1
|
Yang Y, Guo W, Hao Ngo H, Zhang X, Ye Y, Peng L, Wei C, Zhang H. Mini critical review: Membrane fouling control in membrane bioreactors by microalgae. BIORESOURCE TECHNOLOGY 2024; 406:131022. [PMID: 38914234 DOI: 10.1016/j.biortech.2024.131022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Membrane bioreactors (MBRs) hold significant promise for wastewater treatment, yet the persistent challenge of membrane fouling impedes their practical application. One promising solution lies in the synergy between microalgae and bacteria, offering efficient nutrient removal, reduced energy consumption, and potential mitigation of extracellular polymeric substances (EPS) concentrations. Inoculating microalgae presents a promising avenue to address membrane fouling in MBRs. This review marks the first exploration of utilizing microalgae for membrane fouling control in MBR systems. The review begins with a comprehensive overview of the evolution and distinctive traits of microalgae-MBRs. It goes further insight into the performance and underlying mechanisms facilitating the reduction of membrane fouling through microalgae intervention. Moreover, the review not only identifies the challenges inherent in employing microalgae for membrane fouling control in MBRs but also illuminates prospective pathways for future advancement in this burgeoning field.
Collapse
Affiliation(s)
- Yuanying Yang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chunhai Wei
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Lu S, Chu G, Gao C, Zhao Y, Chen W, Jin C, Wang Q, Gao M. Effect of light intensity on nitrogen transformation, enzymatic activity, antioxidant system and transcriptional response of Chlorella pyrenoidosa during treating mariculture wastewater. BIORESOURCE TECHNOLOGY 2024; 397:130465. [PMID: 38373503 DOI: 10.1016/j.biortech.2024.130465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The nitrogen transformation, enzymatic activity, antioxidant ability and transcriptional response of Chlorella pyrenoidosa (C. pyrenoidosa) treating mariculture wastewater were compared under different light intensities. The microalgal growth, chlorophyll synthesis and nitrogen removal ability of C. pyrenoidosa increased with the light intensity from 3000 to 7000 Lux, whereas they slightly decreased under 9000 and 11,000 Lux. The nitrogen metabolism enzymatic activities displayed obvious differences under different light intensities and affected the nitrogen transformation process. The reactive oxygen species (ROS) production increased with the increase of operational time, whereas it had distinct differences under different light intensities. The changes of antioxidant enzymatic activities were positively correlated with the ROS production. The transcriptional response of C. pyrenoidosa was in accordance with the variation of the photosynthesis, nitrogen assimilation and antioxidant system under different light intensities. This study provides theoretical basis and technical support to select suitable light intensity for algae treating mariculture wastewater.
Collapse
Affiliation(s)
- Shuailing Lu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
3
|
Bah A, Chen Z, Bah A, Qian Q, Tuan PD, Feng D. Systematic literature review of solar-powered landfill leachate sanitation: Challenges and research directions over the past decade. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116751. [PMID: 36435142 DOI: 10.1016/j.jenvman.2022.116751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Researchers have documented the negative effects of refractory chemicals and emergent pollutants in landfill leachate (LL) that cannot be degraded using conventional methods. The propagation, invasion, and deleterious effects of several LL hazards affect aquatic species, the environment, and food outlets, causing significant safety issues. These include cancer risks, chronic exposure, and reproductive consequences. Alternatively, solar energy is a sustainable solution for treating landfill leachate to benefit humans and the environment. In this work, a thorough bibliometric and systematic analysis of studies that employed solar energy for landfill leachate remediation over the past decade was conducted in order to determine trends, and future research areas. In addition to the energy demand, the economic aspect and the advantages of using solar power to treat landfill leachate were discussed. Additionally, the study gives specific suggestions for future research purposes and important problems. The reviewed literature revealed that combining solar-based physical-chemical and biological processes has proven to be the most efficient method for landfill leachate degradation. It also appears from the bibliometric study that more collaboration and contribution are needed to develop solar-based landfill leachate treatment. This study concludes that solar-powered landfill leachate remediation techniques would considerably increase the effectiveness of treated leachate reutilization, advancing the cause of environmental sustainability.
Collapse
Affiliation(s)
- Alseny Bah
- Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Zhenhui Chen
- Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Alhassane Bah
- School of Electrical Power Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qun Qian
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Phan Dinh Tuan
- Research Institute of Sustainable Development, Hochiminh City University of Natural Resources and Environment, Hochiminh City, 70.000, Viet Nam
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China.
| |
Collapse
|
4
|
Ilmasari D, Kamyab H, Yuzir A, Riyadi FA, Khademi T, Al-Qaim FF, Kirpichnikova I, Krishnan S. A Review of the Biological Treatment of Leachate: Available Technologies and Future Requirements for the Circular Economy Implementation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126406. [PMID: 34826565 DOI: 10.1016/j.biortech.2021.126406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram 695 004, Kerala, India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea.
| |
Collapse
|
6
|
Qin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. WATER RESEARCH 2020; 187:116430. [PMID: 33011566 DOI: 10.1016/j.watres.2020.116430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Low microbial activity and serious membrane biofouling are still critical problems that hinder the extensive application of membrane bioreactor (MBR) for industrial wastewater treatment. To address these bottlenecks, we report a new specialized microorganism encapsulation strategy for constructing a highly efficient MBR system. In our study, the algae-entrapping fiber macrospheres with polymeric coating were first coupled with membrane separation for treating refractory high-ammonia nitrogen wastewater. In comparison with traditional alginate beads, the developed macrocapsule (~0.5 cm) exhibited higher biomass harvesting and lower microbial leakage because of the confined micro-aerobic environment created by dual encapsulation of rigid inorganic macrosphere and porous polymeric layers. Application of algae-encapsulating macrocapsule to MBR presented excellent chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal efficiency of 62.23 and 97.38 %, respectively, which were higher than the corresponding values for algae/SA beads and free algae. The biodegradation performance of NH3-N by encapsulated microalgae was similar or superior to that by free cells when the initial content of ammonia nitrogen ranged from 50 to 100 mg/L. The results well demonstrated that the GFS@polymer macrocapsule as a physical barrier reduced the inhibitory effect of higher concentration ammonia nitrogen on the bioactivity of living cells. Importantly, the encapsulated core-shell macrocapsules showed superior anti-biofouling capacity, which had a membrane resistance of 3-5 times lower than that of cell/alginate beads and free cells. This work will open a new avenue to develop a novel encapsulated MBR for various non-degradable wastewater treatments as an energy-saving and sustainable way.
Collapse
Affiliation(s)
- Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Mingzhen Gao
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Mengyuan Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Lihua Feng
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qiuhua Liu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| |
Collapse
|
7
|
Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. SUSTAINABILITY 2020. [DOI: 10.3390/su12239980] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgal biomass is currently considered as a sustainable and renewable feedstock for biofuel production (biohydrogen, biomethane, biodiesel) characterized by lower emissions of hazardous air pollutants than fossil fuels. Photobioreactors for microalgae growth can be exploited using many industrial and domestic wastes. It allows locating the commercial microalgal systems in areas that cannot be employed for agricultural purposes, i.e., near heating or wastewater treatment plants and other industrial facilities producing carbon dioxide and organic and nutrient compounds. Despite their high potential, the large-scale algal biomass production technologies are not popular because the systems for biomass production, separation, drainage, and conversion into energy carriers are difficult to explicitly assess and balance, considering the ecological and economical concerns. Most of the studies presented in the literature have been carried out on a small, laboratory scale. This significantly limits the possibility of obtaining reliable data for a comprehensive assessment of the efficiency of such solutions. Therefore, there is a need to verify the results in pilot-scale and the full technical-scale studies. This study summarizes the strengths and weaknesses of microalgal biomass production technologies for bioenergetic applications.
Collapse
|
8
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
9
|
Prospects of integrating algae technologies into landfill leachate treatment. World J Microbiol Biotechnol 2020; 36:39. [PMID: 32095995 DOI: 10.1007/s11274-020-2810-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Landfilling of municipal waste, an environmental challenge worldwide, results in the continuous formation of significant amounts of leachate, which poses a severe contamination threat to ground and surface water resources. Landfill leachate (LL) is generated by rainwater percolating through disposed waste materials and must be treated effectively before safe discharge into the environment. LL contains numerous pollutants and toxic substances, such as dissolved organic matter, inorganic chemicals, heavy metals, and anthropogenic organic compounds. Currently, LL treatment is carried out by a combination of physical, chemical, and microbial technologies. Microalgae are now viewed as a promising sustainable addition to the repertoire of technologies for treating LL. Photosynthetic algae have been shown to grow in LL under laboratory conditions, while some species have also been employed in larger-scale LL treatments. Treating leachate with algae can contribute to sustainable waste management at existing landfills by remediating low-quality water for recycling and reuse and generating large amounts of algal biomass for cost-effective manufacturing of biofuels and bioproducts. In this review, we will examine LL composition, traditional leachate treatment technologies, LL toxicity to algae, and the potential of employing algae at LL treatment facilities. Emphasis is placed on how algae can be integrated with existing technologies for biological treatment of LL, turning leachate from an environmental liability to an asset that can produce value-added biofuels and bioproducts for the bioeconomy.
Collapse
|
10
|
Li C, Zhang X, Lu Y, Fan Z, Wang T, Zhang G. Cometabolic degradation of p-chloroaniline by the genus Brevibacillus bacteria with extra carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121198. [PMID: 31541955 DOI: 10.1016/j.jhazmat.2019.121198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/31/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, we discovered and isolated a new genus Brevibacillus strain from effluent of dyeing and finishing factory containing highly toxic p-chloroanilines (PCA). Based on the morphological, physiological and biochemical characteristics, as well as 16S rDNA sequence, the strain was identified and denominated as Brevibacillus S-618. Co-metabolism effect was found with extra carbon sources including sodium succinate, sodium citrate, ammonium chloride and glucose which can efficiently promote the biodegradation process of PCA. Under the optimal growth conditions at temperature of 30 °C, pH˜7 and air-water ratio of 0.3 m3/m3·min, the degradation rate of PCA in a 2 L pilot bioreactor with high concentration of 180 mg/L increased from 86.7% to 100% within 72 h after adding sodium succinate. The release of chloride ions during the growth process of the strain was equivalent to the degradation amount of PCA. Meanwhile, the cleavage pathway of PCA degradation by Brevibacillus S-618 was proposed by analysis of enzyme activities of microorganism and intermediate products in the reaction. Benefiting from excellent degradation ability and unique characters in high pollutant contents, high efficient bioreactor can easily be scale up for industrial application. Our study provides a facile route for cost-effectively and environmental-friendly degrading hazardous chemicals.
Collapse
Affiliation(s)
- Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xu Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Tiecheng Wang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Li C, Li X, Qin L, Wu W, Meng Q, Shen C, Zhang G. Membrane photo-bioreactor coupled with heterogeneous Fenton fluidized bed for high salinity wastewater treatment: Pollutant removal, photosynthetic bacteria harvest and membrane anti-fouling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133953. [PMID: 31450050 DOI: 10.1016/j.scitotenv.2019.133953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, efficient photosynthetic bacteria (PSB)-GO/PVDF membrane photo-bioreactor (MPBR) combined with heterogeneous Fenton fluidized bed was built and successfully applied for treatment of actual refractory seafood-processing wastewater with extremely high salinity. As effective pre-treatment, heterogeneous Fenton was designed for removing non-biodegradable organics and reducing iron-sludge discharge. In MPBR, GO/PVDF membrane fabricated by chemical grafting GO nanosheets was first used for salt-tolerated PSB harvest. Compared with original PVDF membrane, GO/PVDF membrane exhibited enhanced hydrophilicity, better permeability (4.4 times) and attractive flux recover rate (94%), which was attributed to remarkable reduction in hydrophobic proteins amount of extracellular polymeric substances (EPS). Importantly, COD and NH3-N removal efficiency of MPBR with GO/PVDF membrane were kept about 95 and 98%, respectively, and average biomass productivity reached as high as 105 mg/L·d. This study provides a promising and economical way to build efficient MBR combined with new materials for high salinity hazardous wastewater treatment.
Collapse
Affiliation(s)
- Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Xiong Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Wei Wu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38(#), 310027 Hangzhou, PR China
| | - Chong Shen
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38(#), 310027 Hangzhou, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China.
| |
Collapse
|
12
|
Treatment of Landfill Leachates with Combined Acidification/Coagulation and The Fe0/H2O2 Process. WATER 2019. [DOI: 10.3390/w11020194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the major environmental concerns associated with waste disposal is the large amount of generated landfill leachates (LL), which are considered a type of wastewater with a complex composition. There is an urgent need to find an effective LL treatment method. LL were subjected to pretreatment followed by the Fe0/H2O2 process. Pretreatment efficiency was coagulation at pH 6.0 >> coagulation at pH 9.0 > acidification at pH 3.0. Coagulation at pH 6.0 in an optimal Fe3+ dose of 1000 mg/L decreased total organic carbon (TOC) from the initial concentration of 1061 mg/L to 491 mg/L while acidification to pH 3.0 decreased TOC to 824 mg/L. After acidification, the Fe0/H2O2 process with 8000/9200 mg/L Fe0/H2O2 reagent doses decreased TOC to 499 mg/L after a processing time of 60 min. Performance of the Fe0/H2O2 process after coagulation at pH 6.0 for optimal Fe0/H2O2 8000/5540 mg/L reagent doses decreased TOC to 268 mg/L (75% TOC removal). Treatment of landfill leachates with combined process coagulation and Fe0/H2O2 also increased their susceptibility to biodegradation, expressed as the biochemical oxygen demand/chemical oxygen demand (BOD5/COD) ratio from 0.13 to 0.43, allowing LL to be considered as susceptible to biodegradation. Fe0/H2O2 process kinetics was described. A statistical analysis confirmed the obtained results. The proposed method can be successfully applied for LL treatment.
Collapse
|