1
|
Shu C, Yang L, Xu Z, Wu J, Chen H, Cui B, Wang Z, Xiao X, Song S, Zhang Y. Research on the castor oil pressing extraction mechanism based on multi-physics coupling simulation. J Food Sci 2024; 89:6507-6522. [PMID: 39192487 DOI: 10.1111/1750-3841.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Castor oil has been widely used in various fields due to its properties, leading to large attention for its extraction mechanism. To research the castor oil extraction mechanism during pressing, a self-developed uniaxial compression device combined with an in situ observation is established. The effects of pressure, loading speed, and creep time are investigated, and a finite element model coupling with multi-physics is established for castor oil pressing extraction, verified by the seed cake experimental compression strain matching with numerical simulation under the same condition. Simulation results indicated that the pressing oil extraction process can be divided into two stages, Darcy's speed shows the first sharp decreasing stage and the second gradual increasing stage during porosity and pressure interaction. In the first stage, porosity is dominant on Darcy's speed. With porosity decreasing, the pressure effect on Darcy's speed exceeds porosity in the second stage. With seed thickness increasing, Darcy's speed first increases and then decreases. With loading speed increasing, Darcy's speed increases. Darcy's speed decreases constantly with creep time increasing. This study can provide basic theoretical and practical guidance for oil extraction.
Collapse
Affiliation(s)
- Can Shu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Liu Yang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Zilong Xu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Junfeng Wu
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Huan Chen
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Bo Cui
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Zhicheng Wang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xuan Xiao
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shaoyun Song
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, Hubei, China
| | - Yonglin Zhang
- College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, Hubei, China
| |
Collapse
|
2
|
Gad MS, Hashish HMA, Hussein AK, Ben Hamida MB, Abdulkader R, Nasef MH. Effect of different configurations of hybrid nano additives blended with biodiesel on CI engine performance and emissions. Sci Rep 2024; 14:19528. [PMID: 39174583 PMCID: PMC11341724 DOI: 10.1038/s41598-024-69957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The use of nano additives to improve the cold properties of biodiesel is encouraged by its drawbacks and incompatibility in cold climate. Waste cooking oil (WCO) was transesterified to create biodiesel. A 20% by volume was used for combination of diesel and methyl ester. Current study aims to evaluate diesel engine emissions and performance. TiO2, alumina, and hybrid TiO2 + Al2O3 nanoparticles are added to WCO biodiesel mixture at 25 mg/liter. When B20 combined with nano materials such as TiO2, Al2O3, and hybrid nano, the highest declines in brake specific fuel consumption were 4, 6, and 11%, respectively. As compared to biodiesel blend, the largest gains in thermal efficiency were 4.5, 6.5, and 12.5%, respectively, at maximum engine output power. Introduction of TiO2, Al2O3, and hybrid nano particles to B20 at 100% load resulted in the highest decreases in HC concentrations up to 7, 13, and 20%, and the biggest reductions in CO emissions, up to 6, 12, and 16%. Largest increases in NOx concentrations at full load were about 7, 15, and 23% for B20 + 25TiO2, B20 + 25 Al2O3, and B20 + 25TiO2 + 25 Al2O3, respectively. Up to 8, 15, and 21% less smoke was released, correspondingly, which were the largest reductions. Recommended dosage of 25 ppm alumina and 25 ppm TiO2 achieved noticeable improvements in diesel engine performance, combustion and emissions about B20.
Collapse
Affiliation(s)
- M S Gad
- Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt
| | - H M Abu Hashish
- Mechanical Engineering Department, Engineering and Renewable Energy Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed Kadhim Hussein
- Mechanical Engineering Department, College of Engineering, University of Babylon, Hilla, Babylon City, Iraq
| | - Mohamed Bechir Ben Hamida
- College of Engineering, Department of Chemical Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
- Research Laboratory of Ionized Backgrounds and Reagents Studies (EMIR), Preparatory Institute for Engineering Studies of Monastir (IPEIM), University of Monastir, Monastir City, Tunisia.
- Higher School of Sciences and Technology of Hammam Sousse (ESSTHS), University of Sousse, Sousse City, Tunisia.
| | - Rasheed Abdulkader
- College of Engineering, Department of Electrical Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mahmoud Hassan Nasef
- Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt
| |
Collapse
|
3
|
Mathivanan K, Ameen F, Zhang R, Rakesh E. Application of Response Surface Methodology (RSM) in the statistical evaluation of biodiesel production from the neutral lipids of the Coelastrella-Nannochloropsis consortium. ENVIRONMENTAL RESEARCH 2024; 243:117829. [PMID: 38052355 DOI: 10.1016/j.envres.2023.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
The paramount challenge in economically workable microalgal biodiesel production is the selection of a competent catalyst to improve the fatty acid methyl ester yield with desirable fatty acid composition. Though countless researchers have explored different homogeneous and heterogeneous catalysts to improve the transesterification efficacy, achieving greater biodiesel production from the neutral lipids of the microalgal consortium using a statistical tool, response surface methodology is scarce. Thus, the present study applied Response surface methodology to statistically analyze the biodiesel production from the neutral lipids of the indigenous Coelastrella-Nannochloropsis consortium (CNC) on the way to commercial feasibility. Onset of the study, the neutral lipids and acid value of the CNC were determined to be 18.74% and 2.73%, respectively. The transesterification of the neutral lipids of CNC was optimized through the coded factors in the RSM for various reaction parameters as combined influence viz., (i) Catalyst dose: methanol volume, (ii) Catalyst dose: reaction time; (iii) Catalyst dose: reaction temperature, (iv) Time: temperature, (v) time: methanol volume, (vi) temperature: methanol volume. Based on the ANOVA, coefficient determination, 2% KOH, 2 h time, 70 °C temperature, and 9 mL methanol volume were ascertained to be optimal values to accomplish 92% biodiesel production. Further, the biodiesel has desirable palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids, with palmitic acid as the prevalent fatty acid contributing 16-18%. In addition, the tested fuel properties of CNC biodiesel satisfy international biodiesel standards.
Collapse
Affiliation(s)
- Krishnamurthy Mathivanan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ruiyong Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Eerla Rakesh
- Department of Microbiology, Kakatiya University, Hanumakonda, 506009, Telangana, India
| |
Collapse
|
4
|
Ruatpuia JVL, Halder G, Shi D, Halder S, Rokhum SL. Comparative life cycle cost analysis of bio-valorized magnetite nanocatalyst for biodiesel production: Modeling, optimization, kinetics and thermodynamic study. BIORESOURCE TECHNOLOGY 2024; 393:130160. [PMID: 38070578 DOI: 10.1016/j.biortech.2023.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
An active, high surface area, recyclable, magnetic, basic, iron oxide-based nanocatalyst was developed from banana leaves waste and used for microwave-assisted transesterification of soybean oil to biodiesel. According to the Hammett indicator, the catalyst has a high total basicity of 15 < H < 18.4. After optimization through the response surface methodology, the reaction allows 96.5 % biodiesel yield in the presence of 24:1 methanol to soybean oil molar ratio, 6 wt% BLW@Fe3O4, 0.5 h at 65 °C. The magnetic nature of the catalyst improves reusability for up to 6 cycles. Thermodynamic analyses showed that transesterification of soybean oil to biodiesel is an endothermic reaction. Moreover, the catalyst has the potential to reduce biodiesel production costs by utilizing abundant biomass waste materials. The calculated cost for 1 kg of catalyst is $1.14, while the biodiesel's cost per kg produced in this work is merely $1.05, showing high commercial viability.
Collapse
Affiliation(s)
- Joseph V L Ruatpuia
- Department of Chemistry, National Institute of Technology Silchar, Silchar 788010, Assam, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Da Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Sudipta Halder
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
| | | |
Collapse
|
5
|
Yang L, Cui B, Chen H, Fan Y, Zhang Y, Song S, Yin Q, Zhao G, Hao Z. Research on microstructural-mechanical and shearing properties of castor seed during mechanical extraction. J Texture Stud 2023; 54:902-912. [PMID: 37407436 DOI: 10.1111/jtxs.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Castor seed oil, as an important biomass fuel, has attracted extensive attention worldwide due to inclusive applications. Castor seed screw mechanical extraction is in fact seed shear damage and oil output. Seed shearing mechanism has been investigated with a developed tribometer. Influences of pressing load, shearing speed, roller roughness were analyzed. Castor seed structural damage was in-situ observed with optical microscope, and in-depth analyzed with Scanning Electron Microscopy and Energy Dispersive Spectroscopy. The results reveal that shear interaction can be divided into three stages: coat damage, transition shearing and endosperm oil output. Seed shear mechanism includes coat peeling, endosperm plowing, tissue transferring and oil lubrication. High pressing load leads to more damage of coat and endosperm, causing more oil to flow out. With shearing speed increasing, coat is easily peeled, obvious endosperm shear plowing and oil lubrication happened in contact area. Coat damage by high roughness leads more oil output. Castor oil enters the contact area and work as lubricant, leading to the decrease of friction resistance.
Collapse
Affiliation(s)
- Liu Yang
- College of Mechanical Engineering, Wuhan Polytechnical University, Wuhan, Hubei, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu, China
| | - Bo Cui
- College of Mechanical Engineering, Wuhan Polytechnical University, Wuhan, Hubei, China
| | - Huan Chen
- College of Mechanical Engineering, Wuhan Polytechnical University, Wuhan, Hubei, China
| | - Yuchao Fan
- College of Mechanical Engineering, Wuhan Polytechnical University, Wuhan, Hubei, China
| | - Yonglin Zhang
- College of Mechanical Engineering, Wuhan Polytechnical University, Wuhan, Hubei, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, Hubei, China
| | - Shaoyun Song
- College of Mechanical Engineering, Wuhan Polytechnical University, Wuhan, Hubei, China
- Hubei Cereals and Oils Machinery Engineering Center, Wuhan, Hubei, China
| | - Qiang Yin
- College of Mechanical Engineering, Wuhan Polytechnical University, Wuhan, Hubei, China
| | - Gang Zhao
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Zhiqiang Hao
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Sangeetha B, Mohana Priya S, Pravin R, Tamilarasan K, Baskar G. Process optimization and technoeconomic assessment of biodiesel production by one-pot transesterification of Ricinus communis seed oil. BIORESOURCE TECHNOLOGY 2023; 376:128880. [PMID: 36921639 DOI: 10.1016/j.biortech.2023.128880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In the present study, Ricinus communis seed oil with high free fatty acid content was utilized for the one-pot biodiesel production using 1-(2,3-dihydroxy)-propyl-3-methylimidazolium hydroxide, a basic ionic liquid catalyst. The 97.83% biodiesel yield was obtained at the optimized conditions of 6.26 % (w/w) of catalyst concentration, 10.51:1 M ratio of methanol to oil, 57.87 °C temperature and reaction time of 61.01 min. The transesterification of Ricinus communis seed oil to biodiesel exhibited an activation energy of 37.60 kJ/mol. The technoeconomic analysis, the profitability and the sensitivity analysis were investigated for the simulated process design. The technoeconomic analysis reported a total revenue of 20,455,431 $/yr, with gross margins, ROI, payback period, IRR, and NPV of 23.54%, 35.72%, 2.8 years, 28.20%, and 19,287,000 $, respectively. According to the sensitivity analysis, the two most important factors determining the economic viability of the simulated process are Ricinus communis seed oil cost and biodiesel selling price.
Collapse
Affiliation(s)
- Baskaran Sangeetha
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | | | - Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | | | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| |
Collapse
|
7
|
Feng W, Tie X, Duan X, Yan S, Fang S, Wang T, Sun P, Gan L. Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
8
|
Synthesis of Mn-Doped ZnO Nanoparticles and Their Application in the Transesterification of Castor Oil. Catalysts 2023. [DOI: 10.3390/catal13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alarming environmental changes and the threat of natural fuel resource extinction are concerning issues in human development. This has increased scientists’ efforts to phase out traditional energy resources and move on to environmentally friendly biofuels. In this study, non-edible castor oil was transesterified with methanol using a manganese-doped zinc oxide (Mn-doped ZnO) nanocatalyst. A heterogeneous nanocatalyst was prepared by means of the the sonochemical method. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were used to characterize these nanocatalysts. The transesterification reaction was studied under different temperature conditions, different ratios of methyl alcohol to castor oil, and different amounts of the catalyst to identify optimum conditions in which the maximum yield of biodiesel was produced. The maximum biodiesel yield (90.3%) was observed at 55 °C with an oil-to-methanol ratio of 1:12, and with 1.2 g of nanocatalyst. The first-order kinetic model was found to be the most suitable. Several thermodynamic parameters were also determined, such as activation energy, enthalpy, and entropy. We found that this transesterification was an endergonic and entropy-driven reaction. The results showed that the Mn-doped ZnO nanocatalyst could be a suitable catalyst for the heterogeneous catalytic transesterification process, which is essential for biodiesel production.
Collapse
|
9
|
Rodríguez Mejía Y, Romero Romero F, Basavanag Unnamatla MV, Ballesteros Rivas MF, Varela Guerrero V. Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
Collapse
Affiliation(s)
- Yetzin Rodríguez Mejía
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
| | - Fernando Romero Romero
- Universidad Autónoma del Estado de México, Facultad de Química , Carretera Toluca-Ixtlahuaca Km. 15, Unidad el Cerrillo , Toluca , Estado de México , 50200 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Murali Venkata Basavanag Unnamatla
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Maria Fernanda Ballesteros Rivas
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Victor Varela Guerrero
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| |
Collapse
|
10
|
Sharma P, Bano A, Pratap Singh S, Atkinson JD, Shiung Lam S, Iqbal HM, Wah Tong Y. Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment. FUEL 2022; 329:125408. [DOI: 10.1016/j.fuel.2022.125408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
11
|
Mamuye L, Reshad AS. Reactive Extraction for Fatty Acid Methyl Ester Production from Castor Seeds Using a Heterogeneous Base Catalyst: Process Parameter Optimization and Characterization. ACS OMEGA 2022; 7:41559-41574. [PMID: 36406585 PMCID: PMC9670912 DOI: 10.1021/acsomega.2c05423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Fatty acid methyl ester (FAME) from oil seeds is conventionally produced via a two/three-process-step method: extraction of oil and subsequent esterification/transesterification to fatty FAME (biodiesel). However, in the present study, we investigated the production of castor kernel oil (CKO) FAME by reactive extraction for extraction and transesterification in a single process using a heterogeneous catalyst. The content of oil that can be extracted was checked by investigating several nonreactive extraction parameters such as solvent type (polar, nonpolar, and mixture), the solvent to kernel ratio, and extraction time. Maximum oil was extracted using methanol as a solvent with a methanol-to-seed ratio of 6.25:1 for 6 h extraction time. The viscosity of CKO obtained by nonreactive extraction was reduced from 288.83 to 19.04 mm2/s by reactive extraction using a 4.09 wt % catalyst concentration (BaO) and a 330.9:1 methanol-to-oil molar ratio for 6 h reaction time at 64 °C. Reactive extraction for transesterification of CKO was performed using BaO, CaO, and ZnO heterogeneous catalysts. BaO results in the increased yield of CKO FAME compared to other catalysts. Central composite design (CCD) using the response surface methodology (RSM) was implemented to design the experimental matrix, process parameter optimization, maximize the yield of CKO FAME, and investigate interaction effects of parameters such as reactive extraction temperature (55-65 °C), catalyst concentration (3-5 wt %), and methanol-to-oil molar ratio (175:1-350:1) on the yield of CKO FAME. A second-order model equation with a p-value < 0.05 and an R 2 value near 1.0 was obtained to predict the yield using the input parameters. The maximum yield CKO FAME of 96.13 wt % with 94.4% purity of produced CKO FAME was obtained at a catalyst concentration of 4.09 wt % and a methanol-to-oil molar ratio of 330.9:1 for 6 h with a reaction temperature of 64 °C. Therefore, a comparable conversion of castor seed oil triglyceride (96.13 wt %) was obtained in a single step directly from castor seeds. Furthermore, the rheological behavior investigation of castor kernel oil and castor methyl ester revealed that the dynamic viscosity of both samples was found to be dependent on triglyceride content and temperature.
Collapse
Affiliation(s)
- Lemlem
Feseha Mamuye
- Department
of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa1230, Ethiopia
| | - Ali Shemsedin Reshad
- Department
of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa1230, Ethiopia
- Center
of Excellence Sustainable Energy Research, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa1230, Ethiopia
| |
Collapse
|
12
|
Madhuvanthi S, Jayanthi S, Suresh S, Pugazhendhi A. Optimization of consolidated bioprocessing by response surface methodology in the conversion of corn stover to bioethanol by thermophilic Geobacillus thermoglucosidasius. CHEMOSPHERE 2022; 304:135242. [PMID: 35688203 DOI: 10.1016/j.chemosphere.2022.135242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The swift depletion of fossil fuels and their associated environment and economic impact has led the world to explore the sustainable alternate fuels. Amidst the available alternatives lignocellulosic bioethanol provides the edge over the exhausting fossil fuels. In this current study, Response surface methodology, a mathematical and statistical tool was used to optimize the fermentation conditions in consolidated bioprocessing of corn stover by Geobacillus thermoglucosidasius. The impact of inoculum concentration, temperature, pH, agitation speed and time in bioethanol fermentation were screened with Plackett-Burman design and it was farther optimized with central composite design. The analysis by PBD confirmed the significant impact of fermentation time, inoculum concentration, and temperature of the fermentation process. Further, it was optimized with CCD. This showed that 15% v/v of Inoculum concentration, 50 °C of temperature and fermentation time of 72 h increased the bioethanol concentration to a maximum of 9.04 g/L with 0.45 g/g significant yield and a conversion efficiency of 88%. Thus, the CCD showed a satisfactory result in consolidated bioprocessing of bioethanol from corn stover. Thus, in the future, this approach of optimization will yield a good base for consistent production of bioethanol.
Collapse
Affiliation(s)
- Sigamani Madhuvanthi
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, Tamil Nadu, India.
| | - Singaram Jayanthi
- Department of Civil Engineering, Government College of Engineering, Bodinayakanur, Theni, 625582, Tamil Nadu, India
| | - Subramaniyam Suresh
- Department of Biotechnology, College of Science and Humanities, Ramapuram Campus, SRM Institute of Science and Technology, Bharathi Salai, Ramapuram, Chennai, 600089, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
13
|
Dharmegowda IY, Muniyappa LM, Siddalingaiah P, Suresh AB, Gowdru Chandrashekarappa MP, Prakash C. MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization. SUSTAINABILITY 2022; 14:11132. [DOI: 10.3390/su141811132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In India, a densely populated country, fossil fuel depletion affects the energy sector that fulfils the industrial and human needs. Concerning greenhouse gas emissions and pollutants, and sustainability, there is a great demand to search for alternate feedstocks to produce alternate fuels at a low cost. The present work focuses on waste coconut and fish oil as potential inexpensive feedstock for biodiesel production. Two-stage transesterification processes for biodiesel production from hybrid oils mixed in a 1:1 volume ratio by employing solid nano-catalyst Magnesium Oxide (MgO). Response surface methodology (RSM) was used to analyze the effects of the physics of transesterification variables, such as methanol-to-oil molar ratio (M:O), MgO catalyst concentration (MgO CC), and reaction temperature (RT), on biodiesel yield, based on experimental data gathered in accordance with the matrices of central composite design (CCD). MgO CC showed the highest contribution, followed by M:O and RT, to maximize biodiesel yield. All interaction factors showed a significant effect except the M:O with RT. Grasshopper optimization algorithm (GOA) determined optimal conditions (M:O: 10.65; MgO CC: 1.977 wt.%; RT: 80 °C) based on empirical equations, resulting in maximum biodiesel yield conversion experimentally equal to 96.8%. The physical stability of the MgO nano-catalyst and reactivity up to 5 successive cycles can yield 91.5% biodiesel yield, demonstrating its reusability for sustainable biodiesel production at low cost. The optimized biodiesel yield showed better physicochemical properties (tested according to ASTM D6751-15C) to use practically in diesel engines.
Collapse
Affiliation(s)
- Impha Yalagudige Dharmegowda
- Department of Mechanical Engineering, Government Engineering College, Visvesvaraya Technological University, Kushalnagara 571234, India
| | - Lakshmidevamma Madarakallu Muniyappa
- Department of Mechanical Engineering, Government Engineering College, Visvesvaraya Technological University, Kushalnagara 571234, India
- Department of Mechanical Engineering, Government Engineering College, Visvesvaraya Technological University, Challakere 577522, India
| | - Parameshwara Siddalingaiah
- Department of Mechanical Engineering, JNN College of Engineering, Visvesvaraya Technological University, Shivamogga 577204, India
| | - Ajith Bintravalli Suresh
- Department of Mechanical Engineering, Sahyadri College of Engineering and Management, Visvesvaraya Technological University, Mangalore 575007, India
| | | | - Chander Prakash
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
14
|
Zhang JP, Hou JQ, Li MX, Yang TX, Xi BD. A novel process for food waste recycling: A hydrophobic liquid mulching film preparation. ENVIRONMENTAL RESEARCH 2022; 212:113332. [PMID: 35483414 DOI: 10.1016/j.envres.2022.113332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Appropriate and effective recycling of food waste (FW) has become increasingly significant with the promotion of garbage classification in China. In this study, a novel and green process was developed to recycle FW to prepare a biodegradable composite liquid mulching film (LMF) through crosslinking with sodium alginate (SA). The solid phase of FW was obtained as the raw material after hydrothermal pretreatment to remove pathogens and salts, and to improve the reactivity of active components at a moderate temperature. The prepared LMF had a hydrophobic surface and compact structure due to the lipid in FW and the acetalization reaction and hydrogen bonds among SA, glutaraldehyde and multi-active components of FW, resulting in enhanced water vapor barrier properties. The minimum water vapor permeability of the prepared LMF reached (8.23 ± 0.05) ✕ 10-12 g cm/(cm2·s·Pa) with 1.82 wt % of plasticizer, 0.74 wt% of crosslinker and a mass ratio of HTP-FW to SA of 3.56:1. The prepared LMF showed good mechanical properties and could maintain its integrity after spraying it on the soil surface for 31 days. In addition, it could effectively prevent the loss of soil moisture and heat, promote the seed germination of Chinese cabbage and achieve 89.14% of weight loss after burying in the soil for 27 days. This study provides a high value-added route to convert the FW to a hydrophobic LMF with superior properties, which addresses not only the problem of food waste but also the pollution of plastic mulching film.
Collapse
Affiliation(s)
- Jun-Ping Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jia-Qi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China
| | - Ming-Xiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tian-Xue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
15
|
Yadav D, Datta S, Saha S, Pradhan S, Kumari S, Gupta PK, Chauhan V, Saw SK, Sahu G. Heterogeneous Nanocatalyst for Biodiesel Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202201671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deshal Yadav
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Sudipta Datta
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Sujan Saha
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Subhalaxmi Pradhan
- Division of Chemistry SBAS Galgotias University Greater Noida Uttar Pradesh India
| | - Shweta Kumari
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Pavan Kumar Gupta
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Vishal Chauhan
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Shiva Kumar Saw
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Gajanan Sahu
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| |
Collapse
|
16
|
Mohd Johari SA, Ayoub M, Inayat A, Ullah S, Uroos M, Naqvi SR, Farukkh S. Utilization of Dairy Scum Waste as a Feedstock for Biodiesel Production via Different Heating Sources for Catalytic Transesterification. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Siti Aminah Mohd Johari
- Universiti Teknologi PETRONAS HiCoE, Centre for Biofuel and Biochemical Research (CBBR) Institute of Sustainable Living (ISB) 32610 Seri Iskandar Perak Malaysia
- Universiti Teknologi PETRONAS Chemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Muhammad Ayoub
- Universiti Teknologi PETRONAS HiCoE, Centre for Biofuel and Biochemical Research (CBBR) Institute of Sustainable Living (ISB) 32610 Seri Iskandar Perak Malaysia
- Universiti Teknologi PETRONAS Chemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Abrar Inayat
- University of Sharjah Department of Sustainable and Renewable Energy Engineering 27272 Sharjah United Arab Emirates
| | - Sami Ullah
- King Khalid University Department of Chemistry, College of Science POB: 9004 61413 Abha Saudi Arabia
| | - Maliha Uroos
- University of the Punjab Centre for Research in Ionic Liquids Institute of Chemistry 54000 Lahore Pakistan
| | - Salman Raza Naqvi
- National University of Science and Technology Department of Chemical Engineering Islamabad Pakistan
| | - Sarah Farukkh
- National University of Science and Technology School of Chemical & Materials Engineering Islamabad Pakistan
| |
Collapse
|
17
|
|
18
|
Ulu A, Yildiz G, Rodriguez AD, Özkol Ü. Spray Analysis of Biodiesels Derived from Various Biomass Resources in a Constant Volume Spray Chamber. ACS OMEGA 2022; 7:19365-19379. [PMID: 35721991 PMCID: PMC9202015 DOI: 10.1021/acsomega.2c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 05/15/2023]
Abstract
This research aimed to analyze the spray characteristics of various biodiesels, which have rarely been investigated in terms of spray analysis in the literature compared to fossil diesel. For this purpose, four different methyl ester-type biodiesels were produced from canola, corn, cottonseed, and sunflower oils. These feedstocks were selected due to their wide availability in Turkey and being among the significant resources for biodiesel production. Measured physical properties of biodiesel samples showed that biodiesel fuels had, on average, 1.7 to 1.9 times higher viscosities, 5.3 to 6.6% larger densities, and 37 to 39.1% higher contact angle values than the reference diesel fuel. Spray characteristics of all fuels were experimentally examined in a constant volume spray chamber under chamber pressures of 0, 5, 10, and 15 bar and injection pressures of 600, 800, and 1000 bar. All tested biodiesels performed, on average, 3 to 20% longer spray penetration lengths, 5 to 30% narrower spray cone angles, and 5-18% lesser spray areas than the reference diesel fuel under chamber pressures of 5 and 10 bar. No significant differences occurred at 15 bar ambient pressure between biodiesels and diesel. In addition, analytical and empirical predictions showed that biodiesels had around 21.2-35.1% larger SMD values and approximately 7% lower air entrainment.
Collapse
Affiliation(s)
- Anılcan Ulu
- Izmir
Institute of Technology, Faculty of Engineering,
Department of Mechanical Engineering,
Urla, 35430 Izmir, Turkey
- ; . Tel: +90 232 750
6743. Fax: +90 232 750 6701
| | - Güray Yildiz
- Izmir
Institute of Technology, Faculty of Engineering,
Department of Energy Systems Engineering, Urla, 35430 Izmir, Turkey
| | - Alvaro Diez Rodriguez
- Izmir
Institute of Technology, Faculty of Engineering,
Department of Mechanical Engineering,
Urla, 35430 Izmir, Turkey
| | - Ünver Özkol
- Izmir
Institute of Technology, Faculty of Engineering,
Department of Mechanical Engineering,
Urla, 35430 Izmir, Turkey
| |
Collapse
|
19
|
Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmental pollution caused by conventional petro-diesel initiates at time of crude oil extraction and continues until its consumption. The resulting emission of poisonous gases during the combustion of petroleum-based fuel has worsened the greenhouse effect and global warming. Moreover, exhaustion of finite fossil fuels due to extensive exploitation has made the search for renewable resources indispensable. In light of this, biodiesel is a best possible substitute for the regular petro-diesel as it is eco-friendly, renewable, and economically viable. For effective biodiesel synthesis, the selection of potential feedstock and choice of efficient catalyst is the most important criteria. The main objective of this bibliographical review is to highlight vital role of different catalytic systems acting on variable feedstock and diverse methods for catalysis of biodiesel synthesis reactions. This paper further explores the effects of optimized reaction parameters, modification in chemical compositions, reaction operating parameters, mechanism and methodologies for catalysts preparation, stability enhancement, recovery, and reusability with the maximum optimum activity of catalysts. In future, the development of well-planned incentive structures is necessary for systematic progression of biodiesel process. Besides this, the selection of accessible and amended approaches for synthesis and utilization of specific potential catalysts will ensure the sustainability of eco-green biodiesel.
Collapse
|
20
|
Mittal V, Talapatra KN, Ghosh UK. A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: lifecycle assessment and methodologies. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Welter RA, Santana H, le ta Torre LG, Robertson MJ, Taranto OP, Oelgemöller M. Methyl oleate synthesis by TiO2‐photocatalytic esterification of oleic acid: optimisation by Response surface quadratic methodology, reaction kinetics and thermodynamics. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosilene Andrea Welter
- James Cook University College of Science and Engineering 1James Cook DriveDouglas 4814 Townsville AUSTRALIA
| | - Harrson Santana
- Universidade Estadual de Campinas - Campus Cidade Universitaria Zeferino Vaz: Universidade Estadual de Campinas Engenharia Química Avenida Albert Einstein500Cidade UniversitáriaBarão Geraldo 13083-852 Campinas BRAZIL
| | - Lucimara Gaziola le ta Torre
- Universidade Estadual de Campinas - Campus Cidade Universitaria Zeferino Vaz: Universidade Estadual de Campinas Engenharia Química 500Avenida Albert EinsteinCidade UniversitáriaBarão Geraldo 13083-852 Campinas BRAZIL
| | - Mark J. Robertson
- James Cook University College of Science and Engineering 1James Cook DriveDouglas 4811 Townsville AUSTRALIA
| | - Osvaldir Pereira Taranto
- Universidade Estadual de Campinas - Campus Cidade Universitaria Zeferino Vaz: Universidade Estadual de Campinas Engenharia Quimica 500Avenida Albert EinsteinCidade UniversitáriaBarão Geraldo 13083-852 Campinas BRAZIL
| | - Michael Oelgemöller
- Hochschule Fresenius gGmbH: Hochschule Fresenius gGmbH Faculty of Chemistry and Biology 2Limburger Str D-65510 Idstein GERMANY
| |
Collapse
|
22
|
BAO LEI, WU DONGFANG. Catalytic properties of SmMnO3/cordierite monolithic catalysts: acid treatment and calcination process optimization using response surface methodology. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02042-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ulu A, Yildiz G, Özkol Ü, Rodriguez AD. Experimental investigation of spray characteristics of ethyl esters in a constant volume chamber. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-18. [PMID: 35233347 PMCID: PMC8872800 DOI: 10.1007/s13399-022-02476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 05/27/2023]
Abstract
ABSTRACT Biodiesels are mainly produced via the utilization of methanol in transesterification, which is the widespread biodiesel production process. The majority of this methanol is currently obtained from fossil resources, i.e. coal and natural gas. However, in contrast with methanol, biomass-based ethanol can also be used to produce biodiesels; this could allow the production line to become fully renewable. This study aimed to investigate the spray characteristics of various ethyl ester type biodiesels derived from sunflower and corn oils in comparison to methyl esters based on the same feedstocks and reference petroleum-based diesel. Spray penetration length (SPL) and spray cone angle (SCA) were experimentally evaluated in a constant volume chamber allowing optical access, under chamber pressures of 0, 5, 10 and 15 bar and injection pressures of 600 and 800 bar. Sauter mean diameter (SMD) values were estimated by using an analytical correlation. Consequently, ethyl esters performed longer SPL (2.8-20%) and narrower SCA (5.1-19%) than diesel under ambient pressures of 5 and 10 bar. Although the SMD values of ethyl esters were 48% higher than diesel on average, their macroscopic spray characteristics were very similar to those of diesel under 15 bar chamber pressure. Moreover, ethyl esters were found to be very similar to methyl esters in terms of spray characteristics. The differences in SPL, SCA and SMD values for both types of biodiesels were lower than 4%. When considering the uncertainty (± 0.84%) and repeatability (±5%) ratios, the difference between the spray characteristics of methyl and ethyl esters was not major. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Anılcan Ulu
- Department of Mechanical Engineering, İzmir Institute of Technology, Faculty of Engineering, Urla, 35430 İzmir, Turkey
| | - Güray Yildiz
- Department of Energy Systems Engineering, İzmir Institute of Technology, Faculty of Engineering, Urla, 35430 İzmir, Turkey
| | - Ünver Özkol
- Department of Mechanical Engineering, İzmir Institute of Technology, Faculty of Engineering, Urla, 35430 İzmir, Turkey
| | - Alvaro Diez Rodriguez
- Department of Mechanical Engineering, İzmir Institute of Technology, Faculty of Engineering, Urla, 35430 İzmir, Turkey
| |
Collapse
|
24
|
Biodiesel production and comparison using commercial lipase and chemical catalyst from Cassia auriculata oil. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Maroa S, Inambao F. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Eng Life Sci 2021; 21:790-824. [PMID: 34899118 PMCID: PMC8638282 DOI: 10.1002/elsc.202100025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
The production of biodiesel through chemical production processes of transesterification reaction depends on suitable catalysts to hasten the chemical reactions. Therefore, the initial selection of catalysts is critical although it is also dependent on the quantity of free fatty acids in a given sample of oil. Earlier forms of biodiesel production processes relied on homogeneous catalysts, which have undesirable effects such as toxicity, high flammability, corrosion, by-products such as soap and glycerol, and high wastewater. Heterogeneous catalysts overcome most of these problems. Recent developments involve novel approaches using biomass and bio-waste resource derived heterogeneous catalysts. These catalysts are renewable, non-toxic, reusable, offer high catalytic activity and stability in both acidic and base conditions, and show high tolerance properties to water. This review work critically reviews biomass-based heterogeneous catalysts, especially those utilized in sustainable production of biofuel and biodiesel. This review examines the sustainability of these catalysts in literature in terms of small-scale laboratory and industrial applications in large-scale biodiesel and biofuel production. Furthermore, this work will critically review natural heterogeneous biomass waste and bio-waste catalysts in relation to upcoming nanotechnologies. Finally, this work will review the gaps identified in the literature for heterogeneous catalysts derived from biomass and other biocatalysts with a view to identifying future prospects for heterogeneous catalysts.
Collapse
Affiliation(s)
- Semakula Maroa
- College of Agriculture Science and EngineeringDiscipline of Mechanical EngineeringGreen Energy GroupUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Freddie Inambao
- College of Agriculture Science and EngineeringDiscipline of Mechanical EngineeringGreen Energy GroupUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
26
|
Abstract
Biofuel is one of the best alternatives to petroleum-derived fuels globally especially in the current scenario, where fossil fuels are continuously depleting. Fossil-based fuels cause severe threats to the environment and human health by releasing greenhouse gases on their burning. With the several limitations in currently available technologies and associated higher expenses, producing biofuels on an industrial scale is a time-consuming operation. Moreover, processes adopted for the conversion of various feedstock to the desired product are different depending upon the various techniques and materials utilized. Nanoparticles (NPs) are one of the best solutions to the current challenges on utilization of biomass in terms of their selectivity, energy efficiency, and time management, with reduced cost involvement. Many of these methods have recently been adopted, and several NPs such as metal, magnetic, and metal oxide are now being used in enhancement of biofuel production. The unique properties of NPs, such as their design, stability, greater surface area to volume ratio, catalytic activity, and reusability, make them effective biofuel additives. In addition, nanomaterials such as carbon nanotubes, carbon nanofibers, and nanosheets have been found to be cost effective as well as stable catalysts for enzyme immobilization, thus improving biofuel synthesis. The current study gives a comprehensive overview of the use of various nanomaterials in biofuel production, as well as the major challenges and future opportunities.
Collapse
|
27
|
Research on Structural–Mechanical Properties during the Castor Episperm Breaking Process. Processes (Basel) 2021. [DOI: 10.3390/pr9101777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Products from castor seeds have been widely used in various fields. In order to study the breaking behavior and rupture mechanism of castor seed episperm during coat shelling process, the force-structure property of coating castor seed was investigated by a self-developed texture analyzer with in situ optical microscopic observation. Influences of compression distance, velocity and working temperature were studied. The results showed that castor seed episperm rupture commonly happened from the tail end to the first end. Compression distance effect can change the episperm cracking degree. Under pressing distance 2–3 mm, the episperm easily cracked into two flaps, and the breaking force stabilized at 77 N. Pressing velocity has no significant effect on episperm breaking. Temperature changes the physical property. With an increase in temperature, breaking force presents a “slope” decline; under a temperature of 120 ℃, temperature effect on the breaking force decreased significantly and the breaking force fell to about 52 N. The research results can provide theoretical basis for the castor episperm peeling.
Collapse
|
28
|
Rajendran N, Gurunathan B, Han J, Krishna S, Ananth A, Venugopal K, Sherly Priyanka RB. Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis. BIORESOURCE TECHNOLOGY 2021; 337:125498. [PMID: 34320774 DOI: 10.1016/j.biortech.2021.125498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Researcher's all around works on a copious technique to lessen waste production and superintend the waste management for long-term socio-economic and environmental benefits. Value-added products can be produced from municipal waste by using holistic and integrated approaches. In this review, a detail about the superiority of the different methods like anaerobic digestion, biofuel production, incineration, pyrolysis and gasification were used for the conversion of municipal waste to feedstock for alternate energy and its economic- environmental impacts were consolidated. Most conversion techniques were environmentally friendly to manage municipal waste. The biological process was more economically feasible compare to the thermal process, for the reason thermal process required a large amount of capital investment and energy utilization. In the thermal process, gasification shows low emission, and pyrolysis shows low capital investment and economically feasible compare to other thermal processes. Waste to energy technology significantly reduced the emission and energy demand.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India; School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Saraswathi Krishna
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Kancheepuram 603308, India
| | - A Ananth
- Department of Microbiology, Srinivasan College of Arts and Science, Perambalur 621212, India
| | - K Venugopal
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Kancheepuram 603308, India
| | | |
Collapse
|
29
|
Abdul Hakim Shaah M, Hossain MS, Salem Allafi FA, Alsaedi A, Ismail N, Ab Kadir MO, Ahmad MI. A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Adv 2021; 11:25018-25037. [PMID: 35481051 PMCID: PMC9037048 DOI: 10.1039/d1ra04311k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
There is increasing concern regarding alleviating world energy demand by determining an alternative to petroleum-derived fuels due to the rapid depletion of fossil fuels, rapid population growth, and urbanization. Biodiesel can be utilized as an alternative fuel to petroleum-derived diesel for the combustion engine. At present, edible crops are the primary source of biodiesel production. However, the excessive utilization of these edible crops for large-scale biodiesel production might cause food supply depletion and economic imbalance. Moreover, the utilization of edible oil as a biodiesel feedstock increases biodiesel production costs due to the high price of edible oils. A possible solution to overcome the existing limitations of biodiesel production is to utilize non-edible crops oil as a feedstock. The present study was conducted to determine the possibility and challenges of utilizing non-edible oil as a potential feedstock for biodiesel production. Several aspects related to non-edible oil as a biodiesel feedstock such as overview of biodiesel feedstocks, non-edible oil resources, non-edible oil extraction technology, its physicochemical and fatty acid properties, biodiesel production technologies, advantages and limitation of using non-edible oil as a feedstock for biodiesel production have been reviewed in various recent publications. The finding of the present study reveals that there is a huge opportunity to utilize non-edible oil as a feedstock for biodiesel production.
Collapse
Affiliation(s)
- Marwan Abdul Hakim Shaah
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Md Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Faisal Aboelksim Salem Allafi
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Alyaa Alsaedi
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Norli Ismail
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| | - Mohd Omar Ab Kadir
- Pultex Sdn Bhd Jalan Kampung Jawa, Bayan Baru 11950 Bayan Lepas Penang Malaysia
| | - Mardiana Idayu Ahmad
- School of Industrial Technology, Universiti Sains Malaysia 11800 USM Penang Malaysia +6046533678 +6046532216 +6046532214
| |
Collapse
|
30
|
Wang A, Quan W, Zhang H, Li H, Yang S. Heterogeneous ZnO-containing catalysts for efficient biodiesel production. RSC Adv 2021; 11:20465-20478. [PMID: 35479877 PMCID: PMC9033949 DOI: 10.1039/d1ra03158a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Biodiesel is one of the main biofuels used to replace fossil resources, and is mainly produced from esterification and transesterification of fatty acids and oils catalyzed by acids, bases or enzymes. Among the existing catalysts, metal oxides and their derivatives play an important role because of their high catalytic activity and low cost. ZnO is a metal oxide and its related nanomaterials are easy to prepare, which gives ZnO superior reactivity and extensive applications. Suitably modified ZnO nanomaterials typically have high specific surface areas, suitable pore sizes, and enhanced catalytic performance in the production of biodiesel. The present review introduces the application progress of ZnO catalysts in biodiesel preparation. The current shortcomings and future challenges of the basic heterogeneous catalytic systems for biodiesel production are also discussed.
Collapse
Affiliation(s)
- Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University Guiyang Guizhou 550025 China +86 851 8829 2170 +86 851 8829 2171
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University Guiyang Guizhou 550025 China +86 851 8829 2170 +86 851 8829 2171
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China
| |
Collapse
|
31
|
Selvakumari IAE, Jayamuthunagai J, Bharathiraja B. Exploring the potential of biodiesel derived crude glycerol into high value malic acid: Biosynthesis, process optimization and kinetic assessment. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Mofijur M, Siddiki SYA, Shuvho MBA, Djavanroodi F, Fattah IMR, Ong HC, Chowdhury MA, Mahlia TMI. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review. CHEMOSPHERE 2021; 270:128642. [PMID: 33127105 DOI: 10.1016/j.chemosphere.2020.128642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Biodiesel is a fuel that has numerous benefits over traditional petrodiesel. The transesterification process is the most popular method for biodiesel production from various sources, categorized as first, second and third generation biodiesel depending on the source. The transesterification process is subject to a variety of factors that can be taken into account to improve biodiesel yield. One of the factors is catalyst type and concentration, which plays a significant role in the transesterification of biodiesel sources. At present, chemical and biological catalysts are being investigated and each catalyst has its advantages and disadvantages. Recently, nanocatalysts have drawn researchers' attention to the efficient production of biodiesel. This article discusses recent work on the role of several nanocatalysts in the transesterification reaction of various sources in the development of biodiesel. A large number of literature from highly rated journals in scientific indexes is reviewed, including the most recent publications. Most of the authors reported that nanocatalysts show an important influence regarding activity and selectivity. This study highlights that in contrast to conventional catalysts, the highly variable surface area of nanostructure materials favours interaction between catalysts and substrates that efficiently boost the performance of products. Finally, this analysis provides useful information to researchers in developing and processing cost-effective biodiesel.
Collapse
Affiliation(s)
- M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Sk Yasir Arafat Siddiki
- Department of Chemical Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Md Bengir Ahmed Shuvho
- Department of Industrial and Production Engineering, National Institute of Textile Engineering and Research (NITER), Savar, Dhaka, 1350, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; Mechanical Engineering Department, Imperial College, London, SW7 2AZ, UK
| | - I M Rizwanul Fattah
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007, Australia.
| | - M A Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, 1707, Bangladesh
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, 2007, Australia
| |
Collapse
|
34
|
Soltani S, Shojaei TR, Khanian N, Choong TSY, Asim N, Rashid U. Porosity Estimation of Mesoporous TiO
2
‐ZnO Nanocrystalline by Artificial Neural Network Modeling. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soroush Soltani
- Universiti Putra Malaysia Department of Chemical and Environmental Engineering Faculty of Engineering 43400 Selangor Malaysia
| | - Taha Roodbar Shojaei
- University of Tehran Department of Mechanical Engineering of Agricultural Machinery Faculty of Agricultural Engineering and Technology College of Agriculture and Natural Resources Karaj Iran
| | - Nasrin Khanian
- Islamic Azad University Department of Physics Faculty of Science Karaj Iran
| | - Thomas Shean Yaw Choong
- Universiti Putra Malaysia Department of Chemical and Environmental Engineering Faculty of Engineering 43400 Selangor Malaysia
| | - Nilofar Asim
- National University of Malaysia Solar Energy Research Institute 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Umer Rashid
- Universiti Putra Malaysia Institute of Advanced Technology 43400 Selangor Malaysia
| |
Collapse
|
35
|
Comparison of CaO-NPs and Chicken Eggshell-Derived CaO in the Production of Biodiesel from Schinziophyton rautanenii (Mongongo) Nut Oil. J CHEM-NY 2021. [DOI: 10.1155/2021/6663722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ever-increasing population growth and economic developments have heightened demand for energy. This has resulted in depletion and ever-rising prices of petroleum diesel, thus increasing environmental degradation. These complications have motivated this study for the search of an alternative eco-friendly and renewable source of energy such as biodiesel. Biodiesel has been found to be a potential alternative fuel for diesel. Biodiesel was produced by transesterification reaction of Schinziophyton rautanenii (mongongo) nut oil in the presence of a base heterogeneous catalyst: CaO derived from eggshell ash and synthesised CaO-nanoparticles (CaO-NPs). The catalysts were calcined at a temperature of 800°C for 3 h and characterized by scanning electron microscope-energy dispersive X-ray (SEM-EDX) where both catalysts showed agglomerated particles and high elemental composition of Ca and O. Powder X-ray diffraction (XRD) showed that CaO was present in both catalysts, and the average crystalline size obtained was 42 and 50 nm for CaO-NPs and eggshell ash, respectively. Fourier transmission infrared (FTIR) spectrometer showed absorption bands of CaO in both catalysts which were at 875 and 713.46 cm−1 for CaO-NPs and eggshell ash, respectively. The analysis of mongongo nut oil (MNO) and mongongo methyl esters (MMEs) was done according to the European biodiesel specification (EN 1421) and American Society for Testing and Materials (ASTM D675). Statistically, there was no significant difference between CaO-NPs and eggshell in terms of optimum yield (
) using a sample t-test. However, in terms of catalyst loading, the eggshell was a better catalyst as it required a low catalyst load to obtain an optimum yield of 83% at 6 wt.% compared to CaO-NPs with an optimum yield of 85% at 12 wt.%. The reactions were all performed at constant reaction conditions of 9 : 1 methanol to oil ratio, 3 h reaction time, and 65°C reaction temperature.
Collapse
|
36
|
Abstract
Converting useless feedstock into biodiesel by utilizing the process of transesterification has been regarded as an alternative approach recently used to address the fuel and energy resources shortage issues. Nanobiocatalysts (NBCs), containing the biological component of lipase enzyme immobilized on nanomaterials (NMs), have also been presented as an advanced catalyst to effectively carry out the process of transesterification with appreciable yields. This study highlights the fundamentals associated with NBCs and the transesterification reaction catalyzed by NBCs for summarizing present academic literature reported in this research domain in recent years. Classification of the NBCs with respect to the nature of NMs and immobilization methods of lipase enzyme is also provided for organizing the recently documented case studies. This review is designed to act as a guideline for the researchers aiming to explore this domain of biodiesel production via NBCs as well as for the scholars looking to expand on this field.
Collapse
|
37
|
Abukhadra MR, Basyouny MG, El-Sherbeeny AM, El-Meligy MA, Luqman M. Sonocogreen Decoration of Clinoptilolite by CaO Nanorods as Ecofriendly Catalysts in the Transesterification of Castor Oil into Biodiesel; Response Surface Studies. ACS OMEGA 2021; 6:1556-1567. [PMID: 33490815 PMCID: PMC7818616 DOI: 10.1021/acsomega.0c05371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
A CaO/clinoptilolite green nanocomposite (CaO/Clino) was synthesized by a green modification technique using calcium nitrate and green tea extract. The CaO/Clino nanocomposite promises a total basicity of 4.82 mmol OH/g, surface area of 252.4 m2/g, and ion exchange capacity of 134.3 mequiv/100 g, which qualifies the product as an effective catalyst in the transesterification of castor oil. The transesterification performance of the CaO/Clino catalyst was addressed statistically based on the response surface methodology and central composite rotatable design, considering the essential experimental parameters. Based on the interaction effect between the studied variables, the CaO/Clino catalyst can achieve an experimental biodiesel yield of 93.8% after 2.5 h at 120 °C with 3.5 wt % catalyst loading and 15:1 ethanol/castor oil molar ratio. The optimization function of the design suggested enhancement in the performance of the CaO/Clino catalyst to achieve a yield of 95.4% if the test time interval increased to 2.65 h and the ethanol content increased to 16:1 as a molar ratio to castor oil. The produced biodiesel over CaO/ClinO has acceptable technical qualifications according to the international requirements (EN 14214 and ASTM D-6751). The synthetic green CaO/Clino nanocomposite has better recyclability as a heterogeneous catalyst and higher activity than some investigated catalysts in literature.
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
| | - Mohamed Gameel Basyouny
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Physics
Department, Faculty of Science, Beni-Suef
University, Beni-Suef City 62511, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | | - Monis Luqman
- Mechanical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
38
|
A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies. SUSTAINABILITY 2021. [DOI: 10.3390/su13020788] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dependence on fossil fuels for meeting the growing energy demand is damaging the world’s environment. There is a dire need to look for alternative fuels that are less potent to greenhouse gas emissions. Biofuels offer several advantages with less harmful effects on the environment. Biodiesel is synthesized from the organic wastes produced extensively like edible, non-edible, microbial, and waste oils. This study reviews the feasibility of the state-of-the-art feedstocks for sustainable biodiesel synthesis such as availability, and capacity to cover a significant proportion of fossil fuels. Biodiesel synthesized from oil crops, vegetable oils, and animal fats are the potential renewable carbon-neutral substitute to petroleum fuels. This study concludes that waste oils with higher oil content including waste cooking oil, waste palm oil, and algal oil are the most favorable feedstocks. The comparison of biodiesel production and parametric analysis is done critically, which is necessary to come up with the most appropriate feedstock for biodiesel synthesis. Since the critical comparison of feedstocks along with oil extraction and biodiesel production technologies has never been done before, this will help to direct future researchers to use more sustainable feedstocks for biodiesel synthesis. This study concluded that the use of third-generation feedstocks (wastes) is the most appropriate way for sustainable biodiesel production. The use of innovative costless oil extraction technologies including supercritical and microwave-assisted transesterification method is recommended for oil extraction.
Collapse
|
39
|
Naveenkumar R, Baskar G. Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. BIORESOURCE TECHNOLOGY 2021; 320:124347. [PMID: 33160213 DOI: 10.1016/j.biortech.2020.124347] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
In the present work, zinc doped calcium oxide was used as a nanocatalyst for biodiesel production from castor oil. The optimal conditions of biodiesel conversion and green chemistry balance were obtained with response surface methodology. Five green chemistry parameters like carbon efficiency, atom economy, reaction mass efficiency, stoichiometric factor and environmental factor were optimized. The sustainable biodiesel yield 84.9% and green chemistry balance 0.902 was achieved at methanol to oil molar ratio 10.5:1, temperature 57 °C, time 70 min, and catalyst concentration 2.15%. The synthesized biodiesel was characterized by GCMS and FTIR, and physic-chemical properties were determined. Based on experimental study annually 20.3 million kg capacity plant was simulated using SuperPro designer. The sensitivity analysis of oil purchase cost and biodiesel selling price on ROI, payback period, IRR and NPV were investigated. The optimization and technoeconomic analysis provided a sustainable platform for commercial based biodiesel production.
Collapse
Affiliation(s)
- R Naveenkumar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India.
| |
Collapse
|
40
|
Rao AK, Dudhe P, Chelvam V. Role of oxygen defects in basicity of Se doped ZnO nanocatalyst for enhanced triglyceride transesterification in biodiesel production. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
41
|
Naveenkumar R, Baskar G. Optimization and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. BIORESOURCE TECHNOLOGY 2020; 315:123852. [PMID: 32712516 DOI: 10.1016/j.biortech.2020.123852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The present research work is aimed at reducing the consumption of reactants by process optimization and economic analysis of large-scale commercial plant using techno-economic analysis. The statistical optimization of biodiesel production from Calophyllum inophyllum oil using Zn doped CaO nanocatalyst was used to optimize the conversion efficiency and green chemistry value. The environmental studies on transesterification reaction were done using green chemistry parameters like carbon efficiency, atom economy, reaction mass efficiency, stoichiometric factor and environmental factor. The biodiesel conversion 91.95% was achieved when maintaining the methanol to oil ratio 9.66:1, concentration of catalyst 5% (w/v), time 81.31 min and temperature 56.71 °C with green chemistry value of 0.873. Techno-economic analysis of biodiesel production from Calophyllum inophyllum oil was executed used optimized lab-scale data. The techno-economic analysis of 21 million kg/year biodiesel production plant was investigated. The annual biodiesel revenue of 15,224,000 $/yr and the payback period was about 1.15 years.
Collapse
Affiliation(s)
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| |
Collapse
|
42
|
da Silva A, Farias A, Pontes J, Rodrigues A, Costa ADM. Synthesis of the ZnO-Ni0.5Zn0.5Fe2O4-Fe2O3 magnetic catalyst in pilot-scale by combustion reaction and its application on the biodiesel production process from oil residual. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
43
|
Du Y, Shao L, Qi C. Sulfonated and cross‐linked polystyrene ultrafine fibers for the esterification of palmitic acid for biodiesel production. J Appl Polym Sci 2020. [DOI: 10.1002/app.50169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Linjun Shao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Zhejiang China
| |
Collapse
|
44
|
Optimization Using Response Surface Methodology (RSM) for Biodiesel Synthesis Catalyzed by Radiation-Induced Kenaf Catalyst in Packed-Bed Reactor. Processes (Basel) 2020. [DOI: 10.3390/pr8101289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, continuous transesterification of refined palm oil by using radiation-induced kenaf denoted as anion exchange kenaf catalyst in a packed-bed reactor was developed. The application of full factorial design and response surface methodology (RSM) based on the central composite design (CCD) was used to design the process and analyzed the effect of reactor operating variables such as packed bed height, the molar ratio of oil to ethanol and volumetric flow rate on the production of fatty acid ethyl ester (FAEE). The statistical analysis results showed that all three operating parameters affect the reaction efficiency significantly. The optimum conditions were determined to be 9.81 cm packed bed height, a molar ratio at 1:50, and a volumetric flow rate of 0.38 mL min−1. Three tests were carried out to verify the optimum combination of process parameters. The predicted and actual values of molar conversion fatty acid ethyl ester (FAEE) molar conversion were 97.29% and 96.87%, respectively. The reusability of kenaf fiber-based catalysts is discussed with a specially highlighted on fiber dissolution, leaching, and fouling. Nevertheless, the impurities absorption properties of anion exchange kenaf catalyst towards biodiesel production could eventually simplify the biodiesel purification steps and cost. In sum, anion exchange kenaf catalyst shows the potential commercial applications to transesterification of FAEE in a packed-bed reactor.
Collapse
|
45
|
Abstract
The palm biodiesel industry is facing many challenges implementing biodiesel program in Malaysia. This paper addresses the importance of the B10 blend (10% biodiesel, 90% petroleum diesel), global challenges of palm oil import and export, and protective measures for continuous positive growth of the palm oil sector. Palm oil is the backbone of Malaysia’s economy, covering more than 5% of its gross domestic product (GDP). The key steps taken by the Malaysian government for the successful implementation of the B10 program are discussed in this review study. Till now, B5 and B7 biodiesel programs have been successfully implemented in Malaysia. The B10 biodiesel program is attractive because of the developed local palm oil sector. The B10 biodiesel program will increase the use of renewable energy sources, and is expected to increase the productivity of palm oil and biodiesel implementation in the country. Despite successful B5 and B7 programs, Malaysia is facing challenges for the implementation of biodiesel due to fluctuation in crude palm oil prices, low domestic usage of palm oil, and vehicle warranty. The improvement of palm oil and promotion of B10 through targeted agencies in the central region of Malaysia will help to implement the biodiesel program successfully.
Collapse
|
46
|
de S Barros S, Pessoa Junior WAG, Sá ISC, Takeno ML, Nobre FX, Pinheiro W, Manzato L, Iglauer S, de Freitas FA. Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. BIORESOURCE TECHNOLOGY 2020; 312:123569. [PMID: 32470827 DOI: 10.1016/j.biortech.2020.123569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Homogeneous catalysts used for biodiesel synthesis have several limitations, including non-recoverability/reusability, saponification, emulsification, equipment corrosion, and environmental pollution. To overcome these limitations, we synthesized a novel catalyst via calcination of pineapple leaves waste. This catalyst was characterized by X-ray powder diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and soluble alkalinity measurements. The catalyst's activity with regards to soybean oil transesterification was analyzed, and multiple process parameters (temperature, catalyst amount, reaction time, and methanol:oil molar ratio) were examined. A high catalytic activity, probably related to the 85 wt% content of alkali/alkali metals (K, Ca and Mg), was observed after a 30 min reaction time, 60 °C, 4 wt% of catalyst, oil to methanol molar ratio of 1:40, reaching an oil to biodiesel conversion above 98%. We conclude that the novel catalyst presented here is efficient, cost-effective, and sustainable, while simultaneously abundant waste is reduced.
Collapse
Affiliation(s)
- Silma de S Barros
- Deparatamento de Engenharia de Materiais PPGCEM/UFAM, Av. Octávio Hamilton Botelho Mourão - Coroado, 69067 005 Manaus, Amazonas, Brazil
| | - Wanison A G Pessoa Junior
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM/CMDI, Av. Gov. Danilo de Matos Areosa, 1672 Distrito Industrial, 69075-351 Manaus, Amazonas, Brazil
| | - Ingrity S C Sá
- Deparatamento de Engenharia de Materiais PPGCEM/UFAM, Av. Octávio Hamilton Botelho Mourão - Coroado, 69067 005 Manaus, Amazonas, Brazil
| | - Mitsuo L Takeno
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM/CMDI, Av. Gov. Danilo de Matos Areosa, 1672 Distrito Industrial, 69075-351 Manaus, Amazonas, Brazil
| | - Francisco X Nobre
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM, Estr. Coari Itapeua, s/n - Itamarati, 69460-000 Coari, Amazonas, Brazil
| | - William Pinheiro
- Instituto Nacional de Pesquisas da Amazônia, INPA, Av. André Araújo, 2936, Petrópolis, 69067 375 Manaus, Amazonas, Brazil
| | - Lizandro Manzato
- Deparatamento de Engenharia de Materiais PPGCEM/UFAM, Av. Octávio Hamilton Botelho Mourão - Coroado, 69067 005 Manaus, Amazonas, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM/CMDI, Av. Gov. Danilo de Matos Areosa, 1672 Distrito Industrial, 69075-351 Manaus, Amazonas, Brazil
| | - Stefan Iglauer
- Petroleum Engineering Department, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Flávio A de Freitas
- Centro de Biotecnologia da Amazônia, CBA/SUFRAMA, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial, 69075-351 Manaus, Amazonas, Brazil.
| |
Collapse
|
47
|
Abukhadra MR, Mohamed AS, El-Sherbeeny AM, Soliman ATA, Abd Elgawad AEE. Sonication induced transesterification of castor oil into biodiesel in the presence of MgO/CaO nanorods as a novel basic catalyst: Characterization and optimization. CHEMICAL ENGINEERING AND PROCESSING - PROCESS INTENSIFICATION 2020; 154:108024. [DOI: 10.1016/j.cep.2020.108024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Phoenix dactylifera L. Seed Pretreatment for Oil Extraction and Optimization Studies for Biodiesel Production Using Ce-Zr/Al-MCM-41 Catalyst. Catalysts 2020. [DOI: 10.3390/catal10070764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work compared the effect of soaking and roasting Phoenix dactylifera L. seeds pretreatment methods on oil yield. The conversion of the Phoenix dactylifera L. seed oil to fatty acid methyl ester (FAME) was conducted via transesterification reaction using Ce-Zr/Al-MCM-41 monometallic and bimetallic catalysts. The reaction conditions were optimized using response surface methodology based on the central composite design (RSM-CCD). The result shows a quadratic model fitting with an R2 value of ~0.98% from the analysis of variance. In addition, the optimum FAME yield of 93.83% was obtained at a reaction temperature of 60.5 °C, a reaction time of 3.8 h, a catalyst concentration of 4 wt.%, and a methanol to oil molar ratio of 6.2:1 mol/mol. The effect of the regenerated catalyst was significantly maintained for five cycles. The fuel properties of the produced FAME lie within the values reported in studies, ASTM D6751, and EN14214 standards.
Collapse
|
49
|
Farias AF, de Araújo DT, da Silva AL, Leal E, Pacheco JG, Silva MR, Kiminami RH, Costa ACDM. Evaluation of the catalytic effect of ZnO as a secondary phase in the Ni0.5Zn0.5Fe2O4 system and of the stirring mechanism on biodiesel production reaction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
Abstract
An attractive alternative to the use of fossil fuels is biodiesel, which can be obtained from a variety of feedstock through different transesterification systems such as ultrasound, microwave, biological, chemical, among others. The efficient and cost-effective biodiesel production depends on several parameters such as free fatty acid content in the feedstock, transesterification reaction efficiency, alcohol:oil ratio, catalysts type, and several parameters during the production process. However, biodiesel production from vegetable oils is under development, causing the final price of biodiesel to be higher than diesel derived from petroleum. An alternative to decrease the production costs will be the use of economical feedstocks and simple production processes. Castor oil is an excellent raw material in terms of price and quality, but especially this non-edible vegetable oil does not have any issues or compromise food security. Recently, the use of castor oil has attracted attention for producing and optimizing biodiesel production, due to high content of ricinoleic fatty acid and the possibility to esterify with only methanol, which assures low production costs. Additionally, biodiesel from castor oil has different advantages over conventional diesel. Some of them are biodegradable, non-toxic, renewable, they can be used alone, low greenhouse gas emission, among others. This review discusses and analyzes different transesterification processes, technologies, as well as different technical aspects during biodiesel production using castor oil as a feedstock.
Collapse
|