1
|
Liu XL, Dong C, Leu SY, Fang Z, Miao ZD. Efficient saccharification of wheat straw pretreated by solid particle-assisted ball milling with waste washing liquor recycling. BIORESOURCE TECHNOLOGY 2022; 347:126721. [PMID: 35051568 DOI: 10.1016/j.biortech.2022.126721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Wheat straw was pretreated using ball milling (BM) promoted by solid particles (NaOH, NaCl, citric acid). NaOH showed the best synergistic interaction effect, due to the breakage of β-1,4-glycosidic bonds among cellulose molecules by the alkali solid particles induced by BM. NaOH-BM pretreatment decreased the straw crystallinity from 46% to 21.4% and its average particle size from 398.3 to 50.6 μm in 1 h. After 4 h milling, the reducing-end concentration of cellulose increased by 3.8 times from 12.5 to 60.2 μM, with glucose yield increased by 2.1 times from 26.6% to 82.4% for 72 h enzymatic hydrolysis at cellulase loading of 15 FPU/g dry substrate. The pretreatment washing liquor was recycled for the re-treatment of partially pretreated biomass at 121 °C for 30 min, resulting in 99.4% glucose yield by enzymatic hydrolysis. BM assisted with alkali particles was an effective approach for improving biomass enzymatic saccharification.
Collapse
Affiliation(s)
- Xiao-le Liu
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Chengyu Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China. http://biomass-group.njau.edu.cn/
| | - Zheng-Diao Miao
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| |
Collapse
|
2
|
Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon JJ, Kant Bhatia S, Yang YH, Varjani S, Kim SH. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126292. [PMID: 34748984 DOI: 10.1016/j.biortech.2021.126292] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Sidiras D, Politi D, Giakoumakis G, Salapa I. Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. BIORESOURCE TECHNOLOGY 2022; 343:126158. [PMID: 34673192 DOI: 10.1016/j.biortech.2021.126158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Organosolv pretreatment can be considered as the core of the lignocellulosic biomass fractionation within the biorefinery concept. Organosolv facilitates the separation of the major fractions (cellulose, hemicelluloses, lignin), and their use as renewable feedstocks to produce bioenergy, biofuels, and added-value biomass derived chemicals. The efficient separation of these fractions affects the economic feasibility of the biorefinery complex. This review focuses on the simulation of the organosolv pretreatment and the optimization of (i) feedstock delignification, (ii) sugars production (mainly from hemicelluloses), (iii) enzymatic digestibility of the cellulose fraction and (iv) quality of lignin. Simulation is used for the technoeconomic optimization of the biorefinery complex. Simulation and optimization implement a holistic approach considering the efficient technological, economic, and environmental performance of the biorefinery operational units. Consequently, an optimized organosolv stage is the first step for a sustainable, economically viable biorefinery complex in the concept of industrial ecology and zero waste circular economy.
Collapse
Affiliation(s)
- Dimitrios Sidiras
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece.
| | - Dorothea Politi
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Georgios Giakoumakis
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Ioanna Salapa
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| |
Collapse
|
4
|
Effect of additives on the enzymatic hydrolysis of pre-treated wheat straw. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Wojtusik M, Vergara P, Villar JC, Ladero M, García-Ochoa F. Enzymatic hydrolysis of several pretreated lignocellulosic biomasses: Fractal kinetic modelling. BIORESOURCE TECHNOLOGY 2020; 318:124050. [PMID: 32889118 DOI: 10.1016/j.biortech.2020.124050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Enzymatic hydrolysis of three pre-treated lignocellulosic biomasses -LCB- (wheat straw-WS-, corn stover-CSV- and cardoon stems -CS-) is studied. These biomasses were pre-treated by two methods: diluted sulfuric acid and acid ethanol-water extraction at six severity levels (H values). Pretreated solid fractions were hydrolyzed with commercial enzyme cocktails at standard conditions. A first-order kinetic fractal model was fitted to the experimental results. This model accurately describes the hydrolysis of all biomasses at all pre-treatment conditions studied. The results show that the formal first-order kinetic constant k depends on the biomass nature. The hydrolysis rate increases as the pre-treatment severity does, while the fractal exponent value h decreases. With these pre-treatments, and in terms of k and h, WS is highly reactive and, at medium H with EW pretreatment, highly accessible; CSV has a low reactivity and high accessibility and CS has the lowest reactivity and an increasing accessibility as severity rises.
Collapse
Affiliation(s)
- Mateusz Wojtusik
- Chemical Engineering & Materials Department. Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain
| | - Priscilla Vergara
- Chemical Engineering & Materials Department. Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain; Laboratory of Cellulose & Paper. Forest Research Center - INIA, Ctra. de La Coruña km 7.5, 28040 Madrid, Spain
| | - Juan C Villar
- Laboratory of Cellulose & Paper. Forest Research Center - INIA, Ctra. de La Coruña km 7.5, 28040 Madrid, Spain
| | - Miguel Ladero
- Chemical Engineering & Materials Department. Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain.
| | - Félix García-Ochoa
- Chemical Engineering & Materials Department. Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
6
|
Li J, Feng P, Xiu H, Li J, Yang X, Ma F, Li X, Zhang X, Kozliak E, Ji Y. Morphological changes of lignin during separation of wheat straw components by the hydrothermal-ethanol method. BIORESOURCE TECHNOLOGY 2019; 294:122157. [PMID: 31557653 DOI: 10.1016/j.biortech.2019.122157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The separation efficiencies of wheat straw components by hydrothermal treatment and ethanol extraction have been compared. The results showed that the lignin removal rate by two-step hydrothermal-ethanol method was significantly lower than that of single-step ethanol extraction. Microscopic and adsorption studies (using SEM/AFM, XPS and pore structure analysis) showed that during the hydrothermal treatment a large lignin fraction migrated from the intercellular layer and cell wall and deposited on the fiber surface. Furthermore, the deposited lignin then spread on the fiber surface to form a lignin coating layer, which prevented its dissolution in ethanol. Without prior heating, i.e., upon a single step ethanol extraction, the massive lignin deposition was avoided, presumably due to its efficient dissolution hindering its tight binding with carbohydrate polymers on the fiber surface. Therefore, the lignin removal efficiency was drastically reduced as a result of hydrothermal treatment compared to ethanol extraction.
Collapse
Affiliation(s)
- Jinbao Li
- Shaanxi University of Science & Technology, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Shaanxi Province Key Lab of Papermaking Technology and Specialty Paper, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Pan Feng
- Shaanxi University of Science & Technology, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Huijuan Xiu
- Shaanxi University of Science & Technology, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Jingyu Li
- Shaanxi University of Science & Technology, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Xue Yang
- Shaanxi University of Science & Technology, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Feiyan Ma
- Shaanxi University of Science & Technology, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuefei Zhang
- Department of Chemical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Evguenii Kozliak
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yun Ji
- Department of Chemical Engineering, University of North Dakota, Grand Forks, ND 58202, USA.
| |
Collapse
|
7
|
Yin F, Li D, Ma X, Zhang C. Pretreatment of lignocellulosic feedstock to produce fermentable sugars for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production using activated sludge. BIORESOURCE TECHNOLOGY 2019; 290:121773. [PMID: 31310867 DOI: 10.1016/j.biortech.2019.121773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The goal of this research was to release fermentable reducing sugar from lignocellulose (poplar) by hot water pretreatment, and then employed to synthesize poly(3-hydroxybutyrate-co-3-hydroxy-valerate) (PHBV) using activated sludge to replace traditional petroleum-based polymers. The orthogonal experiment was used to optimize the conditions of different pretreatment temperature, pretreatment time, enzymatic hydrolysis temperature and enzymatic hydrolysis time and the optimal condition for producing sugars was pretreated at 200 °C for 30 min and enzymatic hydrolysis at 45 °C for 3d. A maximum yield was 530.3 mg/g of reduced sugar, while the furfural and 5-HMF produced in the optimum conditions were 512.61 mg/L and 239.34 mg/L. Moreover, the effects of increasing concentration of hot water pretreated poplar hydrolysates (500-1700 mg/L) on PHBV production were investigated. Poplar hydrolysate (1700 mg/L) exhibited maximum PHBV concentration of 637.556 mg/L.
Collapse
Affiliation(s)
- Fen Yin
- College of Packaging & Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Dongna Li
- College of Packaging & Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Packaging & Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China.
| | - Chong Zhang
- College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300222, China
| |
Collapse
|
8
|
Araya-Farias M, Husson E, Saavedra-Torrico J, Gérard D, Roulard R, Gosselin I, Rakotoarivonina H, Lambertyn V, Rémond C, Sarazin C. Wheat Bran Pretreatment by Room Temperature Ionic Liquid-Water Mixture: Optimization of Process Conditions by PLS-Surface Response Design. Front Chem 2019; 7:585. [PMID: 31508408 PMCID: PMC6716547 DOI: 10.3389/fchem.2019.00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
Room Temperature Ionic Liquids (RTILs) pretreatment are well-recognized to improve the enzymatic production of platform molecules such as sugar monomers from lignocellulosic biomass (LCB). The conditions for implementing this key step requires henceforth optimization to reach a satisfactory compromise between energy saving, required RTIL amount and hydrolysis yields. Wheat bran (WB) and destarched wheat bran (DWB), which constitute relevant sugar-rich feedstocks were selected for this present study. Pretreatments of these two distinct biomasses with various 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc])-water mixtures prior to hydrolysis catalyzed by hemicellulolytic cocktail (Cellic CTec2) were finely investigated. The main operating conditions such as pretreatment temperature (25–150°C), time (40–180 min), WB and DWB loading (2–5% w/v) and concentration of [C2mim][OAc] in water [10–100% (v/v)] were screened through glucose and xylose yields and then optimized through a Partial Least Square (PLS)—Second Order Design. In an innovative way, the PLS results showed that the four factors and their interactions could be well-fitted by a second-order model (p < 0.05). The quadratic PLS models were used to predict optimal pretreatment conditions. Thus, maximum glucose (83%) and xylose (95%) yields were obtained from enzymatic hydrolysis of WB pretreated at 150°C for 40 min with 10% of [C2mim][OAc] in water and 5% of WB loading. For DWB, maximum glucose (100%) and xylose (57%) yields were achieved for pretreatment temperatures of 150°C and 25°C, respectively. The required duration was still 40 min, with 20% of [C2mim][OAc] in water and a 5% DWB loading. Then, Multiple Response Optimization (MRO) performed by Nelder-Mead Simplex Method displayed sugar yields similar to those obtained by individual PLS optimization. This complete statistical study confirmed that the established models were appropriate to predict the sugar yields achieved after different pretreatment conditions from WB and DWB biomasses. Finally, Scanning Electron microscopy (SEM) studies allowed us to establish clearer link between structural changes induced by pretreatment and the best enzymatic performances obtained.
Collapse
Affiliation(s)
- Monica Araya-Farias
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Eric Husson
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Jorge Saavedra-Torrico
- Escuela de Ingenieria de Alimentos, Pontificia Universidad Catolica de Valparaíso, Valparaíso, Chile
| | - Doriane Gérard
- Chaire AFERE, UMR Fractionnement des AgroRessources et Environnement 614 INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Romain Roulard
- Plate-forme de Microscopie Electronique, Université de Picardie Jules Verne, Amiens, France
| | - Isabelle Gosselin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Harivoni Rakotoarivonina
- Chaire AFERE, UMR Fractionnement des AgroRessources et Environnement 614 INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Virginie Lambertyn
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Caroline Rémond
- Chaire AFERE, UMR Fractionnement des AgroRessources et Environnement 614 INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
9
|
Vergara P, García-Ochoa F, Ladero M, Gutiérrez S, Villar JC. Liquor re-use strategy in lignocellulosic biomass fractionation with ethanol-water mixtures. BIORESOURCE TECHNOLOGY 2019; 280:396-403. [PMID: 30784989 DOI: 10.1016/j.biortech.2019.02.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Liquor recycle in lignocellulosic biomass fractionation with ethanol-water has been studied. Runs have been carried out in a 6 L tank reactor with liquor recirculation. The liquors obtained in six successive fractioning operations have been analyzed together with the solid phase remnant. Experimental results revealed that the number of re-uses reduces solids recovery (from 52.2 to 42.6%) and cellulose recovery (from 28.1 to 23.3%) with minor or no effect on the hemicelluloses and lignin removal. The more remarkable effect is an increase of the glucose yield (from 76.7 to 95.3% after enzymatic hydrolysis during 72 h). The accumulation of acetic acid in the spent liquors (until 1.3 g/L) seems to be responsible of the higher enzymatic hydrolysis yield, from 76.3 (first use) to 87.7% (fifth re-use). Liquor re-use is effective to improve the sustainability of the pre-treatment obtaining a cellulose-rich solid easy to hydrolysate to sugars reducing energy consumption.
Collapse
Affiliation(s)
- Priscilla Vergara
- Laboratory of Cellulose and Paper, Forest Research Center - INIA, Ctra. de La Coruña km 7.5, 28040 Madrid, Spain; Chemical Engineering and Materials Department, Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain
| | - Félix García-Ochoa
- Chemical Engineering and Materials Department, Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain
| | - Miguel Ladero
- Chemical Engineering and Materials Department, Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain
| | - Soledad Gutiérrez
- Department of Chemical Engineering, Faculty of Engineering, Universidad de la República, Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay
| | - Juan C Villar
- Laboratory of Cellulose and Paper, Forest Research Center - INIA, Ctra. de La Coruña km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Vergara P, Ladero M, García-Ochoa F, Villar JC. Pre-treatment of corn stover, Cynara cardunculus L. stems and wheat straw by ethanol-water and diluted sulfuric acid: Comparison under different energy input conditions. BIORESOURCE TECHNOLOGY 2018; 270:449-456. [PMID: 30245314 DOI: 10.1016/j.biortech.2018.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Ethanol-water (EW) and diluted sulfuric acid (DSA) pre-treatment have been studied for lignocellulosic biomass (corn stover, Cynara cardunculus L. stems and wheat straw). Both pre-treatments have been compared taken into account: solids recovery, glucans recovery, xylans removed, delignification and glucose yield. In all cases, the amount of energy involved has been taken as a criterion for sustainability. In general terms, EW is more efficient to remove lignin and DSA more appropriate to hydrolysate xylans. The combined effect of delignification and xylans removal is responsible for the improvement in the enzymatic cellulose hydrolysis. Under conditions of moderate-low energy inputs, EW pre-treatment yields better results than DSA with glucose yields in the range of 50-60% for EW pre-treated corn stover and cardoon stems; while wheat straw pulps reach up to 80%. So, multiple raw materials biorefinery needs a previous study to fit the type and conditions of the pre-treatment to each feedstock.
Collapse
Affiliation(s)
- Priscilla Vergara
- Laboratory of Cellulose and Paper, Forest Research Center - INIA, Ctra. de La Coruña km 7.5, 28040 Madrid, Spain
| | - Miguel Ladero
- Chemical & Materials Engineering Department, Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain
| | - Felix García-Ochoa
- Chemical & Materials Engineering Department, Faculty of Chemistry, Universidad Complutense, 28040 Madrid, Spain
| | - Juan C Villar
- Laboratory of Cellulose and Paper, Forest Research Center - INIA, Ctra. de La Coruña km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Wojtusik M, Villar JC, Ladero M, Garcia-Ochoa F. Physico-chemical kinetic modelling of hydrolysis of a steam-explosion pre-treated corn stover: A two-step approach. BIORESOURCE TECHNOLOGY 2018; 268:592-598. [PMID: 30138871 DOI: 10.1016/j.biortech.2018.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
A physico-chemical kinetic model for the hydrolysis of pre-treated corn stover is proposed. This model takes into account two reactions in series, the hydrolysis of cellulose to cellobiose and the production of glucose from cellobiose. Experiments have been carried out with an industrial enzymatic cocktail from Trichoderma reesei containing endo and exoglucanases and a very low activity of β-glucosidase. Kinetic parameters were calculated by fitting the proposed model to experimental data of cellulose and glucose concentrations with time. The kinetic parameters fulfilled all relevant statistical and physical criteria. The kinetic model has been validated with published saccharification data regarding differently pre-treated corn stover and enzymatic cocktail, in this case with a very high β-glucosidase activity (as it is common in modern industrial cellulase cocktails). In both cases, the kinetic model proposed could be fitted very appropriately to cellulose hydrolysis data.
Collapse
Affiliation(s)
- Mateusz Wojtusik
- Chemical and Materials Engineering Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan C Villar
- Laboratory of Cellulose and Paper, INIA, Forest Research Center, 28040 Madrid, Spain
| | - Miguel Ladero
- Chemical and Materials Engineering Department, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Felix Garcia-Ochoa
- Chemical and Materials Engineering Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
12
|
Abstract
Chemocatalytic transformation of lignocellulosic biomass to value-added chemicals has attracted global interest in order to build up sustainable societies. Cellulose, the first most abundant constituent of lignocellulosic biomass, has received extensive attention for its comprehensive utilization of resource, such as its catalytic conversion into high value-added chemicals and fuels (e.g., HMF, DMF, and isosorbide). However, the low reactivity of cellulose has prevented its use in chemical industry due to stable chemical structure and poor solubility in common solvents over the cellulose. Recently, homogeneous or heterogeneous catalysis for the conversion of cellulose has been expected to overcome this issue, because various types of pretreatment and homogeneous or heterogeneous catalysts can be designed and applied in a wide range of reaction conditions. In this review, we show the present situation and perspective of homogeneous or heterogeneous catalysis for the direct conversion of cellulose into useful platform chemicals.
Collapse
|