1
|
Ewuzie RN, Genza JR, Abdullah AZ. Review of the application of bimetallic catalysts coupled with internal hydrogen donor for catalytic hydrogenolysis of lignin to produce phenolic fine chemicals. Int J Biol Macromol 2024; 265:131084. [PMID: 38521312 DOI: 10.1016/j.ijbiomac.2024.131084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.
Collapse
Affiliation(s)
| | - Jackson Robinson Genza
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
2
|
Li P, Ren J, Jiang Z, Huang L, Wu C, Wu W. Review on the preparation of fuels and chemicals based on lignin. RSC Adv 2022; 12:10289-10305. [PMID: 35424980 PMCID: PMC8972114 DOI: 10.1039/d2ra01341j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Lignin is by far the most abundant natural renewable aromatic polymer in nature, and its reserves are second only to cellulose. In addition to the rich carbon content, the structure of lignin contains functional groups such as benzene rings, methoxyl groups, and phenolic hydroxyl groups. Lignin degradation has become one of the high value, high quality and high efficiency methods to convert lignin, which is of great significance to alleviating the current energy shortage and environmental crisis. This article introduces the hydrolysis methods of lignin in acidic, alkaline, ionic liquids and supercritical fluids, reviews the heating rate, the source of lignin species and the effects of heating rate on the pyrolysis of lignin, and briefly describes the metal catalysis, oxidation methods such as electrochemical degradation and photocatalytic oxidation, and degradation reduction methods using hydrogen and hydrogen supply reagents. The lignin degradation methods for the preparation of fuels and chemicals are systematically summarized. The advantages and disadvantages of different methods, the selectivity under different conditions and the degradation efficiency of different catalytic combination systems are compared. In this paper, a new approach to improve the degradation efficiency is envisioned in order to contribute to the efficient utilization and high value conversion of lignin.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Zhengwei Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Lijing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China.,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
3
|
Kong J, Li L, Zeng Q, Long J, He H, Wang Y, Liu S, Li X. Production of 4-Ethylphenol from Lignin Depolymerization in a Novel Surfactant-Free Microemulsion Reactor. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juanhua Kong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lixia Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinxing Long
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingying Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Sijie Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuehui Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Sun Z, Zhang ZH, Yuan TQ, Ren X, Rong Z. Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Zhe-Hui Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Xiaohong Ren
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People’s Republic of China
| | - Zeming Rong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People’s Republic of China
| |
Collapse
|
5
|
Kong J, Li L, Zeng Q, Cai Z, Wang Y, He H, Liu S, Li X. Oxidation of organosolv lignin in a novel surfactant-free microemulsion reactor. BIORESOURCE TECHNOLOGY 2021; 321:124466. [PMID: 33321297 DOI: 10.1016/j.biortech.2020.124466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Lignin is considered as a promising substitute for fossil resources, but its efficient conversion remains a huge challenge due to the structural complexity and immiscibility with typical solvents. Herein, a series of surfactant-free microemulsion reactors comprised of n-octane, water and n-propanol were designed and their corresponding phase behaviors alongside their ability to intensify oxidative depolymerization of lignin were explored. Experimental results show that the phenolic monomer yield improves substantially (40-500 wt%) by comparison with processes performed in a single solvent. Detailed characterizations also suggest that the above intensification is rationalized by the solubilization effect of microemulsion system and directional aggregation of lignin at the microemulsion interface.
Collapse
Affiliation(s)
- Juanhua Kong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lixia Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenping Cai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingying Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Sijie Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xuehui Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. CHEMSUSCHEM 2020; 13:4296-4317. [PMID: 32662564 PMCID: PMC7540457 DOI: 10.1002/cssc.202001213] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Indexed: 05/05/2023]
Abstract
The efficient valorization of lignin could dictate the success of the 2nd generation biorefinery. Lignin, accounting for on average a third of the lignocellulosic biomass, is the most promising candidate for sustainable production of value-added phenolics. However, the structural alteration induced during lignin isolation is often depleting its potential for value-added chemicals. Recently, catalytic reductive depolymerization of lignin has appeared to be a promising and effective method for its valorization to obtain phenolic monomers. The present study systematically summarizes the far-reaching and state-of-the-art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lignin, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignin-derived monomers. Finally, the potential challenges for the future researches on the efficient valorization of lignin and possible solutions are proposed.
Collapse
Affiliation(s)
- Xudong Liu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Florent P. Bouxin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jiajun Fan
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Vitaliy L. Budarin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Changwei Hu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
| | - James H. Clark
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
7
|
Kong L, Zhang L, Gu J, Gou L, Xie L, Wang Y, Dai L. Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst. BIORESOURCE TECHNOLOGY 2020; 299:122582. [PMID: 31877480 DOI: 10.1016/j.biortech.2019.122582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Direct hydrogenolysis of Kraft lignin was catalyzed over a series of supported Ni or Re catalysts in ethanol solvent. The best results showed that the oil yield of 96.70 wt% was obtained with less char formation at 330 °C for 3 h over 5Ni-5Re/Nb2O5 catalyst. Product analysis demonstrated that the monomer yield of 35.41 wt% was given under mild condition, and low-molecular-weight aromatic alcohols were the main component in the liquid products. Ethanol was found to be more effective in H2 production and facilitated the transformation of phenolic monomers to aromatic chemicals. The results confirmed that the optimal 5Ni-5Re/Nb2O5 catalyst had superior oxophilicity and appropriate acid sites, which improved the ability to directly remove the methoxyl and hydroxyl groups of lignin-derived phenolic compounds without aromatic ring hydrogenation. In addition, the temperature, time and solvent effects on the lignin depolymerization were also investigated.
Collapse
Affiliation(s)
- Liping Kong
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Lilin Zhang
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Junlin Gu
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Le Gou
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Longfei Xie
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Yuanyuan Wang
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai 200241, People's Republic of China.
| | - Liyi Dai
- Shanghai Key Laboratory of Green Chemistry and Green Process, College of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
8
|
Birolli WG, Porto ALM, Fonseca LP. Miniemulsion in biocatalysis, a new approach employing a solid reagent and an easy protocol for product isolation applied to the aldol reaction by Rhizopus niveus lipase. BIORESOURCE TECHNOLOGY 2020; 297:122441. [PMID: 31813818 DOI: 10.1016/j.biortech.2019.122441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Miniemulsion systems presented a great potential for biocatalytic reactions. However, different limitations jeopardized the applications of this non-conventional medium. In this work, miniemulsion systems (emulsion reactors) were applied for the first time to the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by Rhizopus niveus lipase allowing a decrease in the catalyst concentration from 20 mg mL-1 to 6 mg mL-1 in comparison with organic solvents. Moreover, the yield increased from ~25% to ~65% for 48 h reactions and the enantiomeric excess increased from ~10% to ~30% for (R,S)-anti-aldol product, showing the potentiality of this non-conventional reaction medium. The advances reported in this work expands the possibilities of the miniemulsion reaction medium to a whole new level, increasing the scope to solid reagents and products, and also different reactions (biocatalytic or not) that requires pH control by buffers with a simple product isolation procedure, enabling future applications of this poorly studied reaction medium.
Collapse
Affiliation(s)
- Willian G Birolli
- São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120 São Carlos, SP, Brazil; Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Institute for Bioengineering and Biosciences, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - André L M Porto
- São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Luis P Fonseca
- Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Institute for Bioengineering and Biosciences, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
9
|
Liu S, van Muyden AP, Bai L, Cui X, Fei Z, Li X, Hu X, Dyson PJ. Metal-Sulfide Catalysts Derived from Lignosulfonate and their Efficient Use in Hydrogenolysis. CHEMSUSCHEM 2019; 12:3271-3277. [PMID: 31038822 DOI: 10.1002/cssc.201900677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Catalytic lignosulfonate valorization is hampered by the in situ liberation of sulfur that ultimately poisons the catalyst. To overcome this limitation, metal sulfide catalysts were developed that are able to cleave the C-O bonds of lignosulfonate and are resistant to sulfur poisoning. The catalysts were prepared by using the lignosulfonate substrate as a precursor to form well-dispersed carbon-supported metal (Co, Ni, Mo, CoMo, NiMo) sulfide catalysts. Following optimization of the reaction conditions employing a model substrate, the catalysts were used to generate guaiacyl monomers from lignosulfonate. The Co catalyst was able to produce 23.7 mg of 4-propylguaiacol per gram of lignosulfonate with a selectivity of 84 %. The catalysts operated in water and could be recycled and reused multiple times. Thus, it was demonstrated that an inexpensive, sulfur-tolerant catalyst based on an earth-abundant metal and lignosulfonate efficiently catalyzed the selective hydrogenolysis of lignosulfonate in water in the absence of additives.
Collapse
Affiliation(s)
- Sijie Liu
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P.R. China
| | - Antoine P van Muyden
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Lichen Bai
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xinjiang Cui
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Zhaofu Fei
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xuehui Li
- Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P.R. China
| | - Xile Hu
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Hu J, Zhang S, Xiao R, Jiang X, Wang Y, Sun Y, Lu P. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. BIORESOURCE TECHNOLOGY 2019; 279:228-233. [PMID: 30735932 DOI: 10.1016/j.biortech.2019.01.132] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Using isopropanol as an in situ hydrogen donor, catalytic transfer hydrogenolysis of lignin into monomeric phenols was studied at mild conditions. The performance of catalysts and the effects of H2, temperature, and time on depolymerization of acid extracted birch lignin (ABL) were extensively examined. Platinum-rhenium supported on titanium dioxide (PtRe/TiO2) exhibited much higher activity on disrupting CO bonds than Pd/C, HZSM-5, Pt/TiO2, and Re/TiO2. 18.71 wt% monophenols was achieved for depolymerization of ABL over PtRe/TiO2 at 240 °C for 12 h with He. 4-Propylsyringol had the highest yield of 7.48 wt%. 2D HSQC NMR analysis reveals that β-O-4 bonds have been fully disrupted during depolymerization. Addition of H2 led to less monophenols, likely due to the competitive adsorption of active sites on catalysts. Structure-reactivity analysis based on six representative lignins shows that the total yields of monophenols were highly linearly correlated with the β-O-4 contents (R2 = 0.97).
Collapse
Affiliation(s)
- Jun Hu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China; Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Shenghua Zhang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiaoxiang Jiang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Yunjun Wang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Ping Lu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| |
Collapse
|
11
|
Catalytic Transfer Hydrogenolysis Reactions for Lignin Valorization to Fuels and Chemicals. Catalysts 2019. [DOI: 10.3390/catal9010043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic biomass is an abundant renewable source of chemicals and fuels. Lignin, one of biomass main structural components being widely available as by-product in the pulp and paper industry and in the process of second generation bioethanol, can provide phenolic and aromatic compounds that can be utilized for the manufacture of a wide variety of polymers, fuels, and other high added value products. The effective depolymerisation of lignin into its primary building blocks remains a challenge with regard to conversion degree and monomers selectivity and stability. This review article focuses on the state of the art in the liquid phase reductive depolymerisation of lignin under relatively mild conditions via catalytic hydrogenolysis/hydrogenation reactions, discussing the effect of lignin type/origin, hydrogen donor solvents, and related transfer hydrogenation or reforming pathways, catalysts, and reaction conditions.
Collapse
|
12
|
Li W, Dou X, Zhu C, Wang J, Chang HM, Jameel H, Li X. Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst. BIORESOURCE TECHNOLOGY 2018; 269:346-354. [PMID: 30195227 DOI: 10.1016/j.biortech.2018.08.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel modified nickel/H-beta (Ni/DeAl-beta) catalyst, which has active acidic sites and hydrogen binding sites, was prepared and used to produce liquefied fuel from lignin. The bifunctional Ni/DeAl-beta catalyst efficiently converted kraft lignin into liquefied fuel due to the synergistic effect of aluminum Lewis acid sites and nickel hydrogen binding sites. At a nickel content of 0.6 mmol/gzeolite, the Ni/DeAl-beta catalyst gave a high liquid product yield of 88.6% at 300 °C for 36 h. Most of the liquid product was dissolved in petroleum ether (73% of 88.6%), which was mainly composed of monomeric and dimeric degradation products. Under these conditions, the higher heating values (HHV) increased from 24.9 MJ/kg for kraft lignin to 32.0 MJ/kg for the liquid product. These results demonstrated the bifunctional Ni/DeAl-beta catalyst could be an efficient catalyst for lignin to liquefied fuel conversion.
Collapse
Affiliation(s)
- Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiaomeng Dou
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China.
| | - Chaofeng Zhu
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Jindong Wang
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Hou-Min Chang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Xiaosen Li
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|