1
|
Xu C, Zhu Y, Wang K, Ouyang J, Gu X. Substrate-specific responses to mixing conditions in high-solids enzymatic hydrolysis: Insights from microcrystalline cellulose and dilute-acid pretreated corncob. Int J Biol Macromol 2025; 294:139431. [PMID: 39755293 DOI: 10.1016/j.ijbiomac.2024.139431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated. Results demonstrated that both substrates exhibited a decrease in cellulose conversion as solid loading increased, with dilute-acid pretreated corncob consistently showing higher conversion rates compared to MCC. Kinetic analysis revealed that both the rate constant k and the fractal exponent h increased with mixing intensity; however, the increase was more pronounced for dilute-acid pretreated corncob's k and MCC's h. Enzyme adsorption studies indicated dilute-acid pretreated corncob had a higher adsorption capacity qmax and a weaker binding affinity K compared to MCC. Furthermore, increased mixing enhanced enzyme adsorption qmax while decreasing binding affinity K, with more pronounced effects on dilute-acid pretreated corncob's qmax and MCC's K. Lower mixing intensities favored cellulase-lignin binding, with an optimal cellulase-to-lignin binding ratio of approximately 1:1.3, suggesting a more stable interaction. These findings underscore the critical role of substrate disparities in high-solid enzymatic hydrolysis, offering valuable guidance for optimizing mixing strategies for efficient conversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Yafei Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kanghong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
2
|
Maity S, Mallick N. Role of cultivation parameters in carbohydrate accretion for production of bioethanol and C-phycocyanin from a marine cyanobacterium Leptolyngbya valderiana BDU 41001: A sustainable approach. BIORESOURCE TECHNOLOGY 2024; 411:131209. [PMID: 39181513 DOI: 10.1016/j.biortech.2024.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
The investigation aimed to augment carbohydrate accumulation in the marine cyanobacterium Leptolyngbya valderiana BDU 41001 to facilitate bioethanol production. Under the standardised physiochemical condition (SPC), i.e. 90 µmol photon m-2 s-1 light intensity, initial culture pH 8.5, 35 °C temperature and mixing at 150 rpm increased the carbohydrate productivity ∼70 % than the control, while a 47 % rise in content was obtained under the nitrate (N)-starved condition. Therefore, a two-stage cultivation strategy was implemented, combining SPC at the 1st stage and N starvation at the 2nd stage, resulting in 80 % augmentation of carbohydrate yield, which enhanced the bioethanol yield by ∼86 % as compared to the control employing immobilised yeast fermentation. Moreover, biomass utilisation was maximised by extracting C-phycocyanin, where a ∼77 % rise in productivity was recorded under the SPC. This study highlights the potential of L. valderiana for pilot-scale biorefinery applications, advancing the understanding of sustainable biofuel production.
Collapse
Affiliation(s)
- Sudatta Maity
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nirupama Mallick
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
3
|
Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Crit Rev Biotechnol 2024; 44:218-235. [PMID: 36592989 DOI: 10.1080/07388551.2022.2151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Poonam Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | | | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, Brazil
| |
Collapse
|
4
|
Zanuso E, Ruiz HA, Domingues L, Teixeira JA. Oscillatory flow bioreactor operating at high solids loading for enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Espinheira RP, Rocha VAL, Guimarães TM, Oliveira CA, de Souza MF, Domont GB, Nogueira FCS, Teixeira RSS, Bon EPDS, Silva ASD. Aspergillus awamori endoglucanase-rich supernatant enhances lignocellulosic biomass liquefaction in high-solids enzymatic hydrolysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lignocellulose particle size and rheological properties changes in periodic peristalsis enzymatic hydrolysis at high solids. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Hernalsteens S, Huang S, Cong HH, Chen XD. The final fate of food: On the establishment of in vitro colon models. Food Res Int 2021; 150:110743. [PMID: 34865762 DOI: 10.1016/j.foodres.2021.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The search for life/health quality has driven the search for a better understanding of food components on the overall individual health, which turns to be intrinsically related to the digestive system. In vitro digestion models are considered an alternative for the in vivo studies for a variety of practical reasons, but further research is still needed concerning the colon model establishment. An effective in vitro colon model should consider all unit operations and transport phenomena, together with chemical and biochemical reactions, material handling and reactor design. Due to the different techniques and dependence on the donor microbiota, it is difficult to obtain a standard protocol with results reproductible in time and space. Furthermore, the colon model should be fed with a representative substrate, thus what happens in upper digestion tract and absorption prior to colon is also of crucial importance. Essentially, there are two ways to think about how to achieve a good and useful in vitro colon model: a complex biomimetic system that provides results comparable with the in vivo studies or a simple system, that despite the fact it could not give physiologically relevant data, it is sufficient to understand the fate of some specific components.
Collapse
Affiliation(s)
- Saartje Hernalsteens
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| | | | - Hai Hua Cong
- College of Food Science and Engineering - Dalian Ocean University, China
| | - Xiao Dong Chen
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| |
Collapse
|
8
|
Rizzioli F, Battista F, Bolzonella D, Frison N. Volatile Fatty Acid Recovery from Anaerobic Fermentate: Focusing on Adsorption and Desorption Performances. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabio Rizzioli
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Via Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
9
|
Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time. ENERGIES 2021. [DOI: 10.3390/en14112993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to evaluate the possibility of using the process of dark fermentation to convert kitchen waste into valuable volatile fatty acids in a semi-continuous process at different values of the organic loading rate (2.5 and 5.0 gVS/(L × d)) and hydraulic retention time (5 and 10 d) using anaerobic mixed microbial consortia. The experiments were performed in a bioreactor of working volume 8L with pH control. The maximum volatile fatty acids yield in a steady state (22.3 g/L) was achieved at the organic loading rate of 5.0 gVS/(L × d) and HRT of 10 days. The main products of dark fermentation were acetic and butyric acids, constituting, respectively, 35.2–47.7% and 24.1–30.0% of all identified volatile fatty acids. Additionally, at the beginning of the fermentation and in a steady-state condition, the microbial population analysis (16S rDNA) of the fermentation mixture with the most effective volatile fatty acids generation has been performed to monitor the DF microflora development. The dominant microorganisms at a phylum level in a steady state were Firmicutes (44.9%) and Bacteroidetes (30.1%), which indicate the main role of those phyla in the volatile fatty acids synthesis.
Collapse
|
10
|
da Silva AS, Espinheira RP, Teixeira RSS, de Souza MF, Ferreira-Leitão V, Bon EPS. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:58. [PMID: 32211072 PMCID: PMC7092515 DOI: 10.1186/s13068-020-01697-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts.
Collapse
Affiliation(s)
- Ayla Sant’Ana da Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Roberta Pereira Espinheira
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Ricardo Sposina Sobral Teixeira
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Marcella Fernandes de Souza
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Viridiana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Elba P. S. Bon
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| |
Collapse
|
11
|
Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019; 10:437-458. [PMID: 31570035 PMCID: PMC6802927 DOI: 10.1080/21655979.2019.1673937] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 11/07/2022] Open
Abstract
Anaerobic digestion (AD) is a well-established technology used for producing biogas or biomethane alongside the slurry used as biofertilizer. However, using a variety of wastes and residuals as substrate and mixed cultures in the bioreactor makes AD as one of the most complicated biochemical processes employing hydrolytic, acidogenic, hydrogen-producing, acetate-forming bacteria as well as acetoclastic and hydrogenoclastic methanogens. Hydrogen and volatile fatty acids (VFAs) including acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acid and other carboxylic acids such as succinic and lactic acids are formed as intermediate products. As these acids are important precursors for various industries as mixed or purified chemicals, the AD process can be bioengineered to produce VFAs alongside hydrogen and therefore biogas plants can become biorefineries. The current review paper provides the theory and means to produce and accumulate VFAs and hydrogen, inhibit their conversion to methane and to extract them as the final products. The effects of pretreatment, pH, temperature, hydraulic retention time (HRT), organic loading rate (OLR), chemical methane inhibitions, and heat shocking of the inoculum on VFAs accumulation, hydrogen production, VFAs composition, and the microbial community were discussed. Furthermore, this paper highlights the possible techniques for recovery of VFAs from the fermentation media in order to minimize product inhibition as well as to supply the carboxylates for downstream procedures.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Lukitawesa
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Mukesh Kumar Awasthi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | | |
Collapse
|
12
|
Strazzera G, Battista F, Garcia NH, Frison N, Bolzonella D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:278-288. [PMID: 30121464 DOI: 10.1016/j.jenvman.2018.08.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 05/28/2023]
Abstract
Volatile fatty acids (VFAs) are a class of largely used compounds in the chemical industry, serving as starting molecules for bioenergy production and for the synthesis of a variety of products, such as biopolymers, reduced chemicals and derivatives. Because of the huge amounts of food waste generated from household and processing industry, 47 and 17 million tons per year respectively only in the EU-28 Countries, food wastes can be the right candidate for volatile fatty acids production. This review investigates all the major topics involved in the optimization of VFAs production from food wastes. Regarding the best operative conditions for the anaerobic fermenter controlled pH in the neutral range (6.0-7.0), short HRT (lower than 10 days), thermophilic temperatures and an organic loading rate of about 10 kgVS/m3d, allowed for an increase in the VFAs concentration between 10 and 25%. It was also found that additions of mineral acids, from 0.5 to 3.0%, and thermal pretreatment in the range 140-170 °C increase the organic matter solubilisation. Applications of VFAs considered in this study were biofuels and bioplastics production as well as nutrients removal in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Giuseppe Strazzera
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Natalia Herrero Garcia
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|