1
|
Imbrogno A, Schmidt M, Schulze A, Moreira MT, Schäfer AI. Ultrafiltration and composite microfiltration biocatalytic membrane activity and steroid hormone micropollutant degradation at environmentally relevant concentrations. WATER RESEARCH 2025; 272:122902. [PMID: 39667174 DOI: 10.1016/j.watres.2024.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Biocatalytic degradation of micropollutants has been extensively explored in both batch and membrane reactors in µg/L to mg/L concentrations and variable water compositions. The degradation of micropollutants by biocatalytic membranes at environmentally relevant concentrations of ng/L range found in natural surface water matrices has not yet been investigated, presumably because of the challenging concentration analysis. This study investigated the limitations of biocatalytic degradation of estradiol (E2) micropollutant at environmentally relevant concentrations by a biocatalytic membrane. The contributions of solute flux, hydraulic residence time (HRT) and water matrix composition on reaction kinetics, the apparent rate of disappearance (or reaction rate) and enzyme activity were examined. Two biocatalytic membranes were used: i) laccase entrapped in an ultrafiltration (UF) membrane support (namely UF-SNPs) and, ii) laccase covalently bound to the nanofiber matrix of a composite microfiltration (MF) membrane. The three main findings are reported. Firstly, the apparent rate of E2 disappearance decreases significantly by four orders of magnitude at a low micropollutant concentration of 0.1 µg/L, resulting in undetectable degradation during filtration, irrespective of the biocatalytic membrane. Secondly, the solute mass transfer and HRT control the biocatalytic degradation through the membranes resulting in different E2 removal. For the UF-SNPs membrane, a removal of 31 % is achieved only by increasing the concentration to 3000 µg/L and at a flux of 60 L/m².h (HRT of 4.5 s) due to an increase in solute flux by an order of magnitude similar to the apparent rate of disappearance. In contrast, the nano-MF membrane is ineffective in achieving biocatalytic degradation regardless of E2 concentration, as the HRT is approximately seven times lower (0.6 s) than that of the UF-SNPs, and thus insufficient for E2 to reach the catalytic site. Thirdly, the composition of the aqueous matrix plays a crucial role in the control of laccase activity irrespective of the membrane. Indeed, laccase is inactivated predominantly by chloride ions in synthetic carbonate buffer, since the typical NaCl concentration is about two orders of magnitude higher than E2 concentration. This study highlights that the slower kinetics achieved in the biocatalytic UF-SNPs and MF membranes are ineffective in removing steroid hormone micropollutants at realistic concentrations in surface water matrices. Further research is suggested to accelerate the reaction kinetics at such low concentrations and prolong the residence time within the membrane.
Collapse
Affiliation(s)
- Alessandra Imbrogno
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Schmidt
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
2
|
Yu J, Huo R, Liu W, Wen X. Chemodiversity transformation of organic matters in a full scale MBR-NF wastewater reclamation plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166246. [PMID: 37582448 DOI: 10.1016/j.scitotenv.2023.166246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Membrane bioreactor (MBR) and nanofiltration (NF) process has been attractive in wastewater reclamation, and was set as the target process in this study. Dissolved organic matter (DOM) and trace organic contaminants (TrOCs), closely associated with water safety, are noteworthy pollutants. Though the general DOM characteristics and TrOCs removal in MBR-NF reclamation process have been reported in lab-/pilot-scale experiment, the molecular characteristics of DOM revealed by high resolution mass spectrometry, and the correlation between DOM and TrOCs have been rarely studied in full-scale MBR-NF wastewater reclamation plant. In this work, biological and NF processes contributed significantly to the removal of DOM and TrOCs, while MBR filtration contributed slightly. Spectroscopic analyses revealed that DOM with higher aromaticity and lower molecular weight were more recalcitrant along the treatment. Aromatic protein-like substances were preferentially removed comparing to humic-like substances. Fourier transform ion cyclotron resonance mass spectrometry was applied to investigate DOM transformation at molecular level. DOM molecules with higher H/C and lower O/C, especially the aliphatics and peptides, were readily biodegraded into higher‑oxygenate, highly unsaturated, and aromatic compounds. The generated species mainly included condensed aromatics, polyphenols, and highly unsaturated compounds. Filtration in MBR tended to reject higher oxygenated molecules. NF effectively removed most of the DOM molecules, especially higher oxygenated molecules with low H, N and S. The residual TrOCs in the NF effluent, including sulfamethoxazole, ofloxacin, and bisphenol A, still displayed above medium environmental risk. Significant correlations were found among organic compounds, spectral indices, and peptides molecules. Positive correlation between most of the TrOCs and several DOM parameters implied that they were synchronously removed in biological and membrane filtration processes. SUVA and FI might be potential indexes in monitoring the performance of MBR-NF process in both DOM and TrOC removal. These findings would expand the understanding of DOM and TrOCs behavior in wastewater reclamation process and simplify an in-depth system monitoring.
Collapse
Affiliation(s)
- Jinlan Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ran Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Golmohammadi M, Fatemeh Musavi S, Habibi M, Maleki R, Golgoli M, Zargar M, Dumée LF, Baroutian S, Razmjou A. Molecular mechanisms of microplastics degradation: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules 2022; 12:biom12101489. [PMID: 36291698 PMCID: PMC9599273 DOI: 10.3390/biom12101489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The worldwide access to pharmaceuticals and their continuous release into the environment have raised a serious global concern. Pharmaceuticals remain active even at low concentrations, therefore their occurrence in waterbodies may lead to successive deterioration of water quality with adverse impacts on the ecosystem and human health. To address this challenge, there is currently an evolving trend toward the search for effective methods to ensure efficient purification of both drinking water and wastewater. Biocatalytic transformation of pharmaceuticals using oxidoreductase enzymes, such as peroxidase and laccase, is a promising environmentally friendly solution for water treatment, where fungal species have been used as preferred producers due to their ligninolytic enzymatic systems. Enzyme-catalyzed degradation can transform micropollutants into more bioavailable or even innocuous products. Enzyme immobilization on a carrier generally increases its stability and catalytic performance, allowing its reuse, being a promising approach to ensure applicability to an industrial scale process. Moreover, coupling biocatalytic processes to other treatment technologies have been revealed to be an effective approach to achieve the complete removal of pharmaceuticals. This review updates the state-of-the-art of the application of oxidoreductases enzymes, namely laccase, to degrade pharmaceuticals from spiked water and real wastewater. Moreover, the advances concerning the techniques used for enzyme immobilization, the operation in bioreactors, the use of redox mediators, the application of hybrid techniques, as well as the discussion of transformation mechanisms and ending toxicity, are addressed.
Collapse
|
5
|
Sousa H, Sousa CA, Simões LC, Simões M. Microalgal-based removal of contaminants of emerging concern. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127153. [PMID: 34543999 DOI: 10.1016/j.jhazmat.2021.127153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The presence of contaminants of emerging concern (CECs) in the environment has been recognized as a worldwide concern. In particular, water pollution by CECs is becoming a major global problem, which requires ongoing evaluation of water resources policies at all levels and the use of effective and innovative wastewaters treatment processes for their removal. Microalgae have been increasingly recognized as relevant for wastewater polishing, including CECs removal. These microorganisms are commonly cultivated in suspension. However, the use of planktonic microalgae for wastewater treatment has limitations in terms of microbiological contamination, process effectiveness and sustainability. The use of consortia of microalgae and bacteria represents a significant advance for sustainable wastewater polishing, particularly when the microorganisms are associated as biofilms. These immobilized mixed cultures can overcome the limitations of suspended-microalgae systems and improve the performance of the involved species for CECs removal. In addition, microalgae-bacteria based systems can offer a relevant combined effect for CECs removal and biomass production enhancement. This study reviews the advantages and advances on the use of microalgae for wastewater treatment, highlighting the potential on the use of microalgae-bacteria biofilms for CECs removal and the further biomass valorisation for third-generation biofuel production.
Collapse
Affiliation(s)
- Henrique Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia C Simões
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
6
|
Xiao P, Wu D, Wang J. Bibliometric analysis of global research on white rot fungi biotechnology for environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1491-1507. [PMID: 34355311 PMCID: PMC8341834 DOI: 10.1007/s11356-021-15787-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In recent years, white rot fungi (WRFs) have received tremendous attention as a biotechnological tool for environmental pollution control. In order to systematically and comprehensively describe the progress, trends, and hotspots of WRF biotechnology in the field of environmental pollution control, the 3967 related publications from 2003 to 2020 were collected from Web of Science Core Collection database, and the bibliometric characteristics including publication output, country, institution, journal, author, citation frequency, h-index, and research focus were evaluated by using Excel 2007, CiteSpace V, and VOSviewer. The results indicated that the number of research publications increased rapidly before 2009, but after that, the number of publications fluctuated in a certain range. China and USA were the most productive countries and the most active country in international cooperation. In this field, most authors tend to cooperate within a small group. The journal and subject category with the largest number of publications are "International Biodeterioration & Biodegradation" and "Biotechnology Applied Microbiology", respectively. The analysis of high-frequency keywords revealed that "laccase", "biodegradation", "decolorization", and "Phanerochaete chrysosporium" were the most cited terms among all publications. The pretreatment of biomass waste, decolorization of dye wastewater, and bioremediation of polluted environment are the key research directions of WRF biotechnology. Finally, the frontier topics and active authors in this research field were identified using burst detection. We believe that this bibliometric study provides a comprehensive and systematic overview and promoted the future cooperative research and knowledge exchange in this field of WRF biotechnology for environmental applications.
Collapse
Affiliation(s)
- Pengfei Xiao
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China.
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
8
|
Maurer L, Villette C, Reiminger N, Jurado X, Laurent J, Nuel M, Mosé R, Wanko A, Heintz D. Distribution and degradation trend of micropollutants in a surface flow treatment wetland revealed by 3D numerical modelling combined with LC-MS/MS. WATER RESEARCH 2021; 190:116672. [PMID: 33285453 DOI: 10.1016/j.watres.2020.116672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Conventional wastewater treatment plants are not designed to treat micropollutants; thus, for 20 years, several complementary treatment systems, such as surface flow wetlands have been used to address this issue. Previous studies demonstrate that higher residence time and low global velocities promote nutrient removal rates or micropollutant photodegradation. Nevertheless, these studies were restricted to the system limits (inlet/outlet). Therefore, detailed knowledge of water flow is crucial for identifying areas that promote degradation and optimise surface flow wetlands. The present study combines 3D water flow numerical modelling and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS/MS). Using this numerical model, validated by tracer experimental data, several velocity areas were distinguished in the wetland. Four areas were selected to investigate the waterflow influence and led to the following results: on the one hand, the number and concentration of micropollutants are independent of the waterflow, which could be due to several assumptions, such as the chronic exposure associated with a low Reynolds number; on the other hand, the potential degradation products (metabolites) were also assessed in the sludge to investigate the micropollutant biodegradation processes occurring in the wetland; micropollutant metabolites or degradation products were detected in higher proportions (both number and concentration) in lower flow rate areas. The relation to higher levels of plant and microorganism metabolites suggests higher biological activity that promotes degradation.
Collapse
Affiliation(s)
- Loïc Maurer
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Department of mechanics - Engineering science, Computer Science and Imaging Laboratory (ICube, UMR 7357), ENGEES/CNRS/INSA/University of Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France
| | - Claire Villette
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Nicolas Reiminger
- Department of mechanics - Engineering science, Computer Science and Imaging Laboratory (ICube, UMR 7357), ENGEES/CNRS/INSA/University of Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France; AIR&D, 67000, Strasbourg, France
| | - Xavier Jurado
- Department of mechanics - Engineering science, Computer Science and Imaging Laboratory (ICube, UMR 7357), ENGEES/CNRS/INSA/University of Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France; AIR&D, 67000, Strasbourg, France
| | - Julien Laurent
- Department of mechanics - Engineering science, Computer Science and Imaging Laboratory (ICube, UMR 7357), ENGEES/CNRS/INSA/University of Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France
| | - Maximilien Nuel
- Department of mechanics - Engineering science, Computer Science and Imaging Laboratory (ICube, UMR 7357), ENGEES/CNRS/INSA/University of Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France
| | - Robert Mosé
- Department of mechanics - Engineering science, Computer Science and Imaging Laboratory (ICube, UMR 7357), ENGEES/CNRS/INSA/University of Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France
| | - Adrien Wanko
- Department of mechanics - Engineering science, Computer Science and Imaging Laboratory (ICube, UMR 7357), ENGEES/CNRS/INSA/University of Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
9
|
Pramanik BK, Asif MB, Roychand R, Shu L, Jegatheesan V, Bhuiyan M, Hai FI. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. CHEMOSPHERE 2020; 260:127623. [PMID: 32668363 DOI: 10.1016/j.chemosphere.2020.127623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The global demand of lithium is rising steadily, and many industrially advanced countries may find it hard to secure an uninterrupted supply of lithium for meeting their manufacturing demands. Thus, innovative processes for lithium recovery from a wide range of natural reserves should be explored for meeting the future demands. In this study, a novel integrated approach was investigated by combining nanofiltration (NF), membrane distillation (MD) and precipitation processes for lithium recovery from salt-lake brines. Initially, the brine was filtered with an NF membrane for the separation of lithium ions (Li+) from competing ions such as Na+, K+, Ca2+ and Mg2+. The extent of permeation of metal ions by the NF membrane was governed by their hydrated ionic radii. Rejection by NF membrane was 42% for Li, 48% for Na and 61% for K, while both the divalent cations were effectively rejected (above 90%). Importantly, in the NF-permeate, Mg2+/Li+ mass ratio reduced to less than 6 (suggested for lithium recovery). The result showed that MD can enrich lithium with a concentration of 2.5 for raw brine and 5 for NF-treated brine. Following the enrichment of NF-permeate by the MD membrane, a two-stage precipitation method was used for the recovery of lithium. X-ray diffraction confirmed the precipitation of lithium as well as the formation of lithium carbonate crystals.
Collapse
Affiliation(s)
| | - Muhammad Bilal Asif
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Rajeev Roychand
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Li Shu
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | | | - Muhammed Bhuiyan
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Faisal Ibney Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
10
|
Ladole MR, Pokale PB, Patil SS, Belokar PG, Pandit AB. Laccase immobilized peroxidase mimicking magnetic metal organic frameworks for industrial dye degradation. BIORESOURCE TECHNOLOGY 2020; 317:124035. [PMID: 32871333 DOI: 10.1016/j.biortech.2020.124035] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 05/05/2023]
Abstract
In the present work, laccase was successfully immobilized in peroxidase mimicking magnetic metal organic frameworks (MMOFs) within 30 min using a facile approach. The integration of magnetic nanoparticles during synthesis significantly eases the separation of prepared biocatalyst using an external magnet. The immobilization of laccase was confirmed using different characterization techniques. The laccase@MMOFs found spherical in nature with an average particle size below 100 nm. The synthesized laccase embedded framework exhibits supermagnetic property with the saturation magnetization (Ms) of 34.12 emu/gm. The prepared bio-metallic frameworks maintain high surface area and thermal stability. The laccase@MMOFs was successfully exploited for the degradation of industrial dyes in batch and continuous mode with an average degradation efficiency of 95%. The prepared laccase structure had an excellent recyclability retaining upto 89% residual activity upto 10th cycle and can be stored at room temperature upto 30 days without any significant loss of activity.
Collapse
Affiliation(s)
- Mayur Ramrao Ladole
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Pravin Babanrao Pokale
- Department of E & TC, Priyadarshini J.L. Chaturvedi College of Engineering & Technology, Nagpur, India
| | | | | | | |
Collapse
|
11
|
Asif MB, Hou J, Price WE, Chen V, Hai FI. Removal of trace organic contaminants by enzymatic membrane bioreactors: Role of membrane retention and biodegradation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
13
|
Kanyatrakul A, Prakhongsak A, Honda R, Phanwilai S, Treesubsuntorn C, Boonnorat J. Effect of leachate effluent from activated sludge and membrane bioreactor systems with acclimatized sludge on plant seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138275. [PMID: 32408458 DOI: 10.1016/j.scitotenv.2020.138275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
This research comparatively investigates the effect of landfill leachate effluent of two biological treatment schemes on germination of Lactuca sativa and Vigna radiata. The treatment schemes are two-stage activated sludge (AS) and two-stage membrane bioreactor (MBR) systems with acclimatized seed sludge. The AS and MBR are operated under two concentrations of landfill leachate influent: moderate (condition 1) and elevated (condition 2). The results show that, under condition 1, the AS and MBR efficiently remove 80-96% of organic compounds and nutrients and 81-100% of harmful micropollutants. Under condition 2 with elevated influent concentration, MBR is more effective in biodegrading micropollutants than the AS system. The germination rate (GR) and germination seed index (GSI) of L. sativa and V. radiata germinated with AS and MBR effluent from condition 1 are 100% and 1.29-1.56. Under condition 2, the GR and GSI with AS effluent are reduced to 80% and 0.65-0.77, while those with MBR effluent are 100% and 1.27-1.38. Quantitative real-time polymerase chain reaction (qPCR) analysis indicates that the bacterial community in the MBR is more abundant than in the AS, especially ammonia oxidizing bacteria, Nitrobacter, and Nitrospira, which aid heterotrophic bacteria in biodegradation of micropollutants and promote the growth of heterotrophs. The bacterial abundance and community composition render the MBR scheme more operationally suitable for elevated landfill-leachate influent concentrations. By comparison, the MBR system is more effective in removal of micropollutants than the AS, as evidenced by higher GR and GSI. The technology also could potentially be applied to water reclamation. A lack of technological and financial resources in many developing countries nevertheless precludes the adoption of MBR despite higher pollutant removal efficiency. An alternative solution is the use of acclimatized seed sludge in AS system to enhance treatment efficiency, especially in influent with low concentrations of micropollutants. In addition, the seed germination results suggest the possibility of water reuse in agriculture.
Collapse
Affiliation(s)
- Alongkorn Kanyatrakul
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Apichai Prakhongsak
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Supaporn Phanwilai
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Jatujak, Bangkok 10900, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand.
| |
Collapse
|
14
|
Biodegradation of Acid Yellow Using Laccase Produced by Bacillus sp. Strain TR and its In-Silico Modeling of the Dye Degradation System. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10005-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Abu Al-Rub FA, Fares MM, Mohammad AR. Use of nanohybrid nanomaterials in water treatment: highly efficient removal of ranitidine. RSC Adv 2020; 10:37050-37063. [PMID: 35521255 PMCID: PMC9057075 DOI: 10.1039/d0ra05530a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022] Open
Abstract
Entire elimination of pharmaceutical drugs from waste- and domestic-waters has attracted great attention due to their potent adverse effects on human health, particularly the human immune system. Many risks have been related to the presence of different types of drugs at different concentrations in wastewater. These risks include antimicrobial resistance (AMR), endocrine action, hormonal activation of cancers, and photodegradation of drugs. In this study, new nanohybrid materials consisting of graphene oxide (GO) and oxidized carbon nanotubes (OCNTs) were developed to remove a well-known drug, namely, ranitidine that treats stomach ulcers and gastrointestinal (GI) reflux disease from aqueous solutions. The characterization of synthesized nanohybrid GO-OCNTs was performed using spectroscopic (FTIR, and XRD), thermogravimetric (TGA) and microscopic (SEM) techniques. Batch adsorption experiments were used to investigate the technical feasibility of using synthesized GO-OCNTs for the removal of ranitidine from aqueous solutions. The effects of different operating conditions such as contact time, nanohybrid mass, solution temperature, solution pH, % crosslinking agent, and GO-to-OCNT ratio on the entire elimination of ranitidine were investigated. The experimental results indicated that the removal of ranitidine was very efficient, where 98.3% removal of the drug from aqueous solutions was achieved with a drug uptake of 97.8 mg g−1. Moreover, the results indicated the optimum conditions for the removal of ranitidine, which are as follows: contact time = 140 minutes, nanohybrid GO-OCNT mass = 10 mg, solution temperature = 290 K, solution pH = 6.4, % crosslinking agent = 0.5%, and GO to O-CNT ratio = 1 : 4. The equilibrium data were fitted to different adsorption isotherms and Langmuir was found to best describe our data. Dynamic studies demonstrated that ranitidine adsorption followed pseudo-second order, and the thermodynamic parameters confirmed exothermic drug adsorption as well as the physisorption process. Entire elimination of pharmaceutical drugs from waste- and domestic-waters has attracted great attention due to their potent adverse effects on human health, particularly the human immune system.![]()
Collapse
Affiliation(s)
- Fahmi A. Abu Al-Rub
- Department of Chemical Engineering
- Faculty of Engineering
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| | - Mohammad M. Fares
- Department of Chemical Sciences
- Faculty of Science & Arts
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| | - Ahmad R. Mohammad
- Department of Chemical Engineering
- Faculty of Engineering
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| |
Collapse
|
16
|
Environmentally Friendly and Recyclable Natural-Mediator-Modified Magnetic Nanoparticles for Laccase-Catalyzed Decolorization. J CHEM-NY 2019. [DOI: 10.1155/2019/4140565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high cost, potential toxicity, and possible enzyme inhibition ability of artificial mediators have limited the large-scale application of laccase (Lac)/mediator systems. Here, sinapic acid (SA), a natural mediator, was covalently attached to amino-functionalized magnetic nanoparticles (MNPs) via amide bond formation. The as-prepared SA@MNPs were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, cyclic voltammetry, and thermogravimetric analysis. The SA@MNPs were then applied to evaluate the activity of the immobilized mediator for Lac-catalyzed dye decolorization using indigo carmine (IC) as a model dye. When SA and SA@MNPs were used as Lac mediators, IC decolorization yields of ∼93% and 96%, respectively, were obtained after 60 min. Moreover, SA@MNPs exhibited an IC decolorization yield of ∼90% after being reused for 8 cycles. The Lac/SA@MNP system was shown to degrade IC by breaking down the chromophoric group. The easy recyclability, good reusability, nontoxicity, and relatively low cost of SA@MNPs make this immobilized natural mediator a promising tool for dye treatment.
Collapse
|
17
|
Asif MB, Ansari AJ, Chen SS, Nghiem LD, Price WE, Hai FI. Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34085-34100. [PMID: 30259242 DOI: 10.1007/s11356-018-3256-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80-99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
18
|
Iark D, Buzzo AJDR, Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, Peralta RA, Peralta Muniz Moreira RDF, Bracht A, Peralta RM. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. BIORESOURCE TECHNOLOGY 2019; 289:121655. [PMID: 31247524 DOI: 10.1016/j.biortech.2019.121655] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
A single laccase with molecular weight of 41 kDa was produced by the white-rot fungus Oudemansiella canarii cultured on solid state fermentation using a mixture of sugarcane bagasse-wheat bran as substrate. The enzyme (5 U) was able to decolourize 80% of 50 mg/L Congo red within 24 h at 30 °C and pH 5.5. The relationship between the decolorization rate and dye concentration obeyed Michaelis-Menten kinetics, with KM and Vmax values of 46.180 ± 6.245 µM and 1.840 ± 0.101 µmol/min, respectively. Fourier transform infrared spectroscopy (FTIR) and mass spectrometry allowed to conclude that the laccase acts not only on the dye chromophore group, but also that it cleaves different covalent bonds, causing an effective fragmentation of the molecule. The action of the laccase caused a significant reduction in toxicity, as indicated by the Microtox test. In conclusion, O. canarii laccase could be useful in future biological strategies aiming at degrading azo dyes.
Collapse
Affiliation(s)
- Daiane Iark
- Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Brazil
| | | | | | | | | | | | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, Brazil
| | | | - Adelar Bracht
- Department of Biochemistry, Universidade Estadual de Maringá, Brazil; Graduate Program in Food Science, Universidade Estadual de Maringá, Brazil
| | - Rosane Marina Peralta
- Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Brazil; Department of Biochemistry, Universidade Estadual de Maringá, Brazil; Graduate Program in Food Science, Universidade Estadual de Maringá, Brazil.
| |
Collapse
|
19
|
Boonnorat J, Kanyatrakul A, Prakhongsak A, Honda R, Panichnumsin P, Boonapatcharoen N. Effect of hydraulic retention time on micropollutant biodegradation in activated sludge system augmented with acclimatized sludge treating low-micropollutants wastewater. CHEMOSPHERE 2019; 230:606-615. [PMID: 31128507 DOI: 10.1016/j.chemosphere.2019.05.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
This research investigates the effect of hydraulic retention time (HRT) on micropollutant biodegradation of two-stage activated sludge (AS) system augmented with acclimatized sludge treating low-micropollutants wastewater. The experimental wastewater was a mixture of landfill leachate and agriculture wastewater, and HRT was varied between 24, 18, and 12 h. The results showed that, under 24 h HRT, the micropollutant biodegradation efficiencies were 87-93% for bisphenol A (BPA), 2,6-di-tert-butyl-phenol (2,6-DTBP), di-butyl-phthalate (DBP), di-(ethylhexyl)-phthalate (DEHP); 75-81% for carbamazepine (CBZ), diclofenac (DCF); and 88% for N,N-diethylmeta-toluamide (DEET). The degradation efficiencies were similar under 18 h HRT: 87-93% for BPA, 2,6-DTBP, DBP, DEHP; 75-80% for CBZ, DCF; and 80% for DEET. However, the efficiencies substantially declined under 12 h HRT: 71-93%, 55-60%, and 50%, respectively. Importantly, the findings revealed that HRT plays a crucial part in micropollutant biodegradation of bioaugmented AS system. More specifically, too short an HRT (12 h) results in low micropollutant removal efficiency, and too long an HRT (24 h) contributes to low daily throughput and high treatment operation cost. As a result, moderate HRT (18 h) is operationally and economically optimal for bioaugmented AS system treating low-micropollutants wastewater.
Collapse
Affiliation(s)
- Jarungwit Boonnorat
- Division of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani, 12110, Thailand.
| | - Alongkorn Kanyatrakul
- Division of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani, 12110, Thailand
| | - Apichai Prakhongsak
- Division of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani, 12110, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok, 10150, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok, 10150, Thailand
| |
Collapse
|
20
|
Persulfate oxidation-assisted membrane distillation process for micropollutant degradation and membrane fouling control. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Haugland JO, Kinney KA, Johnson WH, Camino MMA, Whitman CP, Lawler DF. Laccase removal of 2-chlorophenol and sulfamethoxazole in municipal wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:281-291. [PMID: 30802358 DOI: 10.1002/wer.1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Laccases were studied for their ability to remove two compounds, 2-chlorophenol and sulfamethoxazole, in batch studies, both in buffered solutions and in wastewater samples from different points in a municipal water resource recovery facility. Two enzymes with and without a mediator (acetosyringone) were investigated: a commercial product derived from Myceliphthora thermophile and a laboratory-generated enzyme mix derived from Tramates versicolor. The chlorophenol was removed rapidly by the commercial enzyme in the presence of acetosyringone, but the primary products were coupling complexes of the reactants. Excellent removal was achieved without acetosyringone by the natural enzyme mix. Sulfamethoxazole was poorly removed in all laboratory-generated chemically buffered solutions, but was very well removed, without the addition of mediators, in secondary effluent suspensions from a municipal water resource recovery facility. Mechanistic studies are still required, but the results suggest that treatment via direct addition of enzymes is feasible to remove recalcitrant compounds in municipal wastewater.
Collapse
Affiliation(s)
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas
| | - William H Johnson
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas
| | | | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas
| | - Desmond F Lawler
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas
| |
Collapse
|