higher reflux ratio of 300%.
Collapse
Affiliation(s)
- Vladimir E Burov
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
Liu J, Yu S, Cong D, Yue J, Yang C, Wang X, Ni C, Wang T. Optimization of a novel single air-lift sequencing bioreactor for raw piggery wastewater treatment: Nutrients removal and microbial community structure analysis. BIORESOURCE TECHNOLOGY 2021; 321:124431. [PMID: 33264743 DOI: 10.1016/j.biortech.2020.124431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In this study, a sequencing batch and intermittent air-lift bioreactor (SBIAB) was evaluated under the three independent variables to treat raw piggery wastewater. The effects of hydraulic retention time (HRT), air flow rate and sludge retention time (SRT) on the nutrients removal of SBIAB were researched. The optimum values of HRT, air flow rate and SRT were 8 d, 2 l/min and 20 d, respectively. Meanwhile, the removal rates of chemical oxygen demand (COD), NH4+-N, total nitrogen (TN) and total phosphorus (TP) were up to 89.5%, 93.5%, 61.1% and 57.3%, respectively. Generally, the nutrients removal performance could be enhanced with increasing HRT from 6 to 10 d, while it was inhibited at air flow rate of 3 l/min. Higher air flow rate caused the alkaline pH and high free ammonia concentration, which imposed restrictions on the process of wastewater treatment. In the SBIAB, a coupling of aerobic/anoxic/anaerobic zone was formed according to the changes of oxidation-reduction potential (ORP) values at the optimum condition. Microbial community structure analysis indicated that the functional microbes including Brachymonas, Prokaryote, Giesbergeria, Comamonadaceae bacterium, Clostridiales bacterium, Comamonas, Tissierella, Aequorivita were enriched in the SBIAB, which played a significant role in the removal of complex organics and nitrogen.
Collapse
Affiliation(s)
- Jia Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China.
| | - Shaopeng Yu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China
| | - Donglai Cong
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China
| | - Junguang Yue
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China
| | - Chunxue Yang
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China
| | - Xiaodi Wang
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China
| | - Chao Ni
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China
| | - Tiane Wang
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, 109 Zhongxing Road, Harbin 150086, China
| |
Collapse
|
18
|
Lai C, Guo Y, Cai Q, Yang P. Enhanced nitrogen removal by simultaneous nitrification-denitrification and further denitrification (SND-DN) in a moving bed and constructed wetland (MBCW) integrated bioreactor. CHEMOSPHERE 2020; 261:127744. [PMID: 32739690 DOI: 10.1016/j.chemosphere.2020.127744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
With the main objective of improving the removal of nitrogen from domestic wastewater and more sustainably, a moving bed and constructed wetland (MBCW) integrated bioreactor was fabricated and evaluated with continuous and intermittent aeration operations. The hybrid system achieves average removal efficiencies up to 90.4 ± 0.8% of chemical oxygen demand (COD), 91.8 ± 1.2% of ammonia nitrogen (NH4+-N), and 77.0 ± 2.6% of total nitrogen (TN), respectively, through a simultaneous nitrification-denitrification and further denitrification (SND-DN) process. This occurs through an intermittent aeration operation followed by continuous aeration with a dissolved oxygen (DO) of 4.0 mg L-1 due to the complementary and coordinated action of mixed biocarriers. It has resulted in the improvement of the efficiency of SND from 5.9 to 35.3% and in the removal via wetland for DN, between 2.42 and 2.45 g m-2·d-1, respectively. The analysis of extracellular polymeric substances (EPS) and high-throughput sequencing demonstrated the enhanced SND mechanism and the evolution of microbial species within the biofilm structure. The total relative abundance of nitrifying bacteria, more aggregated outside the biofilm, decreased by 7.66% compared to denitrifying bacteria, mostly accumulated inside, which increased by 5.49%, respectively.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Li J, Li J, Meng J, Sun K. Understanding of signaling molecule controlled anammox through regulating C/N ratio. BIORESOURCE TECHNOLOGY 2020; 315:123863. [PMID: 32717518 DOI: 10.1016/j.biortech.2020.123863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Anammox as a novel biological process in natural nitrogen cycle has been introduced into wastewater treatment process. However, the regulation mechanism of anammox metabolism remained to be investigated. In this study, the specific quorum sensing (QS) signaling molecules for mediating anammox were identified in anammox activity tests. Anammox was valve-regulated by the collaboration of QS signaling molecules N-butyryl-homoserine lactone (C14-HSL) and N-(3-oxotetradecanoyl)-homoserine lactone (3-oxo-C14-HSL), and prompted with the C14-HSL/3-oxo-C14-HSL mole ratio above 1.0. Moreover, the ratio of chemical oxygen demand to total nitrogen (C/N) was identified as an effective regulator for the distribution of C14-HSL and 3-oxo-C14-HSL. An engineering method for control anammox through regulating C/N ratio was proposed and demonstrated based on the performance of two microaerobic reactors treating piggery wastewater and anammox activity tests. The discovery should be of great significance to understanding the social behaviors of anammox bacteria in organic wastewater treatment processes.
Collapse
Affiliation(s)
- Jiuling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China; Advanced Water Management Centre, Building 60, Research Road, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
20
|
Sun H, Shi W, Cai C, Ge S, Ma B, Li X, Ding J. Responses of microbial structures, functions, metabolic pathways and community interactions to different C/N ratios in aerobic nitrification. BIORESOURCE TECHNOLOGY 2020; 311:123422. [PMID: 32413636 DOI: 10.1016/j.biortech.2020.123422] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The responses of microbial structures, functional profiles and metabolic pathways during nitrification to four C/N ratios (0, 5, 10 and 15) were investigated in four parallel SBRs denoted as S0, S5, S10, S15. Results indicated that microbial diversities were affected by C/N ratios, while the same dominant taxa were observed, mainly including Proteobacteria, Betaproteobacteria, Rhodocyclales, Rhodocyclaceae, Zoogloea. The unique biomarkers were identified in each sludge sample through LEfSe analysis. Functional genera/enzymes responsible for removing organics and nitrogen coexisted in four SBRs at different abundances, except for that ammonia oxidizing bacteria (AOB) Nitrosomonas (0.33%-0.66%) and ammonia monooxygenase (amo) (9.4 × 10-7-2.8 × 10-6) were only detected in S0. Moreover, PICRUSt analysis indicated similar overall patterns of metabolic pathways in four sludge samples. The network analysis revealed that total nitrogen removal positively correlated with hcp (Spearman's ρ of 0.853), and ammonia oxidizing rate was associated with amo (Spearman's ρ of 0.096).
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Wenyan Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chenjian Cai
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin Ma
- College of Environment and Ecology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoqiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, China.
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
21
|
Li J, Xu K, Liu T, Bai G, Liu Y, Wang C, Zheng M. Achieving Stable Partial Nitritation in an Acidic Nitrifying Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:456-463. [PMID: 31790214 DOI: 10.1021/acs.est.9b04400] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Partial nitritation providing a suitable effluent for subsequent anammox is a critical step in a two-stage autotrophic nitrogen removal system. This study demonstrates an innovative approach for attaining partial nitritation in an acidic bioreactor operating at a slightly low pH (i.e., 5-6). This approach is based on our hypothesis in this study that acid-tolerant ammonia-oxidizing bacteria (AOB) can produce nitrite and protons to self-sustain free nitrous acid (FNA, NO2- + H+ ↔ HNO2) at a parts per million level, as an inhibitor of nitrite-oxidizing bacteria (NOB). With influent nitrogen of about 200 mg/L and operating conditions of high dissolved oxygen, long sludge retention time, and moderate temperature, a lab-scale acidic bioreactor with FNA up to 2 mg of HNO2-N/L successfully established stable nitrite accumulation in the effluent for 200 days, with an average ratio [NO2-/(NO2- + NO3-)] exceeding 95%. A 16S rRNA amplicon sequencing analysis showed that Nitrosospira was the dominant AOB in the biomass of the bioreactor, while Nitrosomonas and Nitrospira, two typical nitrifying genera in neutral wastewater treatment, both disappeared after the startup of partial nitritation. Kinetic characterization revealed that Nitrosospira had a substrate affinity of 11.4-16.5 mg of total ammonia (NH4+ + NH3)/L. It also revealed that less than 3.5 mg of HNO2-N/L FNA did not inhibit AOB activity significantly. Acidic operation is economically attractive because it can be achieved via acidophilic ammonia oxidation without adding chemical acid. However, hazardous gas, nitric oxide (NO), should be removed from gas produced by acidic nitrifying bioreactors.
Collapse
Affiliation(s)
- Jiyun Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Kangning Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tingsheng Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ge Bai
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
22
|
Meng J, Li J, Li J, Nan J, Zheng M. The effects of influent and operational conditions on nitrogen removal in an upflow microaerobic sludge blanket system: A model-based evaluation. BIORESOURCE TECHNOLOGY 2020; 295:122225. [PMID: 31629283 DOI: 10.1016/j.biortech.2019.122225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Recently, upflow microaerobic sludge blanket (UMSB) system has been developed to remove ammonium and organic matter simultaneously. This study aims to establish influent and operational conditions promoting anammox-based nitrogen removal process in the UMSB reactor by using a modified Activated Sludge Model. Experiments were performed on a laboratory-scale UMSB reactor treated piggery wastewater for over two years. With the experimentally determined model parameters, the established model well simulated the UMSB reactor performance. The maximum anammox growth rate was calibrated to be 0.41 d-1 at 35 °C. Further simulations showed that UMSB reactor operated with high influent organics or nitrogen loading rates at temperature above 15 °C can achieve efficient nitrogen removal (>70%). The nitrogen loading over 0.6 kg N/(m3·d)) significantly favors anammox activity. UMSB could also be a promising system for nitrogen removal from low-strength ammonium wastewater with fluctuated COD influence. These results provide support to UMSB design and operational optimization.
Collapse
Affiliation(s)
- Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
23
|
Deng K, Tang L, Li J, Meng J, Li J. Practicing anammox in a novel hybrid anaerobic-aerobic baffled reactor for treating high-strength ammonium piggery wastewater with low COD/TN ratio. BIORESOURCE TECHNOLOGY 2019; 294:122193. [PMID: 31610495 DOI: 10.1016/j.biortech.2019.122193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
A novel hybrid anaerobic-aerobic baffled reactor (HAOBR) with four compartments was constructed to treat manure-free piggery wastewater with an average COD/TN ratio as low as 0.98, without any supplement of external carbon source. Inoculated with aerobic activated sludge and operated at hydraulic retention time 36 h, 32 °C and reflux ratio 2.0, the reactor could perform steadily within 24 days. The removal of COD, NH4+-N and TN within the 21-days steady phase averaged 87.0%, 100% and 91.3%, respectively. Analysis of stoichiometry and results of high-throughput pyrosequencing revealed that the excellent nitrogen removal in the HAOBR was achieved by the cooperation of heterotrophic and autotrophic denitrification with anammox as the dominant approach. Compared with the previously developed microaerobic treatment processes and the recently reported modified A/O process, the HAOBR was more cost-efficient in treating manure-free piggery wastewater because of the less energy consumption, rapid startup process and efficient nutrients removal.
Collapse
Affiliation(s)
- Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Lianggang Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
24
|
Wang J, Liu Q, Ma S, Hu H, Wu B, Zhang XX, Ren H. Distribution characteristics of N-acyl homoserine lactones during the moving bed biofilm reactor biofilm development process: Effect of carbon/nitrogen ratio and exogenous quorum sensing signals. BIORESOURCE TECHNOLOGY 2019; 289:121591. [PMID: 31230907 DOI: 10.1016/j.biortech.2019.121591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Carbon/nitrogen (C/N) ratios play an important role in biological wastewater treatment processes, with quorum sensing (QS) coordinating biological group behaviors. However, the relationship between them remains unclear. This study investigated the effects of varying C/N ratios and exogenous QS signals on the distribution characteristics of AHLs in Moving Bed Biofilm Reactors during the biofilm development process. Results show that C10-HSL and C12-HSL were the dominant AHLs, with the highest concentrations observed in the reactor with a C/N ratio of 10, followed by C/N ratios of 20 and 4. With varying C/N ratios, the biofilm microbial community structure changed significantly, which may contribute to significant differences in the distribution of AHLs. Furthermore, with the addition of a QS strain Sphingomonas rubra sp. nov., the pollutant removal efficiency of the reactor was not significantly improved and a reversible change in community composition was temporarily observed.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
25
|
Meng J, Li J, He J, Li J, Deng K, Nan J. Nutrient removal from high ammonium swine wastewater in upflow microaerobic biofilm reactor suffered high hydraulic load. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:69-75. [PMID: 30557752 DOI: 10.1016/j.jenvman.2018.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
To understand the ability of an upflow microaerobic biofilm reactor (UMBR) to remove nutrient from manure-free swine wastewater rich in NH4+ with a COD/TN ratio less than 1.00, effect of hydraulic loading rate (HLR) on the microaerobic process was evaluated with a constant reflux ratio of 25 at 25 °C. The results showed that changes in HLR had a remarkable effect on the performance of the UMBR in nutrient removal from the wastewater. With the favorable HLR 3.0 m3/(m3·d) (Hydraulic Retention Time (HRT) 8 h), average removal of COD, NH4+ and TN in the microaerobic process reached 59.3%, 87.7% and 84.7%, respectively, though the COD/TN ratio was as low as 0.84. With an over HLR of 4.0 m3/(m3·d) (HRT decreased to 6 h), bad performance of the UMBR was observed with an average removal of COD, NH4+ and TN as low as 45.0%, 59.0% and 57.5%, respectively. Since the HLR was decreased to 2.4 m3/(m3·d) (HRT 10 h), the microaerobic process regained the efficiency in nutrient removal with a removal of COD, NH4+ and TN averaged 59.0%, 95.3% and 87.8%, respectively. The microaerobic condition allowed anammox bacteria, ammonia-oxidizing bacteria and archaea, nitrite-oxidizing bacteria and denitrifiers to all thrive in the UMBR, resulting in the efficient synchronous removal of organic carbon and nitrogen. As the dominant approach to nitrogen removal, anaerobic ammonium oxidation (anammox) pathway contributing to the TN removal in the microaerobic process exceeded 59.5% at HLR 3.0 m3/(m3·d). The results demonstrated that the UMBR can remove nitrogen and carbon from swine wastewater, with a suitable HLR.
Collapse
Affiliation(s)
- Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China; Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jiamin He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China.
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| |
Collapse
|
26
|
Wang S, Ma X, Wang Y, Du G, Tay JH, Li J. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport. BIORESOURCE TECHNOLOGY 2019; 273:350-357. [PMID: 30448688 DOI: 10.1016/j.biortech.2018.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study the responses of aerobic granulation process to antibiotics and investigate the antibiotics and antibiotic-resistant bacteria (ARB) removal and transport. Results showed that aerobic granular sludge (AGS) was dominant in the bioreactor at day 45, and the relatively high protein content from tightly bound extracellular polymeric substances (TB-EPS) facilitated aerobic granulation and maintained biomass stabilization. The protein contents in EPS and TB-EPS were positively correlated with relative hydrophobicity, thereby improving the adsorption capacity among hydrophobic particles. The chemical oxygen demand (COD), NH3-N, and total N removal efficiencies were 98.0%, 97.0%, and 92.4%, respectively. Five antibiotics, including kanamycin, tetracycline, ciprofloxacin, ampicillin, and erythromycin, were examined in piggery wastewater, with concentrations up to the concentration range of 29.4-44.1 µg/l, and the total antibiotics removal rate reached up to 88.4% ± 4.5%. A total of 5.2% of the total antibiotics were discharged from bioreactor, and 62.5% of the total antibiotics were degraded, and 32.3% of total antibiotics were adsorbed by aerobic granules. The presence of antibiotics rarely exhibited an influence on AGS formation, and the relatively high microbial activity of aerobic granules was beneficial to antibiotics removal. The ARB removal rate increased up to 89.4% ± 3.3%, but a large amount of ARB was enriched in aerobic granules.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China; Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Xinxin Ma
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Ministry Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Joo-Hwa Tay
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| |
Collapse
|
27
|
Yang Y, Lin E, Sun S, Tao X, Zhong L, Hu K. Piggery wastewater treatment by Acinetobacter sp. TX5 immobilized with spent mushroom substrate in a fixed-bed reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1460-1468. [PMID: 30743858 DOI: 10.1016/j.scitotenv.2018.07.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
Acinetobacter sp. TX5 immobilized with spent Hypsizygus marmoreus substrate (SHMS) was used to treat the raw piggery wastewater (RPW). In batch experiments, NH4+-N in the diluted RPW decreased from initial 34.95 mg/L to 3.83 mg/L at 8 h with the removal efficiency (RE) being 89%, and the beads immobilized with SHMS were comparable to those immobilized with activated carbon. In continuous experiments, the RE ranged from 74% to 95% for NH4+-N, from 73% to 93% for TN and from 54% to 82% for COD when the RPW was treated in a fixed-bed reactor packed with SHMS-immobilized TX5. The isotope analysis and enzyme purification indicated simultaneous nitrification and denitrification existing in TX5. This is the first time that spent mushroom substrates have been used to immobilize Acinetobacter species to treat the real RPW and a denitrifying nitrite reductase (dNiR) has been purified to make the nitrogen removal pathway in this species clearer.
Collapse
Affiliation(s)
- Yunlong Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Gutian, Fujian, China.
| | - Ershu Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqian Sun
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Tao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanying Zhong
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaihui Hu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Gutian, Fujian, China
| |
Collapse
|
28
|
Meng J, Li J, Li J, Astals S, Nan J, Deng K, Antwi P, Xu P. The role of COD/N ratio on the start-up performance and microbial mechanism of an upflow microaerobic reactor treating piggery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:825-831. [PMID: 29660708 DOI: 10.1016/j.jenvman.2018.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the role of COD/N ratio on the start-up and performance of an upflow microaerobic sludge reactor (UMSR) treating piggery wastewater at 0.5 mgO2/L. At high COD/N ratio (6.24 and 4.52), results showed that the competition for oxygen between ammonia-oxidizing bacteria, nitrite-oxidizing bacteria and heterotrophic bacteria limited the removal of nitrogen. Nitrogen removal efficiency was below 40% in both scenarios. Decreasing the influent COD/N ratio to 0.88 allowed achieving high removal efficiencies for COD (∼75%) and nitrogen (∼85%) due to the lower oxygen consumption for COD mineralization. Molecular biology techniques showed that nitrogen conversion at a COD/N ratio 0.88 was dominated by the anammox pathway and that Candidatus Brocadia sp. was the most important anammox bacteria in the reactor with a relative abundance of 58.5% among the anammox bacteria. Molecular techniques also showed that Nitrosomonas spp. was the major ammonia-oxidiser bacteria (relative abundance of 86.3%) and that denitrification via NO3- and NO2- also contributed to remove nitrogen from the system.
Collapse
Affiliation(s)
- Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China; Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China.
| | - Sergi Astals
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Philip Antwi
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Pianpian Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| |
Collapse
|