1
|
Li C, Hou S, Lian D, Chen M, Li S, Li P, Wang T, Zhang W, Zhou Y, Jiang J, Ji Y. pH-controlled acetic acid pretreatment for coproduction of low degree of polymerization xylo-oligosaccharides and glucose from corncobs. BIORESOURCE TECHNOLOGY 2025; 415:131702. [PMID: 39490599 DOI: 10.1016/j.biortech.2024.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Acetic acid (HAc) pretreatment has been widely used for the production of xylo-oligosaccharides (XOS), requiring harsh reaction conditions because XOS are intermediates during the xylan degradation process. This complexity makes the pretreatment process difficult to regulate. In this study, a pH-controlled HAc pretreatment using sodium hydroxide (NaOH) was proposed to enhance the yield of XOS and to reduce its degree of polymerization (DP) from corncobs (CC). By employing this method (0.3 M-2.7), 49.7 % of XOS with DP 2-6 was obtained, alongside a notable increase in the fraction of XOS with DP 2-4 (10.1 g/L). This performance significantly surpassed that of the HAc alone (0.3 M). Moreover, the glucose yield from CC via pH-controlled HAc pretreatment was as high as 93.1 % after 72-h enzymatic hydrolysis. These results suggested that the pH-controlled HAc pretreatment could be a promising strategy for the coproduction of low-DP XOS and fermentable sugars.
Collapse
Affiliation(s)
- Chenxi Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shujun Hou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Dianxing Lian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mohaoyang Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science and Technology, College of Material Science and Engineering, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Weiwei Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yawen Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jianxin Jiang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yongjun Ji
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Khanjani MH, Sharifinia M, Akhavan-Bahabadi M, Emerenciano MGC. Probiotics and Phytobiotics as Dietary and Water Supplements in Biofloc Aquaculture Systems. AQUACULTURE NUTRITION 2024; 2024:3089887. [PMID: 39697821 PMCID: PMC11655148 DOI: 10.1155/anu/3089887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Biofloc technology (BFT) is a relatively new microbial-based cultivation system that can be adopted to accomplish more sustainable aquaculture and circularity goals. This review explores aspects of BFT integrating the utilization of probiotics and phytobiotics as dietary and water supplements. This scientific-based snapshot unpacks some physiological pathways and brings a literature review on how these supplements can boost water quality, as well as aquatic species' growth, health, and survival. Probiotics, live microorganisms that confer health benefits on the host when administered in adequate dosage, are noted for their ability to bolster animal defenses and sustain water quality in farming conditions. Recent studies showcased that selected bacteria, yeast, and fungi, once added into biofloc-based systems can enhance animal performance, act as a tool for water quality management and protect fish and crustaceans against diseases. On the other hand, phytobiotics are additives sourced from plants that normally are added into compounded feeds and are known for their health and growth benefits in aquatic animals. These additives contain plant-based substances/extracts that play a key role to suppress inflammation, pathogens, and can also act as antioxidants. These selected ingredients can promote healthy gut microbiota, improve feed efficiency, and turn on genes responsible for immunity improving disease resistance of fish/shrimp. According to this review, the adoption of probiotics and phytobiotics in BFT can greatly increase farm outputs by producing healthier animals, as well as promoting growth and consistent yields. Lastly, this review showcases the importance of proper section of probiotics and phytobiotics in order to achieve a functioning BFT. Despite its numerous advantages, BFT faces several challenges, especially related to microbial management. Probiotics and phytobiotics are practical tools that can play a crucial role to obtain a more stable environment with a desirable microbial population in water and gut. Future directions in the field should focus on optimizing the utilization of these supplements for a more resilient and sustainable BFT aquaculture.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Mohammad Akhavan-Bahabadi
- National Research Center of Saline-Waters Aquatics, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Yazd, Iran
| | - Maurício Gustavo Coelho Emerenciano
- Commonwealth Scientific and Industrial Research Organization (CSIRO), CSIRO Agriculture and Food, Livestock and Aquaculture Program, Aquaculture Systems Team, Bribie Island Research Centre, Woorim, Australia
| |
Collapse
|
3
|
Zhai Y, Zhang L, Yao S, Zhou X, Jiang K. Green Process for Producing Xylooligosaccharides by Using Sequential Auto-hydrolysis and Xylanase Hydrolysis. Appl Biochem Biotechnol 2024; 196:5317-5333. [PMID: 38157156 DOI: 10.1007/s12010-023-04800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Xylooligosaccharides (XOS), as prebiotic oligomers, are increasingly receiving attention as high value-added products produced from lignocellulosic biomass. Although the XOS contains a series of different degrees of polymerization (DP) of xylose units, DP 2 and 3 (xylobiose (X2) and xylotriose (X3)) are regarded as the main active components in food and pharmaceutical fields. Therefore, in the study, in order to achieve the maximum production of XOS with the desired DP, a combination strategy of sequential auto-hydrolysis and xylanase hydrolysis was developed with corncob as raw material. The evidences showed that the hemicellulosic xylan could be effectively decomposed into various higher DP saccharides (> 4), which were dissolved into the auto-hydrolysate; sequentially, the soluble saccharides could be rapidly hydrolyzed into XOS with desired DP by xylanase hydrolysis. Finally, a maximum XOS yield of 56.3% was achieved and the ratio of (X2 + X3)/XOS was over 80%; meanwhile, the by-products could be controlled at lower levels. Overall, this study provides solid data that support the selective and precise preparation of XOS from corncob, vigorously promoting the application of XOS as functional sugar products.
Collapse
Affiliation(s)
- Yujie Zhai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Qiu Y, Zhang L, Zhang F, Cheng X, Ji L, Jiang J. Efficient production of xylooligosaccharides from Camellia oleifera shells pretreated by pyruvic acid at lower temperature. Int J Biol Macromol 2024; 259:129262. [PMID: 38199559 DOI: 10.1016/j.ijbiomac.2024.129262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
XOS production from lignocellulose using organic carboxylic acids and alkyd acids has been widely reported. However, it still faces harsh challenges such as high energy consumption, high cost, and low purity. Pyruvic acid (PYA), a carbonyl acid with carbonyl and carboxyl groups, was used to produce XOS due to its stronger catalytic activity. In this work, XOS was efficiently prepared from COS in an autoclave under the condition of 0.21 M PYA-121 °C-35 min. The total yield of XOS reached 68.72 % without producing any toxic by-products, including furfural (FF) and 5-hydroxymethylfurfural (5-HMF). The yield of xylobiose (X2), xylotriose (X3), xylotetraose (X4), and xylopentaose (X5) were 20.58 %, 12.47 %, 15.74 %, and 10.05 %, respectively. Meanwhile, 89.05 % of lignin was retained in the solid residue, which provides a crucial functional group for synthesizing layered carbon materials (SRG-a). It achieves excellent electromagnetic shielding (EMS) performance through graphitization, reaching -30 dB at a thickness of 2.0 mm. The use of a PYA catalyst in the production of XOS has proven to be an efficient method due to lower temperature, lower acid consumption, and straightforward operation.
Collapse
Affiliation(s)
- Yuejie Qiu
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Leping Zhang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Zhang W, Li C, Cheng X, Xu L, Xu W, Zhang B, Wang H, Zhou Y, Xiao Y, Jiang J, Xu B. Structural characterization of lignin from the green pretreatments for co-producing xylo-oligosaccharides and glucose: Toward full biomass utilization. Int J Biol Macromol 2024; 259:129235. [PMID: 38211916 DOI: 10.1016/j.ijbiomac.2024.129235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Three green non-enzymatic catalysis pretreatments (NECPs) including autohydrolysis, subcritical CO2-assisted seawater autohydrolysis, and inorganic salt catalysis were utilized to simultaneously produce xylo-oligosaccharides (XOS), glucose, and cellulolytic enzyme lignin (CEL) from sugarcane bagasse (SCB). The yield of XOS in all three NECPs was over 50 % with a competitive glucose yield of enzymatic hydrolysis. And the effects of different pretreatments on the chemical structure and composition of CEL samples were also investigated. The pretreatments significantly increased the thermal stability, yield, and purity of the CEL samples. Moreover, the net yield of lignin was 58.3 % with lignin purity was 98.9 % in the autohydrolysis system. Furthermore, there was a decrease in the molecular weight of CEL samples as the pretreatment intensity increased. And the original lignin structural units sustained less damage during the NECPs, due to the cleavage of the β-O-4 bonds dominating lignin degradation. Meanwhile, these pretreatments increased the phenolic-OH in CEL samples, making the lignin more reactive, and enhancing its subsequent modification and utilization. Collectively, the described techniques have demonstrated practical significance for the coproduction of XOS and glucose, and lignin, providing a promising strategy for full utilization of biomass.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Chenxi Li
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xichuang Cheng
- State Key Laboratory of Efficient Production of Forest Resources, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Linlin Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Xu
- School of Materials Science and Engineering, Linyi University, Linyi 276005, China
| | - Bo Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hanmin Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yawen Zhou
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yang Xiao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jianxin Jiang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Cheng X, Zhang L, Zhang F, Li P, Ji L, Wang K, Jiang J. Coproduction of xylooligosaccharides, glucose, and less-condensed lignin from sugarcane bagasse using syringic acid pretreatment. BIORESOURCE TECHNOLOGY 2023; 386:129527. [PMID: 37481042 DOI: 10.1016/j.biortech.2023.129527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Current strategies for the production of xylooligosaccharides (XOS) from biomass through non-enzymatic catalysis often led to a certain degree of lignin condensation, which severely restrains subsequent enzyme hydrolysis of cellulose. Herein, syringic acid (SA) pretreatment was investigated to coproduce XOS, glucose, and less-condensed lignin from sugarcane bagasse. SA acted as a catalyst and lignin condensation inhibitor during the pretreatment. The highest XOS yield of 58.7% (27.7% xylobiose and 24.7% xylotriose) was obtained at 180 °C - 20 min - 9% SA, and the corresponding xylose/XOS ratio was only 0.42. Compared with the pretreatment at 180 °C - 20 min - 0% SA, the addition of 9% SA increased the glucose yield from 85.7% to 92.4% and decreased the degree of lignin condensation from 0.55 to 0.42. Moreover, 26.7% of SA could be easily recovered. This work presents a pretreatment strategy in which the efficient production of XOS and the suppression of lignin condensation are achieved simultaneously.
Collapse
Affiliation(s)
- Xichuang Cheng
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Leping Zhang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing, 210042, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Efficient Co-Production of Xylooligosaccharides and Glucose from Vinegar Residue by Biphasic Phenoxyethanol-Maleic Acid Pretreatment. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new biphasic organic solvent, phenoxyethanol-maleic acid, was carried out to pretreat and fractionate vinegar residue into glucan, xylan and lignin under mild conditions. Additional effects of key factors, temperature and phenoxyethanol concentration, on vinegar residue, were evaluated. Under the biphasic system (0.5% maleic acid, 60% phenoxyethanol), 140 °C cooking vinegar residue for 1 h, 80.91% of cellulose retention in solid residue, 75.44% of hemicellulose removal and 69.28% of lignin removal were obtained. Optimal identified conditions resulted in maximum XOS of 47.3%. Then, the solid residue was enzymatically digested with a glucose yield of 82.67% at 72 h with the addition of 2.5 g/L bovine serum albumin. Finally, the residue was characterized by SEM, FTIR, XRD and BET analysis. This work demonstrated the phenoxyethanol-maleic acid pretreatment yielded XOS, fermentable sugar, and lignin with high processibility.
Collapse
|
8
|
Qiu Z, Han X, Fu A, Jiang Y, Zhang W, Jin C, Li D, Xia J, He J, Deng Y, Xu N, Liu X, He A, Gu H, Xu J. Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment. BIORESOURCE TECHNOLOGY 2023; 368:128324. [PMID: 36400276 DOI: 10.1016/j.biortech.2022.128324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
After several rounds of milling process for sugars extraction from sugarcane, certain amounts of water-soluble carbohydrates (WSC) still remain in sugarcane bagasse. It is a bottleneck to utilize WSC in sugarcane bagasse biorefinery, since these sugars are easily degraded into inhibitors during pretreatment. Herein, a simple pre-fermentation step before pretreatment was conducted, and 98 % of WSC in bagasse was fermented into d-lactic acid. The obtained d-lactic acid was stably preserved in bagasse and 5-hydroxymethylfurfural (HMF) generation was sharply reduced from 46.0 mg/g to 6.2 mg/g of dry bagasse, after dilute acid pretreatment. Consequently, a higher d-lactic acid titer (57.0 g/L vs 33.2 g/L) was achieved from the whole slurry of the undetoxified and pretreated sugarcane bagasse by one-pot simultaneous saccharification and co-fermentation (SSCF), with the overall yield of 0.58 g/g dry bagasse. This study gave an efficient strategy for enhancing lactic acid production using the lignocellulosic waste from sugar industry.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China; Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Anqing Fu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Yalan Jiang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Wenyue Zhang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Ci Jin
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Dengchao Li
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Yuanfang Deng
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hanqi Gu
- Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
9
|
Madadi M, Zahoor, Shah SWA, Sun C, Wang W, Ali SS, Khan A, Arif M, Zhu D. Efficient co-production of xylooligosaccharides and glucose from lignocelluloses by acid/pentanol pretreatment: Synergetic role of lignin removal and inhibitors. BIORESOURCE TECHNOLOGY 2022; 365:128171. [PMID: 36283660 DOI: 10.1016/j.biortech.2022.128171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A novel technology for co-production of xylooligosaccharides (XOS) and glucose from Monterey pine sawdust and wheat straw was introduced using dilute acid (DA)/pentanol pretreatment. Effects of pretreatment severity (PS), lignin removal, and inhibitors with byproduct concentrations on XOS production were investigated. Optimal identified conditions (PS: 3.71; 170 °C, 45 min) resulted in maximum XOS of 48.65 % (pine sawdust) and 46.85 % (wheat straw), due to appropriate lignin removal (pine sawdust, 88.5 %; wheat straw, 89.7 %) and formation of small amounts of inhibitors and byproducts. Enzymatic hydrolysis of optimal pretreated solid residues yielded 88.65 % and 93.34 % glucose in pine sawdust and wheat straw, respectively. Biomass characterization revealed that DA/pentanol pretreatment enhanced porosity and pore size along with removal of amorphous fractions in both samples, thereby increasing cellulose accessibility and glucose yield. This study demonstrated lignin removal and low formation of inhibitors and byproducts, effectively enhancing XOS and glucose production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zahoor
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wen Wang
- Bio-chemical Conversion Lab Center for Biomass Energy Research, Guangzhou Institute of Energy Conversion, CAS, 510640, China
| | - Sameh Samir Ali
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmad Khan
- Department of Agronomy, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif
- Department of Agronomy, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Daochen Zhu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Combining autohydrolysis with xylanase hydrolysis for producing xylooligosaccharides from Jiuzao. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Reena R, Alphy MP, Reshmy R, Thomas D, Madhavan A, Chaturvedi P, Pugazhendhi A, Awasthi MK, Ruiz H, Kumar V, Sindhu R, Binod P. Sustainable valorization of sugarcane residues: Efficient deconstruction strategies for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 361:127759. [PMID: 35961508 DOI: 10.1016/j.biortech.2022.127759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The global climate crisis and the ongoing increase in fossil-based fuels have led to an alternative solution of using biomass for fuel production. Sugarcane bagasse (SCB) is an agricultural residue with a global production of more than 100 million metric tons and it has various applications in a biorefinery concept. This review brings forth the composition, life cycle assessment, and various pretreatments for the deconstruction techniques of SCB for the production of valuable products. The ongoing research in the production of biofuels, biogas, and electricity utilizing the bagasse was elucidated. SCB is used in the production of carboxymethyl cellulose, pigment, lactic acid, levulinic acid, and xylooligosaccharides and it has prospective in meeting the demand for global energy and environmental sustainability.
Collapse
Affiliation(s)
- Rooben Reena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689 122, Kerala, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India; School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Hector Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Vinod Kumar
- Fermentation Technology Division, CSIR - Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, J & K, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
12
|
Wang Q, Su Y, Gu Y, Lai C, Ling Z, Yong Q. Valorization of bamboo shoot shell waste for the coproduction of fermentable sugars and xylooligosaccharides. Front Bioeng Biotechnol 2022; 10:1006925. [PMID: 36185456 PMCID: PMC9523113 DOI: 10.3389/fbioe.2022.1006925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, hydrothermal pretreatment (autohydrolysis) was coupled with endo-xylanase enzymatic hydrolysis for bamboo shoot shell (BSS) to produce glucose and valuable xylooligosaccharides (XOS) rich in xylobiose (X2) and xylotriose (X3). Results showed that the enzymatic hydrolysis efficiency of pretreated BSS residue reached 88.4% with addition of PEG during the hydrolysis process. To enrich the portions of X2–X3 in XOS, endo-xylanase was used to hydrolyze the XOS in the prehydrolysate, which was obtained at the optimum condition (170°C, 50 min). After enzymatic hydrolysis, the yield of XOS reached 25.6%, which contained 76.7% of X2–X3. Moreover, the prehydrolysate contained a low concentration of fermentation inhibitors (formic acid 0.7 g/L, acetic acid 2.6 g/L, furfural 0.7 g/L). Based on mass balance, 32.1 g of glucose and 6.6 g of XOS (containing 5.1 g of X2-X3) could be produced from 100.0 g of BSS by the coupled technology. These results indicate that BSS could be an economical feedstock for the production of glucose and XOS.
Collapse
Affiliation(s)
- Qiyao Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yang Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, China
- *Correspondence: Qiang Yong,
| |
Collapse
|
13
|
Production of Xylooligosaccharides from Jiuzao by Autohydrolysis Coupled with Enzymatic Hydrolysis Using a Thermostable Xylanase. Foods 2022; 11:foods11172663. [PMID: 36076846 PMCID: PMC9455638 DOI: 10.3390/foods11172663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
The production of xylooligosaccharides (XOS) from Jiuzao was studied using a two-stage process based on autohydrolysis pretreatment followed by enzymatic hydrolysis. Jiuzao was autohydrolyzed under conditions where temperature, time, particle size, and solid-liquid ratio were varied experimentally. Optimal XOS production was obtained from Jiuzao with a >20 mesh particle size treated at 181.5 °C for 20 min with a 1:13.6 solid-liquid ratio. Subsequently, optimal enzymatic hydrolysis conditions for xylanase XynAR were identified as 60 °C, pH 5, and xylanase XynAR loading of 15 U/mL. Using these conditions, a yield of 34.2% XOS was obtained from Jiuzao within 2 h. The process developed in the present study could enable effective and ecofriendly industrial production of XOS from Jiuzao.
Collapse
|
14
|
Biorefinery of apple pomace: New insights into xyloglucan building blocks. Carbohydr Polym 2022; 290:119526. [PMID: 35550758 DOI: 10.1016/j.carbpol.2022.119526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Within the apple pomace biorefinery cascade processing framework aiming at adding value to an agroindustrial waste, after pectin recovery, this study focused on hemicellulose. The structure of the major apple hemicellulose, xyloglucan (XyG), was assessed as a prerequisite to potential developments in industrial applications. DMSO-LiCl and 4 M KOH soluble hemicelluloses from pectin-extracted apple pomace were purified by anion exchange chromatography. XyG structure was assessed by coupling xyloglucanase and endo-β-1,4-glucanase digestions to HPAEC and MALDI-TOF MS analyses. 71.9% of pomaces hemicellulose were recovered with starch. DMSO-LiCl and 4 M KOH soluble XyG exhibited Mw of 19 and 140 kDa, respectively. Besides the XXXG, XLXG, XXLG, XXFG, XLFG and XLLG structures, novel oligosaccharides with degree of polymerization of 6-10 were observed after xyloglucanase digestion. Cellobiose and cellotriose were revealed randomly distributed in XyG backbone and were more present in DMSO-LiCl soluble XyG. Residual pomace remains a potential source of other materials.
Collapse
|
15
|
Brenelli LB, Bhatia R, Djajadi DT, Thygesen LG, Rabelo SC, Leak DJ, Franco TT, Gallagher JA. Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale. BIORESOURCE TECHNOLOGY 2022; 357:127093. [PMID: 35378280 DOI: 10.1016/j.biortech.2022.127093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with ∼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to ∼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.
Collapse
Affiliation(s)
- Lívia B Brenelli
- Interdisciplinary Center of Energy Planning, University of Campinas, Cora Coralina, 330, Campinas, São Paulo, Brazil; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Rakesh Bhatia
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Demi T Djajadi
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Avenida Universitária, 3780, Altos do Paraíso, São Paulo, Brazil
| | - David J Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Telma T Franco
- School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein, Campinas, São Paulo 13083-852, Brazil
| | - Joe A Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
16
|
Yang H, Liu J, Tao Y, Zhu T, Li Y, Nong G. Synthesis of Xylo‐oligosaccharide from D‐xylose by Catalyst of Oxalate Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Yang
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
| | - Jingguang Liu
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
| | - Yanzhi Tao
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
| | - Tian Zhu
- School of Light Industry and Food Engineering Guangxi University Nanning Guangxi 530004 China
| | - Yijing Li
- School of Light Industry and Food Engineering Guangxi University Nanning Guangxi 530004 China
| | - Guangzai Nong
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
- School of Light Industry and Food Engineering Guangxi University Nanning Guangxi 530004 China
| |
Collapse
|
17
|
Wu Y, Li X, Li F, Ling Z, Meng Y, Chen F, Ji Z. Promising seawater hydrothermal combining electro-assisted pretreatment for corn stover valorization within a biorefinery concept. BIORESOURCE TECHNOLOGY 2022; 351:127066. [PMID: 35351556 DOI: 10.1016/j.biortech.2022.127066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, for the first time, seawater hydrothermal (SH) pretreatment combining subsequent electrogenerated alkaline hydrogen peroxide (EAHP) pretreatment was proposed to achieve an effective fractionation of corn stover into high value-added products. During SH pretreatment, complex ions in natural seawater (Mg2+, Ca2+ and Cl-) were used to promote depolymerization of xylan into xylo-oligosaccharides with 49.37% yield (190 °C,40 min), 18.52% higher than that of deionized water. Subsequent EAHP treatment not only provided a green and economical way to produce hydrogen peroxide but also synchronously realized satisfied delignification (94.91%). The integrated pretreatment resulted in 91.16% of glucose yield, which was about 5.6 times more than that of unpretreated corn stover. In addition, the recovered lignin fraction which has a potential application in functional materials were investigated by FTIR, 2D-HSQC NMR and GPC. In short, this work provided a novel and environmentally-friendly strategy for biorefinery-based fractionation of corn stover.
Collapse
Affiliation(s)
- Yue Wu
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinting Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fucheng Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Meng
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fushan Chen
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
18
|
Zhang W, Zhang B, Lei F, Li P, Jiang J. Coproduction xylo-oligosaccharides with low degree of polymerization and glucose from sugarcane bagasse by non-isothermal subcritical carbon dioxide assisted seawater autohydrolysis. BIORESOURCE TECHNOLOGY 2022; 349:126866. [PMID: 35183726 DOI: 10.1016/j.biortech.2022.126866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
High pretreatment temperature is necessary to obtain xylo-oligosaccharides (XOS) with low degree of polymerization (DP). However, traditional isothermal pretreatment for XOS production may increase the generation of xylose and furfural with the reaction time extending (10-100 min). In this study, non-isothermal subcritical CO2-assisted seawater autohydrolysis (NSCSA) firstly used seawater and CO2 for the coproduction of XOS with low DP and glucose. 51.44% XOS was obtained at 205 °C/5 MPa, and low-DP (2-4) XOS accounted for 79.13% of the total XOS. Furthermore, the specific surface area and total pore volume of the pretreated sugarcane bagasse (SCB) were 1.96 m2/g and 0.011 cm3/g, respectively, increased by 148% and 83% than that of nature SCB. Compared with subcritical CO2 pretreatment, NSCSA is an efficient method for the coproduction of XOS with low DP and glucose through inorganic salts in seawater and H2CO3 formed from CO2.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, PR China
| | - Bo Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
19
|
Zhang L, Zhang X, Lei F, Jiang J, Ji L. Coproduction of xylo-oligosaccharides and glucose from sugarcane bagasse in subcritical CO 2-assisted seawater system. BIORESOUR BIOPROCESS 2022; 9:34. [PMID: 38647821 PMCID: PMC10991134 DOI: 10.1186/s40643-022-00525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abundant seawater resources can replace the shortage of freshwater resources. The co-production of xylo-oligosaccharides and glucose from sugarcane bagasse by subcritical CO2-assisted seawater pretreatment was studied in this paper. We investigated the effects of pretreatment conditions of temperature, CO2 pressure and reaction time on the yield of xylo-oligosaccharides in subcritical CO2-assisted seawater systems. The maximum xylo-oligosaccharide yield of 68.23% was obtained at 165 °C/2 MPa/5 min. After further enzymatic hydrolysis of the solid residue, the highest glucose yield of 94.45% was obtained. In this system, there is a synergistic effect of mixed ions in seawater and CO2 to depolymerize xylan into xylo-oligosaccharides with a lower degree of polymerization. At the same time, the addition of CO2 increased the pore size and porosity of sugarcane bagasse, improved the efficiency of enzymatic hydrolysis and increased the yield of glucose. Therefore, this study provides a more environmentally friendly and sustainable process for the co-production of xylo-oligosaccharides and glucose from sugarcane bagasse, and improves the utilization of seawater resources.
Collapse
Affiliation(s)
- Leping Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
20
|
Fang L, Su Y, Wang P, Lai C, Huang C, Ling Z, Yong Q. Co-production of xylooligosaccharides and glucose from birch sawdust by hot water pretreatment and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2022; 348:126795. [PMID: 35121099 DOI: 10.1016/j.biortech.2022.126795] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A green method for co-production of value-added xylooligosaccharides (XOS) and glucose from birch was demonstrated using hot water pretreatment. Effects of pretreatment severity factor (Log R0) on XOS production and enzymatic hydrolysis were investigated. At Log R0 of 4.05 (180 °C, 50 min), the maximum hydrolysis yield (80.8%) was obtained. At Log R0 of 3.91 (170 °C, 70 min), the maximum XOS yield (46.1%) was obtained, however the hydrolysis yield decreased to 70.3%. To achieve both the high XOS yield and high glucose output, Tween 80 addition (0.075 g/g cellulose) was employed, leading to an improvement in hydrolysis yield from 70.3% to 89.4%. From a mass balance perspective, 104.6 g of XOS and 372.9 g of glucose could be produced from 1000 g birch. These results demonstrated that birch sawdust is a promising lignocellulosic material for co-production of XOS and glucose.
Collapse
Affiliation(s)
- Lingyan Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Peng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
21
|
Scapini T, Dalastra C, Camargo AF, Kubeneck S, Modkovski TA, Júnior SLA, Treichel H. Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126325. [PMID: 34785329 DOI: 10.1016/j.biortech.2021.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biorefineries are an essential step towards implementing a circular economy in the long term. They are based on renewable raw materials and must be designed holistically, recovering building blocks from being converted into several products. Lignocellulosic biomass is considered a critical pillar for a biologically based economy and a high value-added feedstock. The separation of the structural complexity that makes up the biomass allows the development of different product flows. Chemical, physical, and biological processes are evaluated for fractionation, hydrolysis, and fermentation processes in biorefineries; however, the volume of freshwater used affects water safety and increases the economic costs. Non-potable-resources-based technologies for biomass bioconversion are essential for biorefineries to become environmentally and economically sustainable systems. Studies are being carried out to substitute freshwater with seawater to reduce the water footprint. Accordingly, this review addresses a comprehensive discussion about seawater-based biorefineries focusing on lignocellulosic biomass conversion in biofuel and value-added products.
Collapse
Affiliation(s)
- Thamarys Scapini
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Caroline Dalastra
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Sérgio Luiz Alves Júnior
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
22
|
You S, Li J, Zhang F, Bai ZY, Shittu S, Herman RA, Zhang WX, Wang J. Loop engineering of a thermostable GH10 xylanase to improve low-temperature catalytic performance for better synergistic biomass-degrading abilities. BIORESOURCE TECHNOLOGY 2021; 342:125962. [PMID: 34563821 DOI: 10.1016/j.biortech.2021.125962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biorefining for producing biofuels poses technical challenges. It is usually conducted over a long time using heat, making it energy intensive. In this study, we lowered the energy consumption of this process through an optimized enzyme and pretreatment strategy. First, the dominant mutant M137E/N269G of Bispora sp. MEY-1XYL10C_ΔN was obtained by directed evolution with highcatalytic efficiency (970 mL/s∙mg)and specific activity (2090 U/mg)at 37 °C, and thermostability was improved (T50 increased by5 °C). After pretreatment with seawater immersionfollowing steam explosion,bagasse was co-treated with cellulase and M137E/N269G under mild conditions (37 °C), the resulting highest yield of fermentable sugars reached 219 µmol/g of bagasse,46% higher than that of the non-seawater treatment group, with the highest degree of synergy of 2.0. Pretreatment with seawater following steam explosion and synergistic hydrolysis through high activity xylanase and cellulase helped to achieve low energy degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shuai You
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China
| | - Jing Li
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Fang Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhi-Yuan Bai
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Saidi Shittu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Richard-Ansah Herman
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
23
|
Sarker TR, Pattnaik F, Nanda S, Dalai AK, Meda V, Naik S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. CHEMOSPHERE 2021; 284:131372. [PMID: 34323806 DOI: 10.1016/j.chemosphere.2021.131372] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
The pretreatment of lignocellulosic biomass enhances the conversion efficiency to produce biofuels and value-added chemicals, which have the potential to replace fossil fuels. Compared to physicochemical and other pretreatment techniques, the hydrothermal methods are considered eco-friendly and cost-effective. This paper reviews the strengths, weaknesses, opportunities and threats of steam explosion and subcritical water hydrolysis as the two promising hydrothermal technologies for the pretreatment of lignocellulosic biomass. Although the principle of the steam explosion in depolymerizing the lignin and exposing the cellulose fibers for bioconversion to liquid fuels is well known, its underlying mechanism for solid biofuel production is less identified. Therefore, this review provides an insight into different operating conditions of steam explosion and subcritical water hydrolysis for a wide variety of feedstocks. The mechanisms of subcritical water hydrolysis including dehydration, decarboxylation and carbonization of waste biomass are comprehensively described. Finally, the role of microwave heating in the hydrothermal pretreatment of biomass is elucidated.
Collapse
Affiliation(s)
- Tumpa R Sarker
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Falguni Pattnaik
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Venkatesh Meda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Satyanarayan Naik
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
24
|
Álvarez C, González A, Ballesteros I, Negro MJ. Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion. BIORESOURCE TECHNOLOGY 2021; 342:125953. [PMID: 34555750 DOI: 10.1016/j.biortech.2021.125953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Barley straw (BS) is a potential source to obtain bioethanol and value-added products such as xylooligosaccharides (XOS) and lignin for application in diverse industries. In this study, BS was submitted to steam explosion pretreatment to valorize the main components of this lignocellulose biomass. For hemicellulose fraction valorization, different combinations of endo-β-(1,4)-D-xylanase enzyme with accessory enzymes (α-L-arabinofuranosidase, feruloy -esterase and acetylxylan-esterase) have been studied to produce XOS with a low degree of polymerization. The application of accessory enzymes combined with endo-β-(1,4)-D-xylanase enzymes turned out to be the most effective strategy for the formation of XOS. The solid fraction obtained after the pretreatment was submitted to presacharification and simultaneous saccharification and fermentation process for bioethanol production. The resulting lignin-rich residue was characterized. In this integrated process, 13.0 g XOS (DP2-DP6), 12.6 g ethanol and 16.6 g lignin were obtained from 100 g of BS, achieving the goal of valorizing this agricultural residue.
Collapse
Affiliation(s)
- Cristina Álvarez
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| | - Alberto González
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| | - Ignacio Ballesteros
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| |
Collapse
|
25
|
Zhang L, Zhang W, Zhang F, Jiang J. Xylo-oligosaccharides and lignin production from Camellia oleifera shell by malic acid hydrolysis at mild conditions. BIORESOURCE TECHNOLOGY 2021; 341:125897. [PMID: 34523561 DOI: 10.1016/j.biortech.2021.125897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Camellia oleifera shell (COS), a by-product of processing woody vegetable oil, is rich in hemicellulose and lignin. In this study, we investigated the effects of acid concentration, pretreatment temperature and reaction time on the concentration and yield of xylo-oligosaccharides (XOS) and the degree of polymerization (DP) distribution of XOS when pretreating COS with malic acid (MA). Under moderate condition (2 M MA, 120 ℃, 30 min), the maximum yield of XOS with DP 2-4 was 48.78% (based on the initial xylan) with low xylose, 5-hydroxymethylfurfural (HMF) and furfural, in which xylobiose (X2), xylotriose (X3) and xylotraose (X4) concentrations were 5.22 g/L, 2.75 g/L and 2.91 g/L, respectively. In addition, acid-insoluble lignin (AIL) in the residue after MA pretreatment and milling wood lignin (MWL) were mainly composed of guaiacyl and syringyl. AIL has higher thermal stability than MWL, which can be the stabilizer for producing flame-resistant materials.
Collapse
Affiliation(s)
- Leping Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
26
|
Murlidhar Sonkar R, Savata Gade P, Bokade V, Mudliar SN, Bhatt P. Ozone assisted autohydrolysis of wheat bran enhances xylooligosaccharide production with low generation of inhibitor compounds: A comparative study. BIORESOURCE TECHNOLOGY 2021; 338:125559. [PMID: 34280853 DOI: 10.1016/j.biortech.2021.125559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, ozone assisted autohydrolysis (OAAH) was evaluated for enhanced generation of xylooligosaccharide (XOS) from wheat bran. The total XOS yield with optimum ozone dose of 3% (OAAH-3) was found to be 8.9% (w/w biomass) at 110 °C in comparison to 7.96% at 170 °C by autohydrolysis (AH) alone. Although, there was no significant difference in oligomeric composition (DP 2-6), significant decrease in degradation products namely furfural (2.78-fold), HMF (3.15-fold), acrylamide (nil) and acetic acid (1.06-fold), was observed with OAAH-3 as a pretreatment option. There was 1-fold higher xylan to XOS conversion and OAAH-hydrolysate had higher DPPH radical scavenging activity than AH. PCA plots indicated clear enhancement in XOS production and lower generation of inhibitors with decrease in treatment temperature. Results of the study therefore suggest OAAH can be an effective pretreatment option that can further be integrated with downstream processing for concentration and purification of XOS.
Collapse
Affiliation(s)
- Rutuja Murlidhar Sonkar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Pravin Savata Gade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Vijay Bokade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Catalysis Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sandeep N Mudliar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Praveena Bhatt
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
27
|
Zhang C, Song Z, Jin P, Zhou X, Zhang H. Xylooligosaccharides induce stomatal closure via salicylic acid signaling-regulated reactive oxygen species and nitric oxide production in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 172:1908-1918. [PMID: 33755206 DOI: 10.1111/ppl.13403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Xylooligosaccharides (XOS) are the major coproducts of biofuel production and the most representative functional sugar enhancing animal physiology. However, little is known regarding the biological relevance of XOS to plants. Here, we found XOS triggered stomatal closure in Arabidopsis in a dose-dependent manner. Pamarcological data showed that XOS-induced stomatal closure was markedly inhibited by catalase (CAT, a reactive oxygen species [ROS] scavenger), salicylhydroxamic acid (SHAM, a peroxidase inhibitor), and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a nitric oxide [NO] scavenger). Moreover, XOS induced the production of ROS and NO in guard cells of Arabidopsis. ROS production was strongly restricted by CAT and SHAM, but was unaffected by treatment with diphenyleneiodonium chloride (DPI, an NADPH oxidase inhibitor) or cPTIO. NO production was suppressed by CAT, SHAM, and cPTIO, but not by DPI. The elevation of ROS level mediated by SHAM-sensitive peroxidases occurred upstream of NO. Additionally, XOS-triggered stomatal closure and ROS and NO accumulation were significantly impaired in npr1 (salicylic acid signaling) mutant plants, but were not in jar1 (jasmonic acid signaling) or ein2 (ethylene signaling) mutant plants. Furthermore, XOS-induced stomatal closure was unaffected in both ost1 and atrbohD atrbohF (abscisic acid [ABA] signaling) mutant plants. Therefore, these results indicated that the biotic sugar, XOS, can elicit stomatal closure via salicylic acid signaling-mediated production of ROS and NO, in a manner independent of ABA signaling.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Zhiqiang Song
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Pinyuan Jin
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Xiuhong Zhou
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| |
Collapse
|
28
|
Effect of Dietary Sugarcane Bagasse Supplementation on Growth Performance, Immune Response, and Immune and Antioxidant-Related Gene Expressions of Nile Tilapia ( Oreochromis niloticus) Cultured under Biofloc System. Animals (Basel) 2021; 11:ani11072035. [PMID: 34359162 PMCID: PMC8300095 DOI: 10.3390/ani11072035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Supplementation of agriculture by-product as functional feed additives in combination with biofloc technology (a sustainable and environmentally friendly technology) has recently gained much attention in aquaculture. In the present study, sugarcane bagasse powder can possibly be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression. Abstract We investigated, herein, the effects of dietary inclusion of sugarcane bagasse powder (SB) on Nile tilapia development, mucosal and serum immunities, and relative immune and antioxidant genes. Fish (15.12 ± 0.04 g) were provided a basal diet (SB0) or basal diet incorporated with SB at 10 (SB10), 20 (SB20), 40 (SB40), or 80 (SB80) g kg−1 for 8 weeks. Our results demonstrated that the dietary incorporation of sugarcane bagasse powder (SB) at 20 and 40 g kg−1 significantly ameliorated FW, WG, and SGR as opposed to fish fed basal, SB10, and SB80 diets. However, no significant changes in FCR and survivability were observed between the SB supplemented diets and the control (basal diet). The mucosal immunity exhibited significantly higher SMLA and SMPA activities (p < 0.005) in fish treated with SB diets after eight weeks. The highest SMLA and SMPA levels were recorded in fish fed SB80 followed by SB20, SB40, and SB10, respectively. For serum immunity, fish fed SB incorporated diets significantly ameliorated SL and RB levels (p < 0.05) compared with the control. However, SP was not affected by the inclusion of SB in any diet throughout the experiment. The expression of IL1, IL8, LBP, GSTa, GPX, and GSR genes in the fish liver was significantly increased in fish fed the SB20 and SB10 diets relative to the basal diet fed fish (p < 0.05); whereas only the IL8, LBP, and GPX genes in the intestines were substantially augmented via the SB20 and SB80 diets (p < 0.05). IL1 and GSR were not influenced by the SB incorporated diets (p > 0.05). In summary, sugarcane bagasse powder (SB) may be applied as a feed additive to improve growth performance, immune response, and immune and antioxidant-related gene expression in Nile tilapia.
Collapse
|
29
|
Khaleghipour L, Linares-Pastén JA, Rashedi H, Ranaei Siadat SO, Jasilionis A, Al-Hamimi S, Sardari RRR, Karlsson EN. Extraction of sugarcane bagasse arabinoxylan, integrated with enzymatic production of xylo-oligosaccharides and separation of cellulose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:153. [PMID: 34217334 PMCID: PMC8254973 DOI: 10.1186/s13068-021-01993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Sugarcane processing roughly generates 54 million tonnes sugarcane bagasse (SCB)/year, making SCB an important material for upgrading to value-added molecules. In this study, an integrated scheme was developed for separating xylan, lignin and cellulose, followed by production of xylo-oligosaccharides (XOS) from SCB. Xylan extraction conditions were screened in: (1) single extractions in NaOH (0.25, 0.5, or 1 M), 121 °C (1 bar), 30 and 60 min; (2) 3 × repeated extraction cycles in NaOH (1 or 2 M), 121 °C (1 bar), 30 and 60 min or (3) pressurized liquid extractions (PLE), 100 bar, at low alkalinity (0-0.1 M NaOH) in the time and temperature range 10-30 min and 50-150 °C. Higher concentration of alkali (2 M NaOH) increased the xylan yield and resulted in higher apparent molecular weight of the xylan polymer (212 kDa using 1 and 2 M NaOH, vs 47 kDa using 0.5 M NaOH), but decreased the substituent sugar content. Repeated extraction at 2 M NaOH, 121 °C, 60 min solubilized both xylan (85.6% of the SCB xylan), and lignin (84.1% of the lignin), and left cellulose of high purity (95.8%) in the residuals. Solubilized xylan was separated from lignin by precipitation, and a polymer with β-1,4-linked xylose backbone substituted by arabinose and glucuronic acids was confirmed by FT-IR and monosaccharide analysis. XOS yield in subsequent hydrolysis by endo-xylanases (from glycoside hydrolase family 10 or 11) was dependent on extraction conditions, and was highest using xylan extracted by 0.5 M NaOH, (42.3%, using Xyn10A from Bacillus halodurans), with xylobiose and xylotriose as main products. The present study shows successful separation of SCB xylan, lignin, and cellulose. High concentration of alkali, resulted in xylan with lower degree of substitution (especially reduced arabinosylation), while high pressure (using PLE), released more lignin than xylan. Enzymatic hydrolysis was more efficient using xylan extracted at lower alkaline strength and less efficient using xylan obtained by PLE and 2 M NaOH, which may be a consequence of polymer aggregation, via remaining lignin interactions.
Collapse
Affiliation(s)
- Leila Khaleghipour
- Division Biotechnology, Department of Chemistry, Lund University, P. O. Box 124, 22100, Lund, Sweden
- Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Javier A Linares-Pastén
- Division Biotechnology, Department of Chemistry, Lund University, P. O. Box 124, 22100, Lund, Sweden
| | - Hamid Rashedi
- Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | | | - Andrius Jasilionis
- Division Biotechnology, Department of Chemistry, Lund University, P. O. Box 124, 22100, Lund, Sweden
| | - Said Al-Hamimi
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, 22100, Lund, Sweden
| | - Roya R R Sardari
- Division Biotechnology, Department of Chemistry, Lund University, P. O. Box 124, 22100, Lund, Sweden
| | - Eva Nordberg Karlsson
- Division Biotechnology, Department of Chemistry, Lund University, P. O. Box 124, 22100, Lund, Sweden.
| |
Collapse
|
30
|
Dai L, Huang T, Jiang K, Zhou X, Xu Y. A novel recyclable furoic acid-assisted pretreatment for sugarcane bagasse biorefinery in co-production of xylooligosaccharides and glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:35. [PMID: 33531058 PMCID: PMC7856728 DOI: 10.1186/s13068-021-01884-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. RESULTS The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 °C for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization. CONCLUSION This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.
Collapse
Affiliation(s)
- Lin Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Tian Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
31
|
Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xylooligosaccharides (XOS) production from sweet sorghum bagasse (SSB) has been barely studied using other edible biomasses. Therefore, we evaluated the XOS content as well as its purity by comparing the content of total sugars from SSB. An environmentally friendly approach involving autohydrolysis was employed, and the reaction temperature and time had variations in order to search for the conditions that would yield high-purity XOS. After autohydrolysis, the remaining solid residues, the glucan-rich fraction, were used as substrates to be enzymatically hydrolyzed for glucose conversion. The highest XOS was observed for total sugars (68.7%) at 190 °C for 5 min among the autohydrolysis conditions. However, we also suggested two alternative conditions, 180 °C for 20 min and 190 °C for 15 min, because the former condition might have the XOS at a low degree of polymerization with a high XOS ratio (67.6%), while the latter condition presented a high glucose to total sugar ratio (91.4%) with a moderate level XOS ratio (64.4%). Although it was challenging to conclude on the autohydrolysis conditions required to obtain the best result of XOS content and purity and glucose yield, this study presented approaches that could maximize the desired product from SSB, and additional processes to reduce these differences in conditions may warrant further research.
Collapse
|
32
|
Brenelli LB, Figueiredo FL, Damasio A, Franco TT, Rabelo SC. An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale. BIORESOURCE TECHNOLOGY 2020; 313:123637. [PMID: 32535521 DOI: 10.1016/j.biortech.2020.123637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 05/13/2023]
Abstract
Sugarcane straw (SS) is a widely available agricultural processing feedstock with the potential to produce 2nd generation bioethanol and bioproducts, in addition to the more conventional use for heat and/or electrical power generation. In this study, we investigated the operational parameters to maximize the production of xylo-oligosaccharides (XOS) using mild deacetylation, followed by hydrothermal pretreatment. From the laboratory to the pilot-scale, the optimized two-stage pretreatment promoted 81.5% and 70.5% hemicellulose solubilization and led to XOS yields up to 9.8% and 9.1% (w/w of initial straw), respectively. Moreover, different fungal xylanases were also tested to hydrolyze XOS into xylobiose (X2) and xylotriose (X3). GH10 from Aspergillus nidulans performed better than GH11 xylanases and the ratio of the desired products (X2 + X3) increased to 72% due to minimal monomeric sugar formation. Furthermore, a cellulose-rich fraction was obtained, which can be used in other high value-added applications, such as for the production of cello-oligomers.
Collapse
Affiliation(s)
- Lívia B Brenelli
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro, 10.000, Campinas, São Paulo, Brazil; Interdisciplinary Center of Energy Planning, University of Campinas, Cora Coralina, 330, Campinas, São Paulo, Brazil
| | - Fernanda L Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Telma T Franco
- Interdisciplinary Center of Energy Planning, University of Campinas, Cora Coralina, 330, Campinas, São Paulo, Brazil
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, College of Agricultural Sciences, São Paulo State University (UNESP), Avenida Universitária, 3780 Altos do Paraíso, São Paulo, Brazil.
| |
Collapse
|
33
|
Zhang X, Zhang W, Lei F, Yang S, Jiang J. Coproduction of xylooligosaccharides and fermentable sugars from sugarcane bagasse by seawater hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2020; 309:123385. [PMID: 32325380 DOI: 10.1016/j.biortech.2020.123385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, natural seawater without additional chemicals was selected to treat sugarcane bagasse for the production of xylooligosaccharides and glucose. This pretreatment not only more effectively conserves freshwater resources than hydrothermal pretreatment and enzymatic hydrolysis, but also decreases corrosion of the equipment relative to techniques utilizing acid and alkaline pretreatment. The maximum yield of 67.12% xylooligosaccharides (of initial xylan), including 11.49% xylobiose, 16.23% xylotriose, 23.82% xylotetraose, and 15.58% xylopentaose was obtained under mild condition (175 °C for 30 min). Moreover, greater amounts of xylotetraose were generated during seawater hydrothermal pretreatment under all conditions, likely because NaCl in seawater cut the hydrogen bonds between xylo-oligomers. In addition, 94.69% cellulose digestibility and 78.58% xylan digestibility were achieved from the solid residue with an enzyme dosage of 30 FPU/g cellulose. Results indicated that seawater hydrothermal pretreatment is a more environmentally-friendly and sustainable technique for producing xylooligosaccharides and fermentable sugars than other methods.
Collapse
Affiliation(s)
- Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Shujuan Yang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Han J, Cao R, Zhou X, Xu Y. An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid. BIORESOURCE TECHNOLOGY 2020; 307:123200. [PMID: 32222689 DOI: 10.1016/j.biortech.2020.123200] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Increasing attention has been paid to the production of high value-added products from lignocellulosic biomass. This study aims to valorize corncob, utilizing it as feedstock for a multi-biorefinery framework, using gluconic acid in the pretreatment. In attempts to maximize yield of xylooligosaccharides, corncob was first subjected to hydrolysis by gluconic acid using response surface methodology, from which the maximum xylooligosaccharides yield of 56.2% was achieved using 0.6 mol/L gluconic acid at 154 °C for 47 min. Results indicated that gluconic acid was an effective solvent for xylooligosaccharides production: a total of 180 g of xylooligosaccharides was obtained from 1 kg corncob as a result of hydrolysis. Moreover, 86.3% conversion of cellulose was achieved from enzymatic hydrolysis of gluconic acid-treated corncob at 10% solids loading. This study presents a strategy for valorizing corncob using it to produce xylooligosaccharides and glucose, which should pave the way for valorizing other agriculture wastes.
Collapse
Affiliation(s)
- Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Rou Cao
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
35
|
You Y, Zhang X, Li P, Lei F, Jiang J. Co-production of xylooligosaccharides and activated carbons from Camellia oleifera shell treated by the catalysis and activation of zinc chloride. BIORESOURCE TECHNOLOGY 2020; 306:123131. [PMID: 32197191 DOI: 10.1016/j.biortech.2020.123131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Camellia oleifera shell (COS) is a worthy byproduct in woody edible oil production enriched in hemicellulose and lignin. This paper aims to explore the high-value transformation of COS for the production of xylooligosaccharides (XOS) with main degree of polymerization (DP) of 2-5 by the catalysis of ZnCl2. The effect of pretreatment temperature, reaction time and ZnCl2 concentration on the contents and DP distributions of XOS were analyzed. Moderate reaction conditions tended to achieve high content XOS, and the maximum value 61.38% and 14.39 g/L of XOS yield and concentration, respectively, peaked at 170 °C for 30 min using 0.5% (w/w) ZnCl2. The first time the solid residues derived from the production process of XOS were used as the precursor for the co-production of activated carbons (AC). The maximum iodine values and BET surface area were 5623.94 mg/g and 1244.46 m2/g, respectively, using 2.20 M ZnCl2 as the activating agent.
Collapse
Affiliation(s)
- Yanzhi You
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Pauletto P, Dotto G, Salau N. Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Poletto P, Pereira GN, Monteiro CR, Pereira MAF, Bordignon SE, de Oliveira D. Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Abstract
The development of biorefinery processes to platform chemicals for most lignocellulosic substrates, results in side processes to intermediates such as oligosaccharides. Agrofood wastes are most amenable to produce such intermediates, in particular, cellooligo-saccharides (COS), pectooligosaccharides (POS), xylooligosaccharides (XOS) and other less abundant oligomers containing mannose, arabinose, galactose and several sugar acids. These compounds show a remarkable bioactivity as prebiotics, elicitors in plants, food complements, healthy coadyuvants in certain therapies and more. They are medium to high added-value compounds with an increasing impact in the pharmaceutical, nutraceutical, cosmetic and food industries. This review is focused on the main production processes: autohydrolysis, acid and basic catalysis and enzymatic saccharification. Autohydrolysis of food residues at 160–190 °C leads to oligomer yields in the 0.06–0.3 g/g dry solid range, while acid hydrolysis of pectin (80–120 °C) or cellulose (45–180 °C) yields up to 0.7 g/g dry polymer. Enzymatic hydrolysis at 40–50 °C of pure polysaccharides results in 0.06–0.35 g/g dry solid (DS), with values in the range 0.08–0.2 g/g DS for original food residues.
Collapse
|
39
|
Li H, Chen X, Xiong L, Zhang L, Chen X, Wang C, Huang C, Chen X. Production, separation, and characterization of high-purity xylobiose from enzymatic hydrolysis of alkaline oxidation pretreated sugarcane bagasse. BIORESOURCE TECHNOLOGY 2020; 299:122625. [PMID: 31881437 DOI: 10.1016/j.biortech.2019.122625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The production of high-purity xylobiose from lignocellulose is an expensive and tedious process. In this work, the production of xylobiose from enzymatic hydrolysis of alkaline oxidation pretreated sugarcane bagasse was investigated. Furthermore, a simple process for the separation of xylobiose from enzymatic hydrolysate by activated carbon absorption, water washing, and ethanol-water desorption was developed. Under the optimized separation conditions, 96.77% xylobiose was adsorbed at 16% activated carbon loadings. Moreover, xylose and acetate could not be detected after washing by 3-fold volume of water. Xylobiose with 80.16% yield was eluted by 5-fold volume of 5% (v/v) ethanol-water. The reusability of activated carbon was evaluated by 5 cycles of adsorption-desorption process, suggesting that the activated carbon exhibited good reusability. The separated xylobiose sample with high-purity (97.29%) was confirmed by HPLC, ESI-MS, and NMR. Overall, this study provided a low-cost and robust technology for the production and separation of high-purity xylobiose from lignocellulose.
Collapse
Affiliation(s)
- Hailong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xindong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Liquan Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Can Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Chao Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China.
| |
Collapse
|
40
|
Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. BIORESOURCE TECHNOLOGY 2020; 299:122685. [PMID: 31918970 DOI: 10.1016/j.biortech.2019.122685] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | - Marc Conrad
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía, Unidad Guadalajara de Ingeniería Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV), Zapopan, Jalisco, Mexico
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Ana Torres
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Liliane P Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil; Postgraduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Irina Smirnova
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
41
|
Bhatia R, Winters A, Bryant DN, Bosch M, Clifton-Brown J, Leak D, Gallagher J. Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment. BIORESOURCE TECHNOLOGY 2020; 296:122285. [PMID: 31715557 PMCID: PMC6920740 DOI: 10.1016/j.biortech.2019.122285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/12/2023]
Abstract
This study investigated pilot-scale production of xylo-oligosaccharides (XOS) and fermentable sugars from Miscanthus using steam explosion (SE) pretreatment. SE conditions (200 °C; 15 bar; 10 min) led to XOS yields up to 52 % (w/w of initial xylan) in the hydrolysate. Liquid chromatography-mass spectrometry demonstrated that the solubilised XOS contained bound acetyl- and hydroxycinnamate residues, physicochemical properties known for high prebiotic effects and anti-oxidant activity in nutraceutical foods. Enzymatic hydrolysis of XOS-rich hydrolysate with commercial endo-xylanases resulted in xylobiose yields of 380 to 500 g/kg of initial xylan in the biomass after only 4 h, equivalent to ~74 to 90 % conversion of XOS into xylobiose. Fermentable glucose yields from enzymatic hydrolysis of solid residues were 8 to 9-fold higher than for untreated material. In view of an integrated biorefinery, we demonstrate the potential for efficient utilisation of Miscanthus for the production of renewable sources, including biochemicals and biofuels.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK.
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David N Bryant
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Joe Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
42
|
Zhang W, Lei F, Li P, Zhang X, Jiang J. Co-catalysis of magnesium chloride and ferrous chloride for xylo-oligosaccharides and glucose production from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2019; 291:121839. [PMID: 31376673 DOI: 10.1016/j.biortech.2019.121839] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Inorganic salt treatment is a novel, high-yield, and environmentally friendly approach for the production of xylo-oligosaccharides from Sugarcane bagasse with degree of polymerization of 2-5. A xylo-oligosaccharides yield of 53.79% was obtained with 0.1 M MgCl2 treatment at 180 °C/10 min, and 41.89% with 0.1 M FeCl2 treatment at 140 °C/30 min. The xylo-oligosaccharides yield from the co-catalysis of 0.05 M FeCl2 + 0.05 M MgCl2 reached 54.68% (29.34% xylobiose and 20.94% xylotriose) at 140 °C/30 min. The co-catalysis not only effectively improved the xylobiose and xylotriose contents but also increased the total yield of xylo-oligosaccharides under mild reaction conditions. Additionally, the glucose yield observed from the solid residue after inorganic salt treatment was 71.62% by enzymatic hydrolysis. Mg2+ and Fe2+ are essential for good human health without separation from the system, therefore, the inorganic salt treatment can be potentially applied in the co-production of xylo-oligosaccharides and glucose.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
43
|
Choi JH, Park SY, Kim JH, Cho SM, Jang SK, Hong C, Choi IG. Selective deconstruction of hemicellulose and lignin with producing derivatives by sequential pretreatment process for biorefining concept. BIORESOURCE TECHNOLOGY 2019; 291:121913. [PMID: 31387050 DOI: 10.1016/j.biortech.2019.121913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
For improving the economic efficiency of the biorefining concept, selective decomposition and separation of biomass components is indispensable. In this respect, a sequential pretreatment process consisting of liquid hot water treatment and diluted peracetic acid (PAA) treatment was proposed for total utilization of lignocellulosic woody biomass. During the liquid hot water treatment, hemicellulose can be decomposed efficiently without significant loss of cellulose and lignin, implying the possibility for xylooligomer production by thermochemical treatment. In the PAA treatment, lignin was successfully degraded and liquefied using a 50% diluted PAA solvent, suggesting the possibility of dicarboxylic acid production. After the sequential process proposed in this study, the cellulose accessibility to the enzyme could be maximized by inducing selective deconstruction of hemicellulose and lignin.
Collapse
Affiliation(s)
- June-Ho Choi
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
| | - Se-Yeong Park
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Jong-Hwa Kim
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong-Min Cho
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soo-Kyeong Jang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Changyoung Hong
- Department of Forest Biomaterials College of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - In-Gyu Choi
- Department of Forest Sciences, Seoul National University, Seoul, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea.
| |
Collapse
|
44
|
Shi H, Zhou M, Li C, Sheng X, Yang Q, Li N, Niu M. Surface sediments formation during auto-hydrolysis and its effects on the benzene-alcohol extractive, absorbability and chemical pulping properties of hydrolyzed acacia wood chips. BIORESOURCE TECHNOLOGY 2019; 289:121604. [PMID: 31200281 DOI: 10.1016/j.biortech.2019.121604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study the sedimentary substances formed on the surface of auto-hydrolyzed wood chips. And its potential effect on the subsequent chemical pulping was then investigated by the analysis of surface morphology, benzene-alcohol extractive, absorbability and kraft pulping of wood chips hydrolyzed. The results showed that sediments on the surface of auto-hydrolyzed wood chips were microspheric and the amount of them increased with intensifying the severity of treatment. The benzene-alcohol extractives and lignin content in the extractives increased from 1.36% and 16.42% in the control sample to 9.42% and 47.68% in the hydrolyzed wood chips at the P-factor of 808. The absorbability of hydrolyzed wood chips firstly improved in the early stage (P-factor < 306) and after then decreased. Negative effect of the sediments on the surface of hydrolyzed wood chips was found on the subsequent kraft chemical pulping and the properties of final pulp.
Collapse
Affiliation(s)
- Haiqiang Shi
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Miaofang Zhou
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Li
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xueru Sheng
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qian Yang
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Na Li
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Meihong Niu
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
45
|
Zhou X, Zhao J, Zhang X, Xu Y. An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. BIORESOURCE TECHNOLOGY 2019; 289:121755. [PMID: 31301946 DOI: 10.1016/j.biortech.2019.121755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 05/11/2023]
Abstract
A novel approach was proposed for the production of xylooligosaccharides by direct pre-hydrolysis using gluconic acid as catalyst. Maximum xylooligosaccharides (degree of polymerization 2-6) yield of 53.2% could be obtained in 60 min through 5% gluconic acid hydrolysis of sugarcane bagasse at 150 °C. Furthermore, the yield of glucose from solids following gluconic acid hydrolysis treatment was 86.2% after fed-batch enzymatic hydrolysis with 10% solids loading. Results indicated that gluconic acid pretreatment combined with enzymatic hydrolysis could be successfully applied to sugarcane bagasse substrate. Subsequently, glucose could be efficiently bio-oxidized to gluconic acid by Gluconobacter oxydans ATCC 621H with 93.1% yield, and sugarcane bagasse derived gluconic acid has been proved to be an effective catalyst for xylooligosaccharides production. In this study, xylooligosaccharides production from sugarcane bagasse by gluconic acid hydrolysis demonstrated a great potential with respect to the production of these probiotics around the world.
Collapse
Affiliation(s)
- Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Jianglin Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaotong Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
46
|
Novel process for the coproduction of xylo-oligosaccharide and glucose from reed scraps of reed pulp mill. Carbohydr Polym 2019; 215:82-89. [DOI: 10.1016/j.carbpol.2019.03.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
|