1
|
Jiang Z, Liang Y, Guo F, Wang Y, Li R, Tang A, Tu Y, Zhang X, Wang J, Li S, Kong L. Microwave-Assisted Pyrolysis-A New Way for the Sustainable Recycling and Upgrading of Plastic and Biomass: A Review. CHEMSUSCHEM 2024; 17:e202400129. [PMID: 38773732 DOI: 10.1002/cssc.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
The efficient utilization of organic solid waste resources can help reducing the consumption of conventional fossil fuels, mitigating environmental pollution, and achieving green sustainable development. Due to its dual nature of being both a resource and a source of pollution, it is crucial to implement suitable recycling technologies throughout the recycling and upgrading processes for plastics and biomass, which are organic solid wastes with complex mixture of components. The conventional pyrolysis and hydropyrolysis were summarized for recycling plastics and biomass into high-value fuels, chemicals, and materials. To enhance reaction efficiency and improve product selectivity, microwave-assisted pyrolysis was introduced to the upgrading of plastics and biomass through efficient energy supply especially with the aid of catalysts and microwave absorbers. This review provides a detail summary of microwave-assisted pyrolysis for plastics and biomass from the technical, applied, and mechanistic perspectives. Based on the recent technological advances, the future directions for the development of microwave-assisted pyrolysis technologies are predicted.
Collapse
Affiliation(s)
- Zhicheng Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yuan Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Fenfen Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yuxuan Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Ruikai Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Aoyi Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Youjing Tu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xingyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Lingzhao Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
2
|
Deng J, Wang H, Su Y, Shen K, Chen X, Zhou X, Hu X, Gao Y. Quantifying the roles of thermal volatilization and decomposition in microwave remediation of polycyclic aromatic hydrocarbon-polluted soil and modeling remediation effectiveness. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132884. [PMID: 37913658 DOI: 10.1016/j.jhazmat.2023.132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Microwave irradiation is a promising technology for the remediation of soil contaminated by organic contaminants. However, the roles of volatilization and decomposition in microwave removal of polycyclic aromatic hydrocarbons (PAHs) in soil have not yet been quantitatively determined. A model describing the removal efficiency of benz(a)anthracene (BaA) at different treatment times and varied conditions was constructed, wherein BaA removal efficiency was positively and linearly correlated with soil temperature. BaA removal in soil was attributed to thermal volatilization (97.8%) and decomposition (2.2%). Radicals such as ∙OH and ∙O 2- were found to initiate BaA decomposition, the pathway of which was elucidated through HPLC-MS analysis, revealing benz(a)anthracene-7,12-dione as the main intermediate product. The new ideas and perspectives founded in this study offer theoretical support for microwave remediation of organic compound-contaminated sites.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yan Su
- Shenyang Academy of Environmental Sciences, Shenyang 110167, PR China
| | - Ke Shen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
3
|
Current Challenges and Perspectives for the Catalytic Pyrolysis of Lignocellulosic Biomass to High-Value Products. Catalysts 2022. [DOI: 10.3390/catal12121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lignocellulosic biomass is an excellent alternative of fossil source because it is low-cost, plentiful and environmentally friendly, and it can be transformed into biogas, bio-oil and biochar through pyrolysis; thereby, the three types of pyrolytic products can be upgraded or improved to satisfy the standard of biofuel, chemicals and energy materials for industries. The bio-oil derived from direct pyrolysis shows some disadvantages: high contents of oxygenates, water and acids, easy-aging and so forth, which restrict the large-scale application and commercialization of bio-oil. Catalytic pyrolysis favors the refinement of bio-oil through deoxygenation, cracking, decarboxylation, decarbonylation reactions and so on, which could occur on the specified reaction sites. Therefore, the catalytic pyrolysis of lignocellulosic biomass is a promising approach for the production of high quality and renewable biofuels. This review gives information about the factors which might determine the catalytic pyrolysis output, including the properties of biomass, operational parameters of catalytic pyrolysis and different types of pyrolysis equipment. Catalysts used in recent research studies aiming to explore the catalytic pyrolysis conversion of biomass to high quality bio-oil or chemicals are discussed, and the current challenges and future perspectives for biomass catalytic pyrolysis are highlighted for further comprehension.
Collapse
|
4
|
Seo MW, Lee SH, Nam H, Lee D, Tokmurzin D, Wang S, Park YK. Recent advances of thermochemical conversion processes for biorefinery. BIORESOURCE TECHNOLOGY 2022; 343:126109. [PMID: 34637907 DOI: 10.1016/j.biortech.2021.126109] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass is one of the most promising renewable resources and can replace fossil fuels via various biorefinery processes. Through this study, we addressed and analyzed recent advances in the thermochemical conversion of various lignocellulosic biomasses. We summarized the operation conditions and results related to each thermochemical conversion processes such as pyrolysis (torrefaction), hydrothermal treatment, gasification and combustion. This review indicates that using thermochemical conversion processes in biorefineries is techno-economically feasible, easy, and effective compared with biological processes. The challenges experienced in thermochemical conversion processes are also presented in this study for better understanding the future of thermochemical conversion processes for biorefinery. With the aid of artificial intelligence and machine learning, we can reduce time-consumption and experimental work for bio-oil production and syngas production processes.
Collapse
Affiliation(s)
- Myung Won Seo
- Climate Change Research Division, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567 Bakeje-daero, Deokjin-gu, Jeonju, Republic of Korea; Department of Environment & Energy, Jeonbuk National University 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea
| | - Hyungseok Nam
- Climate Change Research Division, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, Republic of Korea
| | - Diyar Tokmurzin
- Climate Change Research Division, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Shuang Wang
- Climate Change Research Division, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Khan N, Chowdhary P, Gnansounou E, Chaturvedi P. Biochar and environmental sustainability: Emerging trends and techno-economic perspectives. BIORESOURCE TECHNOLOGY 2021; 332:125102. [PMID: 33853722 DOI: 10.1016/j.biortech.2021.125102] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollutants including emerging contaminants are a growing concern worldwide. Organic wastes, such as food waste, compost, animal manure, crop residues, and sludge are generally used as feedstock. The conventional treatment methodologies (primary and secondary treatment process) do not mitigate or remove pollutants effectively. Hence, an effective, low-cost, and environmentally friendly tertiary treatment process is an urgent need. Biochar finds interesting applications in environmental processes like pollutant remediation, greenhouse gas mitigation, and wastewater treatment. Studies have shown that different types of adsorbents (biochars) like, native and engineered biochar are being used in the removal or mitigation of heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, pesticides, disinfectants, polychlorinated dibenzofurans, and dibenzo-p-dioxins from contaminated sites for environmental management. The review discusses ample studieswhich can offer solutions for environmental sustenance and managementand the emerging trends and techno-economic prospectives of biochar for sustainable environmental management.
Collapse
Affiliation(s)
- Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Edgard Gnansounou
- Bioenergy and Energy planning, IIC, ENAC, École polytechnique fédérale de Lausanne (EPFL) Station 18, CH-1015 Lausanne, Switzerland
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
6
|
Zhou N, Zhou J, Dai L, Guo F, Wang Y, Li H, Deng W, Lei H, Chen P, Liu Y, Ruan R. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. BIORESOURCE TECHNOLOGY 2020; 314:123756. [PMID: 32629378 DOI: 10.1016/j.biortech.2020.123756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
In light of the knowledge gap in the scale-up of microwave-assisted pyrolysis technology, this study developed a continuous microwave-assisted pyrolysis (CMAP) system and examined its feasibility for syngas production. Wood pellets were pyrolyzed in the system under various temperatures, and the product distribution and energy efficiency were investigated. At a processing temperature of 800 °C, the CMAP system obtained a high quality producer gas (lower heating value 18.0 MJ/Nm3 and a 67 vol% syngas content) at a yield of 72.2 wt% or 0.80 Nm3/kg d.a.f. wood, outperforming several conventional pyrolysis processes probably due to two factors: 1) reactions between primary tar and biochar enhanced by microwave irradiation, and 2) the absence of carrier gas in the process. Energy efficiency of the process was also assessed. Potentially the electricity consumption could be reduced from 7.2 MJ to 3.45 MJ per kg of wood, enabling net electricity production from the process.
Collapse
Affiliation(s)
- Nan Zhou
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Junwen Zhou
- Kunming University of Science and Technology, 68 Wenchang Road, 121 Blvd., Kunming, Yunnan 650093, China
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Feiqiang Guo
- School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yunpu Wang
- Ministry of Education Engineering Research Center for Biomass Conversion, Nanchang University, 235 Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Hui Li
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA; School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Wenyi Deng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA; School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai 201620, China
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yuhuan Liu
- School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
7
|
Li Y, Xing B, Ding Y, Han X, Wang S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 312:123614. [PMID: 32517889 DOI: 10.1016/j.biortech.2020.123614] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/10/2023]
Abstract
Biochar is a carbon-rich product obtained from the thermo-chemical conversion of biomass. Studying the evolution properties of biochar by in-situ modification or post-modification is of great significance for improving the utilisation value of lignocellulosic biomass. In this paper, the production methods of biochar are reviewed. The effects of the biomass feedstock characteristics, production processes, reaction conditions (temperature, heating rate, etc.) as well as in-situ activation, heteroatomic doping, and functional group modification on the physical and chemical properties of biochar are compared. Based on its unique physicochemical properties, recent research advances with respect to the use of biochar in pollutant adsorbents, catalysts, and energy storage are reviewed. The relationship between biochar structure and its application are also revealed. It is suggested that a more effective control of biochar structure and its corresponding properties should be further investigated to develop a variety of biochar for targeted applications.
Collapse
Affiliation(s)
- Yunchao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Bo Xing
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xinhong Han
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Kumar A, Saini K, Bhaskar T. Advances in design strategies for preparation of biochar based catalytic system for production of high value chemicals. BIORESOURCE TECHNOLOGY 2020; 299:122564. [PMID: 31879059 DOI: 10.1016/j.biortech.2019.122564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 05/12/2023]
Abstract
The aim of this review is to provide the comprehensive and mechanistic information of biochar based catalytic systems for the production of fuels and fine chemicals with a concept of integrated biorefinery. The review presents an in-depth assessment of relationships between physico-chemical properties and catalytic performances of biochar based catalytic systems during the production of targeted compounds at the molecular/fundamental level. The catalytic performance of the biochar is associated with its unique physico-chemical properties (surface area/surface functionality/pores/mechanical strength/inorganic species) which provide a distinct catalytic route. The review also discusses the preparation methods and significance of the activation process for tuning of physico-chemical properties of biochar.
Collapse
Affiliation(s)
- Adarsh Kumar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Komal Saini
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Thallada Bhaskar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India.
| |
Collapse
|
9
|
Sun X, Atiyeh HK, Li M, Chen Y. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review. BIORESOURCE TECHNOLOGY 2020; 295:122252. [PMID: 31669180 DOI: 10.1016/j.biortech.2019.122252] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Biochar is traditionally used to improve soil properties in arable land and as adsorbent or precursor of activated carbon in wastewater treatment. Recent advances have shown biochar potentials in enhancing productions of biofuels and chemicals such as bio-ethanol, butanol, methane, hydrogen, bio-diesel, hydrocarbons and carboxylic acids. The properties of biochar such as high levels of porosity, functional groups, cation exchange capacity, pH buffering capacity, electron conductivity, and macro-/micro- nutrients (Na, K, Ca, Mg, P, S, Fe, etc.) provide appropriate conditions to relieve physicochemical stresses on microorganisms through pH buffering, detoxification, nutrients supply, serving as electron carrier and supportive microbial habitats. This paper critically reviewed biochar production and characteristics, biochar utilization in anaerobic digestion, composting, microbial fermentation, hydrolysate detoxification, catalysis in biomass refinery and biodiesel synthesis. This review provides novel vision of biochar application, which could guide future research towards cleaner and more economic production of renewable fuels and bio-based chemicals.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul 55108, MN, USA.
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater 74078, OK, USA
| | - Mengxing Li
- Department of Biological Systems Engineering, University of Nebraska, Lincoln 68583, NE, USA
| | - Yan Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
10
|
Abstract
Microwave-assisted pyrolysis is a promising thermochemical technique to convert waste polymers and biomass into raw chemicals and fuels. However, this process involves several issues related to the interactions between materials and microwaves. Consequently, the control of temperature during microwave-assisted pyrolysis is a hard task both for measurement and uniformity during the overall pyrolytic run. In this review, we introduce some of the main theoretical aspects of the microwaves–materials interactions alongside the issues related to microwave pyrolytic processability of materials.
Collapse
|
11
|
Luo H, Wang H, Kong L, Li S, Sun Y. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:341-348. [PMID: 31173984 DOI: 10.1016/j.jhazmat.2019.05.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
As an environmental contaminant, petroleum-contaminated soil will pollute water, stunt agricultural growth, and cause serious harms to human health if it wasn't safely disposed and remediated. Here, low-temperature microwave-assisted treatment of petroleum-contaminated soil was developed for simultaneous soil rehabilitation, oil recovery and revegetation. The results indicated the concentration of petroleum contaminant was decreased to regulatory standard after 20 min treatment at 250-300 °C. 91.6% of the oil was recovered, and it mainly consisted of C11-C30 hydrocarbons. Using the soil remediated at 250 °C for plant growth test, no adverse effect or fertility loss was observed and an optimal clover germination rate was reached. The results of microwave thermogravimetric analysis, dielectric property and EDX mapping revealed that the efficient remediation was attributed to the presence of hot spots, and the efficient heat /mass transfer during microwave heating. A three-stage petroleum removal mechanism was proposed, where the hydrocarbons were gradually removed via steam stripping, thermal desorption, and pyrolysis/carbonization as the temperature increased.
Collapse
Affiliation(s)
- Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lingzhao Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; School of Physical Science and Technology, Shanghai-Tech University, Shanghai, 200031, PR China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; School of Physical Science and Technology, Shanghai-Tech University, Shanghai, 200031, PR China.
| |
Collapse
|
12
|
Destruction of Toluene, Naphthalene and Phenanthrene as Model Tar Compounds in a Modified Rotating Gliding Arc Discharge Reactor. Catalysts 2018. [DOI: 10.3390/catal9010019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tar removal is one of the greatest technical challenges of commercial gasification technologies. To find an efficient way to destroy tar with plasma, a rotating gliding arc (RGA) discharge reactor equipped with a fan-shaped swirling generator was used for model tar destruction in this study. The solution of toluene, naphthalene and phenanthrene is used as a tar surrogate and is destroyed in humid nitrogen. The influence of tar, CO2 and moisture concentrations, and the discharge current on the destruction efficiency is emphasized. In addition, the combination of Ni/γ-Al2O3 catalyst with plasma was tested for plasma catalytic tar destruction. The toluene, naphthalene and phenanthrene destruction efficiency reached up to 95.2%, 88.9%, and 83.9% respectively, with a content of 12 g/Nm3 tar, 12% moisture, 15% CO2, and a flow rate of 6 NL/min, whereas 9.3 g/kW·h energy efficiency was achieved. The increase of discharge current is advantageous in terms of decreasing black carbon production. The participation of Ni/γ-Al2O3 catalyst shows considerable improvement in destruction efficiency, especially at a relatively high flow rate (over 9 NL/min). The major liquid by-products are phenylethyne, indene, acenaphthylene and fluoranthene. The first two are majorly converted from toluene, acenaphthylene is produced by the co-reaction of toluene and naphthalene in the plasma, and fluoranthene is converted by phenanthrene.
Collapse
|
13
|
Abstract
Firstly, this paper reviews two main methods for biochar synthesis, namely conventional pyrolysis and hydrothermal carbonization (HTC). The related processes are described, and the influences of biomass nature and reaction conditions, especially temperature, are discussed. Compared to pyrolysis, HTC has advantages for processing high-moisture biomass and producing spherical biochar particles. Secondly, typical features of biochar in comparison with other carbonaceous materials are summarized. They refer to the presence of inorganics, surface functional groups, and local crystalline structures made up of highly conjugated aromatic sheets. Thirdly, various strategies for biochar modification are illustrated. They include activation, surface functionalization, in situ heteroatom doping, and the formation of composites with other materials. An appropriate modification is necessary for biochar used as a catalyst. Fourthly, the applications of biochar-based catalysts in three important processes of biofuel production are reviewed. Sulfonated biochar shows good catalytic performance for biomass hydrolysis and biodiesel production. Biodiesel production can also be catalyzed by biochar-derived or -supported solid-alkali catalysts. Biochar alone and biochar-supported metals are potential catalysts for tar reduction during or after biomass gasification. Lastly, the merits of biochar-based catalysts are summarized. Biochar-based catalysts have great developmental prospects. Future work needs to focus on the study of mechanism and process design.
Collapse
|