1
|
Qi X, Jia X, Li M, Ye M, Wei Y, Meng F, Fu S, Xi B. Enhancing CO 2-reduction methanogenesis in microbial electrosynthesis: Role of oxygen-containing groups on carbon-based cathodes. BIORESOURCE TECHNOLOGY 2025; 416:131830. [PMID: 39551393 DOI: 10.1016/j.biortech.2024.131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO2 into CH4. Constructing a biocathode with both strong H2-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH4 production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH4 production and increasing the CH4 yield by 2-3 times. Carboxyl groups decreased the overpotential for H2 evolution and increased current density, thereby enhancing H2-mediated electron transfer. Additionally, carboxyl groups increased the relative abundance of Methanosaeta by 3%-10%, doubled the protein content in extracellular polymeric substances, and boosted the expression of cytochrome c-related genes, thereby enhancing direct electron transfer capacity. These findings present a novel and efficient approach for constructing a stable, high-performance biocathode, contributing to energy recovery and CO2 fixation.
Collapse
Affiliation(s)
- Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yufang Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
2
|
Molognoni D, Garcia M, Sánchez-Cueto P, Bosch-Jimenez P, Borràs E, Lladó S, Ghemis R, Karakachian G, Aemig Q, Bouteau G. Electrochemical optimization of bioelectrochemically improved anaerobic digestion for agricultural digestates' valorisation to biomethane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123898. [PMID: 39742757 DOI: 10.1016/j.jenvman.2024.123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes. After the start-up was completed, the AD-BES were all fed with a unique digestate, to evaluate the stability of the bioelectrodes' biofilm performances against variations of the organic feedstock. In terms of methane (CH4) production rate, the presence of bioelectrodes allowed between 25 and 82% improvement, compared with control AD reactors. The application of an optimal voltage of 0.3 V resulted in an additional 40% improvement in CH4 production rate, but only when the biofilm was previously acclimated to the fed digestate. Comprehensive microbial characterization revealed that fed digestate significantly influences the composition and homogenization of microbial communities within AD-BES reactors, with applied voltage showing only a secondary effect. Even when reactors were transitioned to a uniform digestate feeding, resulting in closely similar microbial profiles, variations in CH4 production persisted, underscoring the lasting impact of initial microbial conditioning. A critical observation was the differentiation in archaeal colonization on bioelectrodes at 0.3 V, the voltage yielding the highest CH4 conversion. These insights suggest that while the microbial community structure depends on fed digestate, operational efficiency and methanogenic potential are intricately linked to both initial microbial establishment and the specific electrochemical conditions applied to AD-BES reactors.
Collapse
Affiliation(s)
- Daniele Molognoni
- Leitat Technological Center, Circular Economy & Decarbonization Department, 08225, Terrassa, Barcelona, Spain.
| | - Marian Garcia
- Leitat Technological Center, Circular Economy & Decarbonization Department, 08225, Terrassa, Barcelona, Spain
| | - Pablo Sánchez-Cueto
- Leitat Technological Center, Circular Economy & Decarbonization Department, 08225, Terrassa, Barcelona, Spain
| | - Pau Bosch-Jimenez
- Leitat Technological Center, Circular Economy & Decarbonization Department, 08225, Terrassa, Barcelona, Spain
| | - Eduard Borràs
- Leitat Technological Center, Circular Economy & Decarbonization Department, 08225, Terrassa, Barcelona, Spain
| | - Salvador Lladó
- Leitat Technological Center, Circular Economy & Decarbonization Department, 08225, Terrassa, Barcelona, Spain; University of Barcelona, Department of Genetics, Microbiology and Statistics, 08028, Barcelona, Spain
| | - Radu Ghemis
- Leitat Technological Center, Circular Economy & Decarbonization Department, 08225, Terrassa, Barcelona, Spain
| | | | | | | |
Collapse
|
3
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Mendoza-Chávez CE, Mostafazadeh AK, Drogui P, Buelna-Acedo G, Ulloa-Mercado RG, Leyva-Soto LA, Serrano-Palacios D, Rentería-Méxia A, Díaz-Tenorio LM, Gortáres-Moryoqui P. Evaluation of different operational conditions in a microbial electrolysis cell inoculated with a pure culture of Shewanella oneidensis for hydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34609-8. [PMID: 39106009 DOI: 10.1007/s11356-024-34609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Hydrogen is a promising alternative to meet the world's energy demand in the future because of its energetic characteristics. Microbial electrolysis cell (MEC) produces hydrogen from organic matter using exoelectrogenic bacteria. Shewanella oneidensis stands out for having the capacity to produce hydrogen using different electron transfer mechanisms. The present research aims to evaluate the hydrogen production efficiency in a MEC inoculated with a pure culture of S. oneidensis in different operational conditions. Since the use of a catalyst accounts for most of the MEC cost, no catalyst was used for anode or cathode. Experiments were performed in semi-continuous and batch mode using different electrodes, voltages applied, and medium in aerobic and anaerobic conditions. The highest hydrogen production rate (HPR) was 0.107 m3 of H2/m3day obtained in a semi-continuous experiment using graphite plates and stainless steel electrodes. In batch experiments, a HPR occurred at 0.7 V, with a value of 0.048 m3 of H2/m3day versus 0.037 m3 of H2/m3day with 0.9 V. HPR was higher with carbon felt electrode (0.056 m3 of H2/m3day). However, current density dropped after 38 h, with carbon felt electrodes, and did not recover. Results of the present research showed that the MEC using a pure culture of S. oneidensis can be considered an alternative for hydrogen production without using a catalyst. Also, S. oneidensis produced hydrogen in both anaerobic and aerobic conditions with low methane production. Optimization can be proposed to improve hydrogen production based on the operational conditions tested in these experiments.
Collapse
Affiliation(s)
- Claudia Erika Mendoza-Chávez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación E Innovación en Biotecnologíaa, Agropecuaria y Ambiental), 5 de Febrero 818 Sur , C.P 85000, Ciudad Obregón, Sonora, México
| | - Ali Khosravanipour Mostafazadeh
- Centre Eau, Terre Et Environnement (INRS-ETE), Institut National de La Recherche Scientifique, Université du Québec, 490 Rue de La Couronne, Québec, QC, G1K 9A9, Canada
| | - Patrick Drogui
- Centre Eau, Terre Et Environnement (INRS-ETE), Institut National de La Recherche Scientifique, Université du Québec, 490 Rue de La Couronne, Québec, QC, G1K 9A9, Canada
| | - Gerardo Buelna-Acedo
- Centre Eau, Terre Et Environnement (INRS-ETE), Institut National de La Recherche Scientifique, Université du Québec, 490 Rue de La Couronne, Québec, QC, G1K 9A9, Canada
| | - Ruth Gabriela Ulloa-Mercado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación E Innovación en Biotecnologíaa, Agropecuaria y Ambiental), 5 de Febrero 818 Sur , C.P 85000, Ciudad Obregón, Sonora, México
| | - Luis Alonso Leyva-Soto
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación E Innovación en Biotecnologíaa, Agropecuaria y Ambiental), 5 de Febrero 818 Sur , C.P 85000, Ciudad Obregón, Sonora, México
- Programa Investigadoras e Investigadores por México, CONAHCYT, Av. Insurgentes Sur 1582, 03940, Ciudad de México, México
| | - Denisse Serrano-Palacios
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (Laboratorio de Investigación en Ingeniería Química y Alimentos. Antonio Caso S/N y E. Kino, Colonia Villa ITSON, C.P. 85130, Ciudad Obregón, Sonora, México
| | - Ana Rentería-Méxia
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación E Innovación en Biotecnologíaa, Agropecuaria y Ambiental), 5 de Febrero 818 Sur , C.P 85000, Ciudad Obregón, Sonora, México
| | - Lourdes Mariana Díaz-Tenorio
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación E Innovación en Biotecnologíaa, Agropecuaria y Ambiental), 5 de Febrero 818 Sur , C.P 85000, Ciudad Obregón, Sonora, México
| | - Pablo Gortáres-Moryoqui
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (Centro de Investigación E Innovación en Biotecnologíaa, Agropecuaria y Ambiental), 5 de Febrero 818 Sur , C.P 85000, Ciudad Obregón, Sonora, México.
| |
Collapse
|
5
|
Nwanebu E, Jezernik M, Lawson C, Bruant G, Tartakovsky B. Impact of cathodic pH and bioaugmentation on acetate and CH 4 production in a microbial electrosynthesis cell. RSC Adv 2024; 14:22962-22973. [PMID: 39086992 PMCID: PMC11290334 DOI: 10.1039/d4ra03906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
This study compares carbon dioxide conversion in carbonate-fed microbial electrosynthesis (MES) cells operated at low (5.3), neutral (7) and high (8) pH levels and inoculated either with wild-type or bioaugmented mixed microbial populations. Two 100 mL (cathode volume) MES cells inoculated with anaerobic digester sludge were operated with a continuous supply of carbonate solution (5 g L-1 as CO3 2-). Acetate production was highest at low pH, however CH4 production still persisted, possibly due to pH gradients within the cathodic biofilm, resulting in acetate and CH4 volumetric (per cathode compartment volume) production rates of 1.0 ± 0.1 g (Lc d)-1 and 0.84 ± 0.05 L (Lc d)-1, respectively. To enhance production of carboxylic acids, four strains of acetogenic bacteria (Clostridium carboxidivorans, Clostridium ljungdahlii, Clostridium autoethanogenum, and Eubacterium limosum) were added to both MES cells. In the bioaugmented MES cells, acetate production increased to 2.0 g (Lc d)-1. However, production of other carboxylic acids such as butyrate and caproate was insignificant. Furthermore, 16S rRNA gene sequencing of cathodic biofilm and suspended biomass suggested a low density of introduced acetogenic bacteria implying that selective pressure rather than bioaugmentation led to improved acetate production.
Collapse
Affiliation(s)
- Emmanuel Nwanebu
- Energy, Mining and Environment Research Centre, National Research Council Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Mara Jezernik
- Department of Chemical Engineering & Applied Chemistry, University of Toronto Toronto Canada
| | - Christopher Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto Toronto Canada
| | - Guillaume Bruant
- Energy, Mining and Environment Research Centre, National Research Council Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Boris Tartakovsky
- Energy, Mining and Environment Research Centre, National Research Council Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| |
Collapse
|
6
|
Palacios PA, Philips J, Bentien A, Kofoed MVW. Relevance of extracellular electron uptake mechanisms for electromethanogenesis applications. Biotechnol Adv 2024; 73:108369. [PMID: 38685440 DOI: 10.1016/j.biotechadv.2024.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Electromethanogenesis has emerged as a biological branch of Power-to-X technologies that implements methanogenic microorganisms, as an alternative to chemical Power-to-X, to convert electrical power from renewable sources, and CO2 into methane. Unlike biomethanation processes where CO2 is converted via exogenously added hydrogen, electromethanogenesis occurs in a bioelectrochemical set-up that combines electrodes and microorganisms. Thereby, mixed, or pure methanogenic cultures catalyze the reduction of CO2 to methane via reducing equivalents supplied by a cathode. Recent advances in electromethanogenesis have been driven by interdisciplinary research at the intersection of microbiology, electrochemistry, and engineering. Integrating the knowledge acquired from these areas is essential to address the specific challenges presented by this relatively young biotechnology, which include electron transfer limitations, low energy and product efficiencies, and reactor design to enable upscaling. This review approaches electromethanogenesis from a multidisciplinary perspective, putting emphasis on the extracellular electron uptake mechanisms that methanogens use to obtain energy from cathodes, since understanding these mechanisms is key to optimize the electrochemical conditions for the development of these systems. This work summarizes the direct and indirect extracellular electron uptake mechanisms that have been elucidated to date in methanogens, along with the ones that remain unsolved. As the study of microbial corrosion, a similar bioelectrochemical process with Fe0 as electron source, has contributed to elucidate different mechanisms on how methanogens use solid electron donors, insights from both fields, biocorrosion and electromethanogenesis, are combined. Based on the repertoire of mechanisms and their potential to convert CO2 to methane, we conclude that for future applications, electromethanogenesis should focus on the indirect mechanism with H2 as intermediary. By summarizing and linking the general aspects and challenges of this process, we hope that this review serves as a guide for researchers working on electromethanogenesis in different areas of expertise to overcome the current limitations and continue with the optimization of this promising interdisciplinary technology.
Collapse
Affiliation(s)
- Paola Andrea Palacios
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark.
| | - Jo Philips
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark
| | - Anders Bentien
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, Aarhus N, 8200 Aarhus, Denmark
| | - Michael Vedel Wegener Kofoed
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark
| |
Collapse
|
7
|
Hu W, Zheng S, Wang J, Lu X, Han Y, Wang J, Zhen G. Optimizing bioelectromethanosynthesis of CO 2 and membrane fouling mitigation in MECs via in-situ biogas recirculation. CHEMOSPHERE 2024; 358:142119. [PMID: 38697567 DOI: 10.1016/j.chemosphere.2024.142119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.
Collapse
Affiliation(s)
- Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai, 200062, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
8
|
Qi X, Jia X, Li M, Chen W, Hou J, Wei Y, Fu S, Xi B. Enhancing CH 4 production in microbial electrolysis cells: Optimizing electric field via carbon cathode resistivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170992. [PMID: 38365016 DOI: 10.1016/j.scitotenv.2024.170992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Microbial electrolysis cells (MECs) are increasingly recognized as a promising technology for converting CO2 to CH4, offering the dual benefits of energy recovery from organic wastewater and CO2 emission reduction. A critical aspect of this technology is the enhancement of the electron-accepting capacity of the methanogenic biocathode to improve CH4 production efficiency. This study demonstrates that adjusting the cathode resistivity is an effective way to control the electric field intensity, thereby enhancing the electron accepting capacity and CH4 production. By maintaining the electric field intensity within approximately 8.50-10.83 mV·cm-1, the CH4 yield was observed to increase by up to two-fold. The improvement in CH4 production under optimized electric field conditions was attributed to the enhancement of the direct accepting capacity of the biocathode. This enhancement was primarily due to an increase in the relative abundance of Methanosaeta by approximately 10 % and an up to 83.78 % rise in the electron-accepting capacity of the extracellular polymeric substance. These insights offer a new perspective on the operation of methanogenic biocathodes and propose a novel biocathode construction methodology based on these findings, thus contributing to the enhancement of MEC efficiency.
Collapse
Affiliation(s)
- Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Wangmi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yufang Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
9
|
Gharbi R, Omanovic S, Hrapovic S, Nwanebu E, Tartakovsky B. The Effect of Bismuth and Tin on Methane and Acetate Production in a Microbial Electrosynthesis Cell Fed with Carbon Dioxide. Molecules 2024; 29:462. [PMID: 38257375 PMCID: PMC10821527 DOI: 10.3390/molecules29020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This study investigates the impacts of bismuth and tin on the production of CH4 and volatile fatty acids in a microbial electrosynthesis cell with a continuous CO2 supply. First, the impact of several transition metal ions (Ni2+, Fe2+, Cu2+, Sn2+, Mn2+, MoO42-, and Bi3+) on hydrogenotrophic and acetoclastic methanogenic microbial activity was evaluated in a series of batch bottle tests incubated with anaerobic sludge and a pre-defined concentration of dissolved transition metals. While Cu is considered a promising catalyst for the electrocatalytic conversion of CO2 to short chain fatty acids such as acetate, its presence as a Cu2+ ion was demonstrated to significantly inhibit the microbial production of CH4 and acetate. At the same time, CH4 production increased in the presence of Bi3+ (0.1 g L-1) and remained unchanged at the same concentration of Sn2+. Since Sn is of interest due to its catalytic properties in the electrochemical CO2 conversion, Bi and Sn were added to the cathode compartment of a laboratory-scale microbial electrosynthesis cell (MESC) to achieve an initial concentration of 0.1 g L-1. While an initial increase in CH4 (and acetate for Sn2+) production was observed after the first injection of the metal ions, after the second injection, CH4 production declined. Acetate accumulation was indicative of the reduced activity of acetoclastic methanogens, likely due to the high partial pressure of H2. The modification of a carbon-felt electrode by the electrodeposition of Sn metal on its surface prior to cathode inoculation with anaerobic sludge showed a doubling of CH4 production in the MESC and a lower concentration of acetate, while the electrodeposition of Bi resulted in a decreased CH4 production.
Collapse
Affiliation(s)
- Rihab Gharbi
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada
| | - Sabahudin Hrapovic
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Emmanuel Nwanebu
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Boris Tartakovsky
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
10
|
Chen G, Wang R, Sun M, Chen J, Iyobosa E, Zhao J. Carbon dioxide reduction to high-value chemicals in microbial electrosynthesis system: Biological conversion and regulation strategies. CHEMOSPHERE 2023; 344:140251. [PMID: 37769909 DOI: 10.1016/j.chemosphere.2023.140251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Large emissions of atmospheric carbon dioxide (CO2) are causing climatic and environmental problems. It is crucial to capture and utilize the excess CO2 through diverse methods, among which the microbial electrosynthesis (MES) system has become an attractive and promising technology to mitigate greenhouse effects while reducing CO2 to high-value chemicals. However, the biological conversion and metabolic pathways through microbial catalysis have not been clearly elucidated. This review first introduces the main acetogenic bacteria for CO2 reduction and extracellular electron transfer mechanisms in MES. It then intensively analyzes the CO2 bioconversion pathways and carbon chain elongation processes in MES, together with energy supply and utilization. The factors affecting MES performance, including physical, chemical, and biological aspects, are summarized, and the strategies to promote and regulate bioconversion in MES are explored. Finally, challenges and perspectives concerning microbial electrochemical carbon sequestration are proposed, and suggestions for future research are also provided. This review provides theoretical foundation and technical support for further development and industrial application of MES for CO2 reduction.
Collapse
Affiliation(s)
- Gaoxiang Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Rongchang Wang
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
| | - Maoxin Sun
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jie Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Eheneden Iyobosa
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jianfu Zhao
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| |
Collapse
|
11
|
Kambara H, Dinh HTT, Matsushita S, Aoi Y, Kindaichi T, Ozaki N, Ohashi A. New microbial electrosynthesis system for methane production from carbon dioxide coupled with oxidation of sulfide to sulfate. J Environ Sci (China) 2023; 125:786-797. [PMID: 36375960 DOI: 10.1016/j.jes.2022.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrosynthesis system (MES) is a promising method that can use carbon dioxide, which is a greenhouse gas, to produce methane which acts as an energy source, without using organic substances. However, this bioelectrical reduction reaction can proceed at a certain high applied voltage when coupled with water oxidation in the anode coated with metallic catalyst. When coupled with the oxidation of HS- to SO42-, methane production is thermodynamically more feasible, thus implying its production at a considerably lower applied voltage. In this study, we demonstrated the possibility of electrotrophic methane production coupled with HS- oxidation in a cost-effective bioanode chamber in the MES without organic substrates at a low applied voltage of 0.2 V. In addition, microbial community analyses of biomass enriched in the bioanode and biocathode were used to reveal the most probable pathway for methane production from HS- oxidation. In the bioanode, electroautotrophic SO42- production accompanied with electron donation to the electrode is performed mainly by the following two steps: first, incomplete sulfide oxidation to sulfur cycle intermediates (SCI) is performed; then the produced SCI are disproportionated to HS- and SO42-. In the biocathode, methane is produced mainly via H2 and acetate by electron-accepting syntrophic bacteria, homoacetogens, and acetoclastic archaea. Here, a new eco-friendly MES with biological H2S removal is established.
Collapse
Affiliation(s)
- Hiromi Kambara
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Ha T T Dinh
- Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, 236 Le Van Sy, 1 Ward, Tan Binh District, Ho Chi Minh City, Vietnam
| | - Shuji Matsushita
- Agricultural Technology Research Center, Hiroshima Prefectural Technology Research Institute, 6869, Hara, Hachihonmatsu, Higashihiroshima, Hiroshima 739-0151, Japan
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
| |
Collapse
|
12
|
Lekshmi GS, Bazaka K, Ramakrishna S, Kumaravel V. Microbial electrosynthesis: carbonaceous electrode materials for CO 2 conversion. MATERIALS HORIZONS 2023; 10:292-312. [PMID: 36524420 DOI: 10.1039/d2mh01178f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microbial electrosynthesis (MES) is a sustainable approach to address greenhouse gas (GHG) emissions using anthropogenic carbon dioxide (CO2) as a building block to create clean fuels and highly valuable chemicals. The efficiency of MES-based CO2 conversion is closely related to the performance of electrode material and, in particular, the cathode for which carbonaceous materials are frequently used. Compared to expensive metal electrodes, carbonaceous materials are biocompatible with a high specific surface area, wide range of possible morphologies, and excellent chemical stability, and their use can maximize the growth of bacteria and enhance electron transfer rates. Examples include MES cathodes based on carbon nanotubes, graphene, graphene oxide, graphite, graphite felt, graphitic carbon nitride (g-C3N4), activated carbon, carbon felt, carbon dots, carbon fibers, carbon brushes, carbon cloth, reticulated vitreous carbon foam, MXenes, and biochar. Herein, we review the state-of-the-art MES, including thermodynamic and kinetic processes that underpin MES-based CO2 conversion, as well as the impact of reactor type and configuration, selection of biocompatible electrolytes, product selectivity, and the use of novel methods for stimulating biomass accumulation. Specific emphasis is placed on carbonaceous electrode materials, their 3D bioprinting and surface features, and the use of waste-derived carbon or biochar as an outstanding material for further improving the environmental conditions of CO2 conversion using carbon-hungry microbes and as a step toward the circular economy. MES would be an outstanding technique to develop rocket fuels and bioderived products using CO2 in the atmosphere for the Mars mission.
Collapse
Affiliation(s)
- G S Lekshmi
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz 90-924, Poland.
| | - Kateryna Bazaka
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanofibers and Nanotechnology, National University of Singapore, 119077, Singapore
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz 90-924, Poland.
| |
Collapse
|
13
|
Wang Z, Sun C, Zhou Y, Yu Q, Xu X, Zhao Z, Zhang Y. Anaerobic ammonium oxidation driven by dissimilatory iron reduction in autotrophic Anammox consortia. BIORESOURCE TECHNOLOGY 2022; 364:128077. [PMID: 36216281 DOI: 10.1016/j.biortech.2022.128077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Feammox has been applied to wastewater biological nitrogen removal. However, few studies have reported that Fe(III)(hydr)oxides induced Anammox consortia to remove NH4+ via the Feammox pathway. In this study, Fe(OH)3 was added to Anammox systems to investigate its effect on nitrogen removal via Feammox. The specific Anammox activity increased by 39 % by Fe(OH)3. Ammonia oxidation was observed to occur along with Fe(III) reduction and Fe(II) generation, which was further confirmed by the isotope test with feeding 15NH4+-N to detect 30N2. The cyclic voltammetry test showed that electron-storage capacity of Anammox sludge increased with Fe(OH)3. In situ Fourier transform infrared spectroscopy suggested that Fe(OH)3 enhanced the polarization of functional groups of outer membrane cytochrome of Anammox consortia to benefit extracellular electron transfer. This study demonstrated that Fe(OH)3 could induce Anammox consortia to perform extracellular respiration to enhance NH4+-N removal in the Anammox sludge system.
Collapse
Affiliation(s)
- Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
14
|
Qi X, Jia X, Wang Y, Xu P, Li M, Xi B, Zhao Y, Zhu Y, Meng F, Ye M. Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis. BIORESOURCE TECHNOLOGY 2022; 358:127385. [PMID: 35636677 DOI: 10.1016/j.biortech.2022.127385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The rapid startup of carbon dioxide reduction-methanogenic microbial electrosynthesis is crucial for its industrial application, and the development of cathode biofilm is the key to its industrialization. Based on the new discovery that biofilm formed by placing graphite felt in an anaerobic reactor was electroactive, with strong direct electron transfer and methanogenesis ability (24.52 mL/L/d), a new startup method was developed. The startup time was shortened by at least 20 days and charge transfer resistance was reduced by 4.45-10.78 times than common startup methods (inoculating cathode effluent or granular sludge into the cathode chamber). The new method enriched electroactive bacteria. Methanobacterium and Methanosaeta accounted for 62.04% and 34.96%, respectively. The common methods inoculating cathode effluent or granular sludge enriched hydrogenotrophic microorganisms (>95%) or Methanosaeta (54.10%) due to the local environments of cathode. This new rapid and easy startup method may support the scale-up of microbial electrosynthesis.
Collapse
Affiliation(s)
- Xuejiao Qi
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuan Jia
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pei Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujiao Zhao
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yusen Zhu
- Key Laboratory of Cleaner Production, Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Gomez Vidales A, Omanovic S, Li H, Hrapovic S, Tartakovsky B. Evaluation Of Biocathode Materials For Microbial Electrosynthesis Of Methane And Acetate. Bioelectrochemistry 2022; 148:108246. [DOI: 10.1016/j.bioelechem.2022.108246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
|
16
|
Dinh HTT, Kambara H, Matsushita S, Aoi Y, Kindaichi T, Ozaki N, Ohashi A. Biological methane production coupled with sulfur oxidation in a microbial electrosynthesis system without organic substrates. J Environ Sci (China) 2022; 116:68-78. [PMID: 35219426 DOI: 10.1016/j.jes.2021.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 06/14/2023]
Abstract
Methane is produced in a microbial electrosynthesis system (MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions. In this study, we demonstrated that electrotrophic methane production at the biocathode was achieved even at a very low voltage of 0.1 V in an MES, in which abiotic HS- oxidized to SO42- at the anodic carbon-cloth surface coated with platinum powder. In addition, microbial community analysis revealed the most probable pathway for methane production from electrons. First, electrotrophic H2 was produced by syntrophic bacteria, such as Syntrophorhabdus, Syntrophobacter, Syntrophus, Leptolinea, and Aminicenantales, with the direct acceptance of electrons at the biocathode. Subsequently, most of the produced H2 was converted to acetate by homoacetogens, such as Clostridium and Spirochaeta 2. In conclusion, the majority of the methane was indirectly produced by a large population of acetoclastic methanogens, namely Methanosaeta, via acetate. Further, hydrogenotrophic methanogens, including Methanobacterium and Methanolinea, produced methane via H2.
Collapse
Affiliation(s)
- Ha T T Dinh
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan; Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, 236 Le Van Sy, 1 Ward, Tan Binh District, Ho Chi Minh City, Viet Nam
| | - Hiromi Kambara
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Shuji Matsushita
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan; Agricultural Technology Research Center, Hiroshima Prefectural Technology Research Institute, 6869, Hara, Hachihonmatsu, Higashihiroshima, Hiroshima 739-0151, Japan
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan.
| |
Collapse
|
17
|
Gao T, Zhang H, Xu X, Teng J. Mutual effects of CO 2 absorption and H 2-mediated electromethanogenesis triggering efficient biogas upgrading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151732. [PMID: 34826488 DOI: 10.1016/j.scitotenv.2021.151732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion coupled with bioelectrochemical system (BES) is a promising approach for biogas upgrading with low energy input. However, the alkalinity generation from electromethanogenesis is invariably ignored which could serve as a potential assistant for CO2 removal through the transformation into dissolved inorganic carbon (DIC). Herein, a novel bioelectrochemical CO2 conversion in the methanogenic BES was proposed based on active CO2 capture and in-situ microbial utilization. It was found that the BES using a stainless steel/carbon felt hybrid biocathode (BES-SSCF reactor) achieved a CH4 yield of 0.33 ± 0.03 LCH4/gCODremoval and increased CH4 production rate by 28.3% of BES-CF reactor at 1.0 V applied voltage. As the experiment progressed, CH4 content increased to 93.1% and CO2 content in the upgraded biogas maintained at below 3%. The continuous proton consumption from H2 evolution reaction in the hybrid biocathode was capable of creating a slightly alkaline condition in the BES-SSCF reactor and thereby the CO2 capture as bicarbonate was enhanced through endogenous alkalinity absorption. Microbial community analysis revealed that significant enrichment of Methanobacterium and Methanosarcina at the BES-SSCF cathodic biofilm was favorable for bicarbonate reduction into CH4 via establishment of H2-mediated electron transfer. Consequently, the remained CO2 and DIC only accounted for 12% of total carbon in the BES-SSCF reactor and the high conversion rate of CO2 to CH4 (82.3%) was achieved. These results unraveled an innovative CO2 utilization mechanism integrating CO2 absorption with H2-mediated electromethanogenesis.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.
| | - Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
18
|
Thanarasu A, Periyasamy K, Subramanian S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. CHEMOSPHERE 2022; 287:131886. [PMID: 34523450 DOI: 10.1016/j.chemosphere.2021.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In the foreseeable future, renewable energy generation from electromethanogenesis to be more cost-effective energy. Electromethanogenesis system is a recent and efficient CO2 to methane technology to upgrade biogas to 100% methane for power generation. And this can be attained through by integrating anaerobic digestion with microbial electrolysis system. Microbial electrolysis system can able to support carbon reduction on cathode and oxidation on anode by CO2 capture thereby provides more CH4 production from an integrated anaerobic digestion system. Scale-up the recent advance technique of microbial electrolysis system in the anaerobic digestion process for 100% methane production for power generation is need of the hour. The overall objective of this review is to facilitate the recent technology of microbial electrolysis system in the anaerobic digestion process. At first, the function of electromethanogenesis system and innovative integrated design method are outlined. Secondly, different external parameters such as applied voltage, operating temperature, pH etc are examined for the significance on process optimization. Eventually, electrode selections, electrode spacing, surface chemistry and surface area are critically reviewed for the scale-up considerations of integration process.
Collapse
Affiliation(s)
- Amudha Thanarasu
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Karthik Periyasamy
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India.
| |
Collapse
|
19
|
Zhao J, Li Y, Dong R. Recent progress towards in-situ biogas upgrading technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149667. [PMID: 34426339 DOI: 10.1016/j.scitotenv.2021.149667] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Yu Li
- College of Engineering, China Agricultural University, Qinghuadonglu No.17, 100083 Beijing, China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Qinghuadonglu No.17, 100083 Beijing, China.
| |
Collapse
|
20
|
Ning X, Lin R, O'Shea R, Wall D, Deng C, Wu B, Murphy JD. Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. iScience 2021; 24:102998. [PMID: 34522851 PMCID: PMC8426204 DOI: 10.1016/j.isci.2021.102998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC-AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.
Collapse
Affiliation(s)
- Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
- Corresponding author
| | - Richard O'Shea
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - David Wall
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Chen Deng
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Benteng Wu
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Jerry D. Murphy
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| |
Collapse
|
21
|
Empower C1: Combination of Electrochemistry and Biology to Convert C1 Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:213-241. [PMID: 34518909 DOI: 10.1007/10_2021_171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The idea to somehow combine electrical current and biological systems is not new. It was subject of research as well as of science fiction literature for decades. Nowadays, in times of limited resources and the need to capture greenhouse gases like CO2, this combination gains increasing interest, since it might allow to use C1 compounds and highly oxidized compounds as substrate for microbial production by "activating" them with additional electrons. In this chapter, different possibilities to combine electrochemistry and biology to convert C1 compounds into useful products will be discussed. The chapter first shows electrochemical conversion of C1 compounds, allowing the use of the product as substrate for a subsequent biosynthesis in uncoupled systems, further leads to coupled systems of biology and electrochemical conversion, and finally reaches the discipline of bioelectrosynthesis, where electrical current and C1 compounds are directly converted by microorganisms or enzymes. This overview will give an idea about the potentials and challenges of combining electrochemistry and biology to convert C1 molecules.
Collapse
|
22
|
Gomez Vidales A, Bruant G, Omanovic S, Tartakovsky B. Carbon dioxide conversion to C1 - C2 compounds in a microbial electrosynthesis cell with in situ electrodeposition of nickel and iron. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Cheng J, Dong H, Zhang H, Yuan L, Li H, Yue L, Hua J, Zhou J. Improving CH 4 production and energy conversion from CO 2 and H 2 feedstock gases with mixed methanogenic community over Fe nanoparticles. BIORESOURCE TECHNOLOGY 2020; 314:123799. [PMID: 32673781 DOI: 10.1016/j.biortech.2020.123799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
To achieve methanogenic community optimization and improve the conversion efficiency of CO2 to CH4, Fe nanoparticles were used to promote the Methanothermobacter abundance in methanogens, which significantly increased the conversion efficiency of CO2 and H2 feedstock gases to CH4 product. High-throughput 16S rRNA gene sequencing analysis revealed that Methanothermobacter abundance markedly increased from 7 to 16% when the Fe nanoparticles concentration increased from 0 to 1.5 g/LR (the working volume in the bioreactor). Therefore, the CH4 yield significantly promoted from 0.105 to 0.186 L/LR. However, when the Fe nanoparticles concentration was further increased to 2 g/LR, methanogenesis was inhibited due to toxic effects. The electron transfer constant kapp of anaerobic sludge increased by 32.8-fold to 5.77 × 10-2 s-1 when the Fe nanoparticles concentration increased from 0 to 1.5 g/LR, which significantly promoted carbon conversion efficiency from 52.9 to 92.9% and energy conversion efficiency from 46.3 to 76.9%.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Haiquan Dong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Haihua Zhang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Luyun Yuan
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Hui Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Liangchen Yue
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junjie Hua
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Zhou R, Zhou S, He C. Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2020; 307:123198. [PMID: 32217438 DOI: 10.1016/j.biortech.2020.123198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Three materials including stainless steel woven mesh (SSM), nickel foam (NF) and carbon cloth (CC) were conducted as cathode in Cd(II)-reduced microbial electrolysis cells (MECs), respectively. By using electrode potential slope (EPS) method, the experimental open circuit potentials of three cathodes were similar, while the SSM cathode showed the smallest resistance (6 ± 1 mΩ m2), following by NF cathode (18 ± 2 mΩ m2) and CC cathode (32 ± 5 mΩ m2). These values were analyzed to predicte higher current density and more positive cathode potential in the MEC with SSM cathode under subsequent operating conditions. Electrochemical performance was more likely to be limited by current density than cathode potential. Accordingly, the MEC with SSM cathode obtained better system performance than that with other cathodes. This study further expands the application of EPS method that quantitatively evaluating and effectively selecting cathode materials for better system performance in Cd(II)-reduced MECs.
Collapse
Affiliation(s)
- Ruikang Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Chunqiu He
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
25
|
Li J, Li Z, Xiao S, Fu Q, Kobayashi H, Zhang L, Liao Q, Zhu X. Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Combined energy storage and methane bioelectrosynthesis from carbon dioxide in a microbial electrosynthesis system. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Yin Q, Wu G. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnol Adv 2019; 37:107443. [DOI: 10.1016/j.biotechadv.2019.107443] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/23/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
28
|
Zakaria BS, Dhar BR. Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. BIORESOURCE TECHNOLOGY 2019; 289:121738. [PMID: 31300305 DOI: 10.1016/j.biortech.2019.121738] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Electro-methanogenesis represents an emerging bio-methane production pathway that can be achieved through integrating microbial electrolysis cell (MEC) with conventional anaerobic digester (AD). Since 2009, a significant number of publications have reported superior methane productivity and kinetics from MEC-AD integrated systems. The overall objective of this review is to communicate the recent advances towards promoting electro-methanogenesis in the anaerobic digestion process. Firstly, the electro-methanogenesis pathways and functional roles of key microbial members are summarized. Secondly, various extrinsic process parameters, such as applied voltage/potential, pH, and temperature are discussed with emphasis on process optimization. Moreover, available methods for the inoculation and start-up of MEC-AD process are critically reviewed. Finally, system design and scale-up considerations, such as the selection of electrode materials, surface area and surface chemistry of electrode materials, and electrode spacing are summarized.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
29
|
Enzmann F, Stöckl M, Gronemeier D, Holtmann D. Insights in the anode chamber influences on cathodic bioelectromethanogenesis - systematic comparison of anode materials and anolytes. Eng Life Sci 2019; 19:795-804. [PMID: 32624972 PMCID: PMC6999415 DOI: 10.1002/elsc.201900126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/18/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023] Open
Abstract
Cathode and catholyte are usually optimized to improve microbial electrosynthesis process, whereas the anodic counter reaction was not systematically investigated and optimized for these applications yet. Nevertheless, the anolyte and especially the anode material can limit the cathodic bioelectrochemical process. This paper compares for the first time the performance of different anode materials as counter electrodes for a cathodic bioelectrochemical process, the bioelectromethanogenesis. It was observed that depending on the anode material the cathodic methane production varies from 0.96 µmol/d with a carbon fabric anode to 25.44 µmol/d with a carbon felt anode of the same geometrical surface area. The used anolyte also affected the methane production rate at the cathode. Especially, the pH of the anolyte showed an impact on the system; an anolyte with pH 5 produced up to 2.0 times more methane compared to one with pH 8.5. The proton availability is discussed as one reason for this effect. Although some of the measured effects cannot be explained completely so far this study advises researchers to strongly consider the anode impact during process development and optimization of a cathodic bioelectrochemical synthesis process.
Collapse
Affiliation(s)
| | - Markus Stöckl
- DECHEMA Research Institute, Electrochemistry Frankfurt am Main Germany
| | - Denise Gronemeier
- DECHEMA Research Institute, Industrial Biotechnology Frankfurt am Main Germany
| | - Dirk Holtmann
- DECHEMA Research Institute, Industrial Biotechnology Frankfurt am Main Germany.,Institute of Bioprocess Engineering and Pharmaceutical Technology University of Applied Sciences MIttelhessen Giessen Germany
| |
Collapse
|
30
|
Wang D, Li Y, Zhuang H, Yi X, Yang F, Han H. Direct current triggering enhanced anaerobic treatment of acetyl pyrimidine-containing wastewater in up-flow anaerobic sludge blanket coupled with bioelectrocatalytic system. CHEMOSPHERE 2019; 231:457-467. [PMID: 31151005 DOI: 10.1016/j.chemosphere.2019.05.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, the novel up-flow anaerobic sludge blanket coupled with bioelectrocatalytic system (UASB-BEC) was developed with the attempt to enhance treatment of acetyl pyrimidine-containing wastewater. The results revealed that higher current applied had a positive effect on acetyl pyrimidine (AP) degradation but a negative impact could be followed by the overhigh current (>1.26 A m-3). Removal efficiencies of AP and total organic carbon (TOC) were as high as 96.3 ± 2.6% and 92.9 ± 3.2% while methane production reached up to 0.70 ± 0.03 NL-CH4 L-1-reactor d-1 at applied current of 1.26 A m-3, which were significantly higher those in control system. Moreover, high-throughput 16S rRNA gene pyrosequencing further indicated that Desulfovibrio and Methanimicrococcus species were specially enriched in suspended sludge and cathodic biofilm with current involvement. It could be reasonably speculated that enrichment of Desulfovibrio and Methanimicrococcus species could promote biotransformation of AP and final H2-depended methylotrophic methanogenesis. This study could shed light on better understanding of AP transformation in bioelectrocatalytic system and provide a valuable reference to practical application of anaerobic AP-containing wastewater treatment.
Collapse
Affiliation(s)
- Dexin Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Yangyang Li
- Department of Environmental Science and Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xuesong Yi
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Fei Yang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
31
|
Ragab A, Katuri KP, Ali M, Saikaly PE. Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community. Front Microbiol 2019; 10:1747. [PMID: 31417533 PMCID: PMC6685142 DOI: 10.3389/fmicb.2019.01747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Microbial electrosynthesis (MES) has been gaining considerable interest as the next step in the evolution of microbial electrochemical technologies. Understanding the niche biocathode environment and microbial community is critical for further developing this technology as the biocathode is key to product formation and efficiency. MES is generally operated to enrich a specific functional group (e.g., methanogens or homoacetogens) from a mixed-culture inoculum. However, due to differences in H2 and CO2 availability across the cathode surface, competition and syntrophy may lead to overall variability and significant beta-diversity within and between replicate reactors, which can affect performance reproducibility. Therefore, this study aimed to investigate the distribution and potential spatial variability of the microbial communities in MES methanogenic biocathodes. Triplicate methanogenic biocathodes were enriched in microbial electrolysis cells for 5 months at an applied voltage of 0.7 V. They were then transferred to triplicate dual-chambered MES reactors and operated at -1.0 V vs. Ag/AgCl for six batches. At the end of the experiment, triplicate samples were taken at different positions (top, center, bottom) from each biocathode for a total of nine samples for total biomass protein analysis and 16S rRNA gene amplicon sequencing. Microbial community analyses showed that the biocathodes were highly enriched with methanogens, especially the hydrogenotrophic methanogen family Methanobacteriaceae, Methanobacterium sp., and the mixotrophic Methanosarcina sp., with an overall core community representing > 97% of sequence reads in all samples. There was no statistically significant spatial variability (p > 0.05) observed in the distribution of these communities within and between the reactors. These results suggest deterministic community assembly and indicate the reproducibility of electromethanogenic biocathode communities, with implications for larger-scale reactors.
Collapse
Affiliation(s)
- Ala'a Ragab
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
32
|
Zhang Z, Song Y, Zheng S, Zhen G, Lu X, Kobayashi T, Xu K, Bakonyi P. Electro-conversion of carbon dioxide (CO 2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. BIORESOURCE TECHNOLOGY 2019; 279:339-349. [PMID: 30737066 DOI: 10.1016/j.biortech.2019.01.145] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Given the aggravated greenhouse effect caused by CO2 and the current energy shortage, CO2 capture and reuse has been gaining ever-increasing concerns. Microbial Electrolysis Cells (MECs) has been considered to be a promising alternative to recycle CO2 bioelectrochemically to low-carbon electrofuels such as CH4 by combining electroactive microorganisms with electrochemical stimulation, enabling both CO2 fixation and energy recovery. In spite of the numerous efforts dedicated in this field in recent years, there are still many problems that hinder CO2 bioelectroconversion technique from the scaling-up and potential industrialization. This review comprehensively summarized the working principles, extracellular electron transfers behaviors, and the critical factors limiting the wide-spread utilization of CO2 electromethanogenesis. Various characterization and electrochemical testing methods for helping to uncover the underlying mechanisms in CO2 electromethanogenesis have been introduced. In addition, future research needs for pushing forward the development of MECs technology in real-world CO2 fixation and recycling were elaborated.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| |
Collapse
|
33
|
Zhi Z, Pan Y, Lu X, Zhen G, Zhao Y, Zhu X, Xiong J, Zhao T. Electrically regulating co-fermentation of sewage sludge and food waste towards promoting biomethane production and mass reduction. BIORESOURCE TECHNOLOGY 2019; 279:218-227. [PMID: 30735931 DOI: 10.1016/j.biortech.2019.01.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Microbial electrolysis cell (MEC) was integrated into conventional anaerobic digestion (AD) system (i.e. MEC-AD) to electrochemically regulate the co-fermentation of food waste (FW) and sewage sludge (SS). Two anaerobic systems (i.e. MEC-AD, and single AD) were operated in parallel to explore the potential stimulation of electrical regulation in metabolic behaviors of FW and SS and subsequent biomethane production. The highest accumulative methane yield was achieved at an applied voltage of 0.4 V and the FW and SS ratio of 0.2:0.8, increasing by 2.8-fold than those in AD. The combined MEC-AD system mitigated N2O emission and considerably improved ammonia removal and the dewaterability of digestate, in contrast to AD. Scanning electron microscope (SEM) visualized the presence of a large number of rod-like and cocci-like electroactive microbes on the electrode surface. Electrical regulation stimulated the self-growth and proliferation of typical Methanobacterium and Methanosaeta, accordingly contributing to biomethane production greatly.
Collapse
Affiliation(s)
- Zhongxiang Zhi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Xuefeng Zhu
- School of Environmental and Material Engineering, Shanghai Second Polytechnic University, Shanghai 201209, PR China
| | - Jianying Xiong
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Tianbiao Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd, Shanghai 200120, PR China
| |
Collapse
|
34
|
Integration of Membrane Contactors and Bioelectrochemical Systems for CO2 Conversion to CH4. ENERGIES 2019. [DOI: 10.3390/en12030361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anaerobic digestion of sewage sludge produces large amounts of CO2 which contribute to global CO2 emissions. Capture and conversion of CO2 into valuable products is a novel way to reduce CO2 emissions and valorize it. Membrane contactors can be used for CO2 capture in liquid media, while bioelectrochemical systems (BES) can valorize dissolved CO2 converting it to CH4, through electromethanogenesis (EMG). At the same time, EMG process, which requires electricity to drive the conversion, can be utilized to store electrical energy (eventually coming from renewables surplus) as methane. The study aims integrating the two technologies at a laboratory scale, using for the first time real wastewater as CO2 capture medium. Five replicate EMG-BES cells were built and operated individually at 0.7 V. They were fed with both synthetic and real wastewater, saturated with CO2 by membrane contactors. In a subsequent experimental step, four EMG-BES cells were electrical stacked in series while one was kept as reference. CH4 production reached 4.6 L CH4 m−2 d−1, in line with available literature data, at a specific energy consumption of 16–18 kWh m−3 CH4 (65% energy efficiency). Organic matter was removed from wastewater at approximately 80% efficiency. CO2 conversion efficiency was limited (0.3–3.7%), depending on the amount of CO2 injected in wastewater. Even though achieved performances are not yet competitive with other mature methanation technologies, key knowledge was gained on the integrated operation of membrane contactors and EMG-BES cells, setting the base for upscaling and future implementation of the technology.
Collapse
|