1
|
Zhang ZG, Shen X, Jiang SK, Lin JC, Yi Y, Ji XJ. Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2266-2278. [PMID: 39808924 DOI: 10.1021/acs.jafc.4c11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts. Biocatalysis has demonstrated expanded applications in converting biomass-derived furan aldehydes into a diverse array of value-added chemicals. This process exhibits significant potential in organic synthesis and biotechnology due to its green and sustainable properties. The biocatalytic reduction of FF and HMF represents an especially important route for the selective synthesis of FAL and BHMF. This review discusses recent progress in the biosynthesis of FAL and BHMF from biomass-derived FF and HMF through biocatalytic processes. Recently discovered enzymes and whole cells used as biocatalysts for the production of furan alcohols are summarized. In addition, chemoenzymatic cascades for synthesizing furan alcohols from biomass hydrolysate and raw biomass materials are also discussed.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xi Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Kai Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jia-Chun Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yan Yi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
2
|
Feng B, Liao H, Ying W, Zhang J, Chen Z. Efficient production of xylobiose and xylotriose from xylan in moso bamboo by the combination of pH-controlled lactic acid and xylanase hydrolysis. Int J Biol Macromol 2024; 283:137858. [PMID: 39579835 DOI: 10.1016/j.ijbiomac.2024.137858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Short-chain xylo-oligosaccharides (XOS) such as xylobiose (X2) and xylotriose (X3) have higher biological activities. Therefore, it is interesting to produce highly active XOS enriched with X2 and X3. In this work, pH-controlled lactic acid (LA) hydrolysis was used to produce XOS from xylan in moso bamboo and xylanase was used to convert high DP XOS into low DP XOS to increase the percentage of X2 + X3 in XOS. A 33.1 % XOS yield was obtained from 2 % LA hydrolysis (pH = 3.2). After xylanase hydrolysis of the LA hydrolysate, the total XOS yield reached 64.1 %, with X2 + X3 yield reaching 58.4 %. The percentage of X2 + X3 increased from 52.3 % to a high level of 91.0 %. The deep eutectic solvent pretreatment removed 87.2 % lignin from the residue and the glucose yield of the delignified residue hydrolyzed by cellulase was 96.9 %. The results suggested that the integrated process of LA and xylanase hydrolysis could effectively produce X2 + X3 from xylan in moso bamboo.
Collapse
Affiliation(s)
- Baojun Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| | - Zhangjing Chen
- Department of Sustainable Biomaterials, Virginia Tech, 1650 Research Center Drive, Blacksburg, VA 24060, USA
| |
Collapse
|
3
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
4
|
Zhu L, Di J, Li Q, He YC, Ma C. Enhanced conversion of corncob into furfurylamine via chemoenzymatic cascade catalysis in a toluene–water medium. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
5
|
Di J, Li Q, Ma C, He YC. An efficient and sustainable furfurylamine production from biomass-derived furfural by a robust mutant ω-transaminase biocatalyst. BIORESOURCE TECHNOLOGY 2023; 369:128425. [PMID: 36470494 DOI: 10.1016/j.biortech.2022.128425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Furfurylamine is a key furan-based compound for manufacturing perfumes, fibers, additives, medicines and agrochemicals. It can be obtained by amination of furfural by ω-transaminase (AtAT) from Aspergillus terreus. In this work, site-directed mutant of amino acid residues [Threonine (T) at AT130 was mutated to Methionine (M) and Glutamic acid (E) at AT133 was mutated to Phenylalanine (F)] was used to change in the flexible region of AtAT. The transamination activity and thermostability were significantly improved. In ChCl:MA (30 wt%), furfural (500 mM) was efficiently transformed into furfurylamine (92% yield) with TMEF after 12 h. 101.3 mM of biomass-derived furfural and 129.7 mM of D-xylose-derived furfural were wholly converted into furfurylamine within 5 h, achieving the productivity of 0.465 g furfurylamine/(g xylan in corncob) and 0.302 g furfurylamine/(g D-xylose). This established chemoenzymatic conversion strategy by bridging chemocatalysis and biocatalysis could be utilized in the valorisation of renewable biomass to valuable furans.
Collapse
Affiliation(s)
- Junhua Di
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
6
|
Uranium-Doped Zinc, Copper, and Nickel Oxides for Enhanced Catalytic Conversion of Furfural to Furfuryl Alcohol: A Relativistic DFT Study. Molecules 2022; 27:molecules27186094. [PMID: 36144824 PMCID: PMC9502827 DOI: 10.3390/molecules27186094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Transition metal oxides (TMOs) and actinide ones (AnOs) have been widely applied in catalytic reactions due to their excellent physicochemical properties. However, the reaction pathway and mechanism, especially involving TM–An heterometallic centers, remain underexplored. In this respect, relativistic density functional theory (DFT) was used to examine uranium-doped zinc, copper, and nickel oxides for their catalytic activity toward the conversion of furfural to furfuryl alcohol. A comparison was made with their undoped TMOs. It was found that the three TMOs were capable of catalyzing the reaction, where the free energies of adsorption, hydrogenation, and desorption fell between −33.93 and 45.00 kJ/mol. The uranium doping extremely strengthened the adsorption of CuO-U and NiO-U toward furfural, making hydrogenation or desorption much harder. Intriguingly, ZnO-U showed the best catalytic performance among all six catalyst candidates, as its three reaction energies were very small (−10.54–8.12 kJ/mol). The reaction process and mechanism were further addressed in terms of the geometrical, bonding, charge, and electronic properties.
Collapse
|
7
|
Efficient Synthesis of Furfuryl Alcohol from Corncob in a Deep Eutectic Solvent System. Processes (Basel) 2022. [DOI: 10.3390/pr10091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As a versatile and valuable intermediate, furfuryl alcohol (FOL) has been widely used in manufacturing resins, vitamin C, perfumes, lubricants, plasticizers, fuel additives, biofuels, and other furan-based chemicals. This work developed an efficient hybrid strategy for the valorization of lignocellulosic biomass to FOL. Corncob (75 g/L) was catalyzed with heterogenous catalyst Sn-SSXR (2 wt%) to generate FAL (65.4% yield) in a deep eutectic solvent ChCl:LA–water system (30:70, v/v; 180 °C) after 15 min. Subsequently, the obtained FAL liquor containing FAL and formate could be biologically reduced to FOL by recombinant E. coli CF containing aldehyde reductase and formate dehydrogenase at pH 6.5 and 35 °C, achieving the FOL productivity of 0.66 g FOL/(g xylan in corncob). The formed formate could be used as a cosubstrate for the bioreduction of FAL into FOL. In addition, other biomasses (e.g., sugarcane bagasse and rice straw) could be converted into FOL at a high yield. Overall, this hybrid strategy that combines chemocatalysis and biocatalysis can be utilized to efficiently valorize lignocellulosic materials into valuable biofurans.
Collapse
|
8
|
Lian Z, Zhang Q, Xu Y, Zhou X, Jiang K. Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment. Appl Biochem Biotechnol 2022; 194:4946-4958. [PMID: 35674923 DOI: 10.1007/s12010-022-03985-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 01/07/2023]
Abstract
Corncob as an abundant and low-cost waste resource has received increasing attention to produce value-added chemicals, it is rich in xylan and regarded as the most preferable feedstock for preparing high value added xylooligosaccharides. The use of xylooligosaccharides as core products can cut costs and improve the economic efficiency in biorefinery. In this study, maleic acid, as a non-toxic and edible acidic catalyst, was employed to pretreat corncob and produce xylooligosaccharides. Firstly, the response surface methodology experimental procedure was employed to maximize the yield of the xylooligosaccharides; a yield of 52.9% (w/v) was achieved with 0.5% maleic acid (w/v) at 155 °C for 26 min. In addition, maleic acid pretreatment was also beneficial to enhance the enzymatic hydrolysis efficiency, resulting in an enzymatic glucose yield of 85.4% (w/v) with a total of 10% solids loading. Finally, a total of 160 g of xylooligosaccharides and 275 g glucose could be produced from 1000 g corncob starting from the maleic acid pretreatment. Overall, a cascade processing for converting corncob to xylooligosaccharides and glucose by sequential maleic acid pretreatment and enzymatic hydrolysis was successfully designed for the corncob wastes utilization.
Collapse
Affiliation(s)
- Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Qibo Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, 310053, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
A Hybrid Strategy for the Efficient Biosynthesis of Fufuryl Alcohol from Corncob in Formic Acid–Water. Catal Letters 2022. [DOI: 10.1007/s10562-022-04003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Li Q, Ma C, Di J, Ni J, He YC. Catalytic valorization of biomass for furfuryl alcohol by novel deep eutectic solvent-silica chemocatalyst and newly constructed reductase biocatalyst. BIORESOURCE TECHNOLOGY 2022; 347:126376. [PMID: 34801722 DOI: 10.1016/j.biortech.2021.126376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Chemoenzymatic cascade catalysis using deep eutectic solvent-silica heterogeneous catalyst and reductase biocatalyst was constructed for synthesizing furfuryl alcohol from biomass in one-pot manner. A novel heterogeneous catalyst B:LA-SG(SiO2) was firstly prepared by immobilizing deep eutectic solvent Betaine:Lactic acid on silica with sol-gel method using tetraethyl orthosilicate as silicon source. High furfural yield (45.3%) was achieved from corncob with B:LA-SG(SiO2) catalyst (2.5 wt%) in water at 170 ˚C for 0.5 h. Possible catalytic mechanism for converting biomass into furfural was proposed. Moreover, one newly constructed recombinant E. coli KF2021 cells containing formate dehydrogenase and reductase was utilized to transform corncob-valorized furfural into furfuralcohol at 97.7% yield at pH 7.5 and 40 ˚C via HCOONa-driven coenzyme regeneration. Such a hybrid process was constructed for tandem chemocatalysis and biocatalysis in a same reactor, potentially reducing the operation cost, which had potential application for valorization of biomass to value-added furans.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Jiacheng Ni
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
11
|
Di J, Zhao N, Fan B, He YC, Ma C. Efficient Valorization of Sugarcane Bagasse into Furfurylamine in Benign Deep Eutectic Solvent ChCl:Gly-Water. Appl Biochem Biotechnol 2022; 194:2204-2218. [PMID: 35048280 DOI: 10.1007/s12010-021-03784-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Recently, highly efficient production of valuable furan-based chemicals from available and renewable lignocellulosic biomass has attracted more and more attention via a chemoenzymatic route in an environmentally friendly reaction system. In this work, the feasibility of chemoenzymatically catalyzing sugarcane bagasse into furfurylamine with heterogeneous catalyst and ω-transaminase biocatalyst was developed in the deep eutectic solvent (DES) ChCl:Gly-water. Sulfonated Al-Laubanite was firstly synthesized to catalyze sugarcane bagasse to furfural. SEM, BET, XRD, and FT-IR were used to characterize Al-Laubanite. Catalyst Al-Laubanite structure was significantly different from carrier laubanite. High furfural yield (60.9%) was achieved by catalyzing sugarcane bagasse in 20 min at 170 ℃ and pH 1.0 by Al-Laubanite (2.4 wt%) in the presence of ChCl:Gly (20 wt%). Potential catalytic mechanism was proposed under the optimized catalytic condition. In addition, one recombinant E. coli CV harboring ω-transaminase could completely transform biomass-derived furfural to furfurylamine at 40 °C and pH 7.5 using L-alanine as amine donor in ChCl:Gly-water (20:80, wt:wt). This established chemoenzymatic cascade reaction strategy was successfully utilized for valorization of biomass into furan-based chemicals in the benign ChCl:Gly-water system.
Collapse
Affiliation(s)
- Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China
| | - Nana Zhao
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China
| | - Bo Fan
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, People's Republic of China. .,State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
12
|
Chemoenzymatic Conversion of Biomass-Derived D-Xylose to Furfuryl Alcohol with Corn Stalk-Based Solid Acid Catalyst and Reductase Biocatalyst in a Deep Eutectic Solvent–Water System. Processes (Basel) 2022. [DOI: 10.3390/pr10010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this work, the feasibility of chemoenzymatically transforming biomass-derived D-xylose to furfuryl alcohol was demonstrated in a tandem reaction with SO42−/SnO2-CS chemocatalyst and reductase biocatalyst in the deep eutectic solvent (DES)–water media. The high furfural yield (44.6%) was obtained by catalyzing biomass-derived D-xylose (75.0 g/L) in 20 min at 185 °C with SO42−/SnO2-CS (1.2 wt%) in DES ChCl:EG–water (5:95, v/v). Subsequently, recombinant E.coli CF cells harboring reductases transformed D-xylose-derived furfural (200.0 mM) to furfuryl alcohol in the yield of 35.7% (based on D-xylose) at 35 °C and pH 7.5 using HCOONa as cosubstrate in ChCl:EG–water. This chemoenzymatic cascade catalysis strategy could be employed for the sustainable production of value-added furan-based chemical from renewable bioresource.
Collapse
|
13
|
Ni J, Di J, Ma C, He YC. Valorisation of corncob into furfuryl alcohol and furoic acid via chemoenzymatic cascade catalysis. BIORESOUR BIOPROCESS 2021; 8:113. [PMID: 38650293 PMCID: PMC10991097 DOI: 10.1186/s40643-021-00466-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous tin-based sulfonated graphite (Sn-GP) catalyst was prepared with graphite as carrier. The physicochemical properties of Sn-GP were captured by FT-IR, XRD, SEM and BET. Organic acids with different pKa values were used to assist Sn-GP for transforming corncob (CC), and a linear equation (Furfural yield = - 7.563 × pKa + 64.383) (R2 = 0.9348) was fitted in acidic condition. Using sugarcane bagasse, reed leaf, chestnut shell, sunflower stalk and CC as feedstocks, co-catalysis of CC (75.0 g/L) with maleic acid (pKa = 1.92) (0.5 wt%) and Sn-GP (3.6 wt%) yielded the highest furfural yield (47.3%) for 0.5 h at 170 °C. An effective furfural synthesis was conducted via co-catalysis with Sn-GP and maleic acid. Subsequently, E. coli CG-19 and TS completely catalyzed the conversion of corncob-derived FAL to furfurylalcohol and furoic acid, respectively. Valorisation of available renewable biomass to furans was successfully developed in tandem chemoenzymatic reaction.
Collapse
Affiliation(s)
- Jiacheng Ni
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmacy, Changzhou University, Changzhou, China
| | - Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmacy, Changzhou University, Changzhou, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Pharmacy, Changzhou University, Changzhou, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
14
|
Wu M, Gong L, Ma C, He YC. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. BIORESOURCE TECHNOLOGY 2021; 340:125695. [PMID: 34364087 DOI: 10.1016/j.biortech.2021.125695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen bond donor (HBD) in ChCl-based deep eutectic solvent (DESs) had significant influence on the Sorghum straw (SS) pretreatment. Lactic acid (LAC) was chosen as the appropriate HBD for preparing ChCl-based DES to pretreat Sorghum straw (SS). Furthermore, sequential pretreatment with dilute sodium hydroxide (0.75 wt%) for 1 h at 121 °C and ChCl:LAC soaking at 140 °C for 40 min was applied to pretreat SS for removing lignin (78.4%) and xylan (67.6%). Hydrolysis for 72 h, the reducing sugar yield reached 94.9%. Moreover, relationships of delignification and xylan removal with saccharification were explored after pretreatment. Finally, the fermentability of SS-hydrolysates was verified by bioethanol fermentation by S. cerevissiae with the yield of 0.45 g ethanol/g glucose. No significant inhibition was observed on ethanol fermentation. Obviously, establishment of high-efficient combination pretreatment with alkali extraction and ChCl:LAC soaking was successfully demonstrated for enhancing enzymatic saccharification of SS.
Collapse
Affiliation(s)
- Mengjia Wu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, PR China
| | - Lei Gong
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province 430062, PR China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province 430062, PR China.
| |
Collapse
|
15
|
Ji L, Tang Z, Yang D, Ma C, He YC. Improved one-pot synthesis of furfural from corn stalk with heterogeneous catalysis using corn stalk as biobased carrier in deep eutectic solvent-water system. BIORESOURCE TECHNOLOGY 2021; 340:125691. [PMID: 34358983 DOI: 10.1016/j.biortech.2021.125691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Using acid-treated corn stalk (CS) as biobased carrier, heterogeous SO42-/SnO2-CS catalyst was firstly prepared to catalyze CS into fufural in deep eutectic solvent-water system. The physical properties of SO42-/SnO2-CS were captured by FT-IR, NH3-TPD, XRD, XPS, and BET. SO42-/SnO2-CS (1.2 wt%) could be used to catalyze CS (75.0 g/L) with MgCl2 (15.0 g/L) to produce furfural (102.3 mM) in the yield of 68.2% for 0.5 h at 170 °C in ChCl:EG-water (20:80, v:v). Moreover, enhanced synthesis of furfural was explored based on the structure changes of CS, furfural yields and formation of byproducts. Finally, the potential catalytic mechanism for catalyzing CS into furfural and byproducts was proposed using SO42-/SnO2-CS as catalyst in ChCl:EG-water containing MgCl2. In summary, this established ChCl:EG-water system and optimized catalytic condition facillitated to synthesize furfural from biomass with biobased solid acid catalyst.
Collapse
Affiliation(s)
- Li Ji
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Zhengyu Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Dong Yang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei Province, PR China.
| |
Collapse
|
16
|
Miletto I, Ivaldi C, Gianotti E, Paul G, Travagin F, Giovenzana GB, Fraccarollo A, Marchi D, Marchese L, Cossi M. Predicting the Conformation of Organic Catalysts Grafted on Silica Surfaces with Different Numbers of Tethering Chains: The Silicopodality Concept. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21199-21210. [PMID: 34621460 PMCID: PMC8489525 DOI: 10.1021/acs.jpcc.1c06150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Hybrid catalysts are attracting much attention, since they combine the versatility and efficiency of homogeneous organic catalysis with the robustness and thermal stability of solid materials, for example, mesoporous silica; in addition, they can be used in cascade reactions, for exploring both organic and inorganic catalysis at the same time. Despite the importance of the organic/inorganic interface in these materials, the effect of the grafting architecture on the final conformation of the organic layer (and hence its reactivity) is still largely unexplored. Here, we investigate a series of organosiloxanes comprising a pyridine ring (the catalyst model) and different numbers of alkylsiloxane chains used to anchor it to the MCM-41 surface. The hybrid interfaces are characterized with X-ray powder diffraction, thermogravimetric analyses, Fourier-transform infrared spectroscopy, nuclear magnetic resonance techniques and are modeled theoretically through molecular dynamics (MD) simulations, to determine the relationship between the number of chains and the average position of the pyridine group; MD simulations also provide some insights about temperature and solvent effects.
Collapse
Affiliation(s)
- Ivana Miletto
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Chiara Ivaldi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Enrica Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Geo Paul
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale, L.go Donegani 2, I-28100 Novara, Italy
| | - Giovanni Battista Giovenzana
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale, L.go Donegani 2, I-28100 Novara, Italy
- CAGE Chemicals srl, Via Bovio 6, I-28100 Novara, Italy
| | - Alberto Fraccarollo
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Davide Marchi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Maurizio Cossi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| |
Collapse
|
17
|
Improving Biocatalytic Synthesis of Furfuryl Alcohol by Effective Conversion of D-Xylose into Furfural with Tin-Loaded Sulfonated Carbon Nanotube in Cyclopentylmethyl Ether-Water Media. Catal Letters 2021. [DOI: 10.1007/s10562-021-03570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. COATINGS 2021. [DOI: 10.3390/coatings11020116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
With the development of material engineering and coating industries, superhydrophobic coatings with exceptional water repellence have increasingly come into researchers’ horizons. The superhydrophobic coatings with corrosion resistance, self-cleaning, anti-fogging, drag-reduction, anti-icing properties, etc., meet the featured requirements from different application fields. In addition, endowing superhydrophobic coatings with essential performance conformities, such as transparency, UV resistance, anti-reflection, water-penetration resistance, thermal insulation, flame retardancy, etc. plays a remarkable role in broadening their application scope. Various superhydrophobic coatings were fabricated by diverse technologies resulting from the fundamental demands of different fields. Most past reviews, however, provided only limited information, and lacked detailed classification and presentation on the application of superhydrophobic coatings in different sectors. In the current review, we will highlight the recent progresses on superhydrophobic coatings in automobile, marine, aircraft, solar energy and architecture-buildings fields, and discuss the requirement of prominent functionalities and performance conformities in these vital fields. Poor durability of superhydrophobic coating remains a practical challenge that needs to be addressed through real-world application. This review serves as a good reference source and provides insight into the design and optimization of superhydrophobic coatings for different applications.
Collapse
|
19
|
Ma Z, Liao Z, Ma C, He YC, Gong C, Yu X. Chemoenzymatic conversion of Sorghum durra stalk into furoic acid by a sequential microwave-assisted solid acid conversion and immobilized whole-cells biocatalysis. BIORESOURCE TECHNOLOGY 2020; 311:123474. [PMID: 32447227 DOI: 10.1016/j.biortech.2020.123474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
In this study, chemoenzymatic conversion of Sorghum durra stalk (SDS) into furoic acid was developed by a sequential microwave-assisted solid acid conversion and immobilized whole-cells biocatalysis method. Dry dewaxed SDS (75 g/L) was catalyzed into furfural at 57.8% yield with heterogeneous Sn-argil (2.0 wt% dosage) in n-ethyl butyrate-H2O (1:1, v:v) biphasic system using a microwave (600 W) for 10 min at 180 °C. In this biphasic media (pH 6.5), SDS-derived furfural (125.0 mM) was biologically oxidized to furoic acid by immobilized Brevibacterium lutescens cells harboring furfural-oxidizing activity at 30 °C, and furfural was wholly transformed to furoic acid within 24 h. Finally, the recovery and reuse of the Sn-argil catalyst and immobilized biocatalysts were conducted for synthesizing furoic acid from SDS in the biphasic system. This chemoenzymatic route can be attractive for furoic acid production.
Collapse
Affiliation(s)
- Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, PR China
| | - Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, PR China
| | - Cuiluan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, PR China
| | - Yu-Cai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, PR China.
| | - Chunjie Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, PR China
| |
Collapse
|
20
|
Liu H, Lu Z, Ye K, Zhang Z, Zhang H. Polymorph-Dependent Luminescence Response to Acid Vapors and Its Application in Safety Protection of File Information. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34526-34531. [PMID: 31455079 DOI: 10.1021/acsami.9b14474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A Schiff base, (E)-1-(phenylimino)methyl-2-hydroxylnaphthalene (PIHN), was found to form both nonluminescent and luminescent polymorphs. A unique luminescence "turn on" behavior was observed when the nonluminescent polymorph was fumed with the vapor of aliphatic acids with two or three carbons in the main chain, while the luminescent polymorphs almost did not change the emission color under the same condition. As we know, this is the first report on polymorph-dependent acid response which discloses the influence of crystalline phase on acid-responsive behavior. The formation of hydrogen bonds between PIHN and aliphatic acid is proposed to be the reason for the responsive behavior of the nonemissive polymorph, and such a mechanism is different from the common protonation mechanism. A novel safety protection method of file information has been developed based on the polymorph-dependent luminescence response of PIHN. In addition, we disclose that a crystalline form could show multiple responsive behaviors toward different acids, which benefits the further design of novel acid sensors, such as the sensors that can qualitatively analyze the species of the acid source in an acidic environment.
Collapse
Affiliation(s)
- Huapeng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|