1
|
Faixo S, Garrigues JC, Haddad M, Mazeghrane S, Gaval G, Benoit-Marquié F, Paul E. Thermal treatment of sewage sludge: Impact of the sludge type and origin on the formation of recalcitrant compounds. WATER RESEARCH 2025; 271:122868. [PMID: 39631155 DOI: 10.1016/j.watres.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
In a municipal wastewater treatment plant, the thermal treatment of sludge can be an efficient way of increasing the final sludge cake dryness and boosting anaerobic digestion performances. However, such treatments generate refractory compounds which, once returned to headworks, can affect the quality compliance of effluent discharges, particularly concerning organic nitrogen. This study explores the effects of thermal hydrolysis (TH) and hydrothermal carbonization (HTC) of municipal sludge on the refractory organic compound production. A novel approach using ultra-performance liquid chromatography with size-exclusion chromatography and UV/fluorescence detection (UPLC-SEC-UV/Fluo) was employed to characterise recalcitrant dissolved organic matter (rDOM), which typically consists of Maillard reaction products (MRP). Specifically, UPLC-SEC-UV/Fluo was combined with principal component analysis (PCA) to enable a more thorough examination of the chemical diversity of MRPs produced. Greater temperatures during the thermal treatment step lead to increased production of rDOM and rDON. Protein-rich sludge with a great AS:PS ratio yields the greatest rDOM levels. MRP characteristics, such as molecular weight distribution and aromaticity, are primarily influenced by temperature and plant origin. UPLC-SEC-UV/Fluo provides information on the structures of MRPs useful to optimize the thermal treatment process and in understanding their fate in subsequent processes (chemical oxidation, biodegradation). These insights have practical implications for sludge treatment processes, including optimizing TH and HTC conditions to control rDOM production and adapt the sludge treatment line of a water resource recovery facility.
Collapse
Affiliation(s)
- Sylvain Faixo
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 38 rue du Président Wilson, 78230 Le Pecq, France; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France - 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France.
| | - Jean-Christophe Garrigues
- Laboratoire SOFTMAT (IMRCP), Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France
| | - Mathieu Haddad
- SUEZ Engineering & Construction, SUEZ International, Tour CB21 - 16 place de l'Iris, 92040 Paris La Défense, France
| | - Sofiane Mazeghrane
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 38 rue du Président Wilson, 78230 Le Pecq, France
| | - Gilberte Gaval
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 38 rue du Président Wilson, 78230 Le Pecq, France
| | - Florence Benoit-Marquié
- Laboratoire SOFTMAT (IMRCP), Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France
| | - Etienne Paul
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France - 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France
| |
Collapse
|
2
|
Zhou L, Zhao B, Zhuang WQ. Double-edged sword effects of dissimilatory nitrate reduction to ammonium (DNRA) bacteria on anammox bacteria performance in an MBR reactor. WATER RESEARCH 2023; 233:119754. [PMID: 36842329 DOI: 10.1016/j.watres.2023.119754] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) bacteria imposing double-edged sword effects on anammox bacteria were investigated in an anammox-membrane bioreactor (MBR) experiencing an induced crash-recovery event. During the experiment, the anammox-MBR was loaded with NH4+-N:NO2--N ratios (RatioNH4+-N: NO2--N) of 1.20-1.60. Initially, the anammox-MBR removed over 95% of 100 mg/L NH4+-N and 132 mg/L NO2--N (RatioNH4+-N: NO2--N = 0.76, the well accepted stoichiometric RatioNH4+-N: NO2--N for anammox) in the influent (Stage 0). Then, we induced a system crash-recovery event via nitrite shock loadings to better understand responses from different guilds of bacteria in anammox-MBR, loaded with 1.60 RatioNH4+-N: NO2--N with 100 mg/L NO2--N in the influent (Stage 1). Interestingly, the nitrogen removal by anammox bacteria was maintained for about 20 days before starting to decrease significantly. In Stage 2, we further increased influent nitrite concentration to 120 mg/L (1.33 RatioNH4+-N: NO2--N) to simulate a high nitrite toxicity scenario for a short period of time. As expected, nitrogen removal efficiency dropped to only 16.8%. After the induced system crash, anammox-MBR performance recovered steadily to 93.2% nitrogen removal with a 1.25 RatioNH4+-N:NO2--N and a low nitrite influent concentration of 80 mg/L NO2--N. Metagenomics analysis revealed that a probable causality of the decreasing nitrogen removal efficiency in Stage 1 was the overgrowth of DNRA-capable bacteria. The results showed that the members within the Ignavibacteriales order (21.7%) out competed anammox bacteria (17.0%) in the anammox-MBR with elevated nitrite concentrations in the effluent. High NO2--N loading (120 mg N/L) further caused the predominant Candidatus Kuenenia spp. were replaced by Candidatus Brocadia spp. Therefore, it was evident that DNRA bacteria posed negative effects on anammox with 1.60 RatioNH4+-N: NO2--N. Also, when 120 mg/L NO2--N fed to anammox-MBR (RatioNH4+-N: NO2--N = 1.33), canonical denitrification became the primary nitrogen sink with both DNRA and anammox activities decreased. They probably fed on lysed microbial cells of anammox and DNRA. In Stage 3, a low RatioNH4+-N: NO2--N (1.25) with 80 mg/L NO2--N was used to rescue the system, which effectively promoted DNRA-capable bacteria growth. Although anammox bacteria's abundance was only 7.7% during this stage, they could be responsible for about 90% of the total nitrogen removal during this stage.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR. China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
3
|
Li X, Liu C, Xie H, Sun Y, Xu S, Liu G. Nitrogen removal of thermal hydrolysis-anaerobic digestion liquid: A review. CHEMOSPHERE 2023; 320:138097. [PMID: 36764619 DOI: 10.1016/j.chemosphere.2023.138097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Thermal hydrolysis (TH) pretreatment, as an anaerobic digestion (AD) pretreatment, has not only been verified in the laboratory but also frequently employed in actual engineering. However, the properties of anaerobic digestion liquid (ADL), such as high organic matter concentration, high ammonia nitrogen (NH4+-N) concentration, and low carbon-nitrogen ratio (C/N), have posed some difficulties in the follow-up treatment. To address the above issues, the autotrophic nitrogen removal (ANR) process is developed to treat ADL. Due to the NH4+-N, organic materials, toxic and harmful substances in the ADL that might directly impact the activity of functional bacteria, the ADL should be treated before being fed into the ANR process. This paper provided a focused review of the thermal hydrolysis-anaerobic digestion process (TH-ADP) mechanism and the ANR mechanism, summarized the existing difficulties in the treatment of thermal hydrolysis-anaerobic digestion liquid (TH-ADL), assessed the research status thoroughly, and offered the potential solutions to the problems.
Collapse
Affiliation(s)
- Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Changkuo Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yujie Sun
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiwei Xu
- Beijing Capital Eco-environment Protection Group Co., Itd, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
4
|
Pang S, Zhou Y, Yang L, Zhou J, Li X, Xia S. Simultaneous removal of nitrate and ammonium by hydrogen-based partial denitrification coupled with anammox in a membrane biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 369:128443. [PMID: 36470489 DOI: 10.1016/j.biortech.2022.128443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen-based membrane biofilm reactors (MBfRs) are effective for nitrogen removal. However, the safety of hydrogen limited the application of MBfR. Here, a hydrogen-based partial denitrification system coupled with anammox (H2-PDA) was constructed in an MBfR for reducing hydrogen demand significantly. The metabolomics and structures of microbial communities were analyzed to determine the phenotypic differences and drivers underlying denitrification, anammox, and H2-PDA. These findings indicated that total nitrogen (TN) removal increased from 57.1% in S1 to 93.7% in S2. During the H2-PDA process, partial denitrification and anammox contributed to TN removal by 93.7% and 6.3%, respectively. Community analysis indicated that the H2-PDA system was dominated by the genus Meiothermus, which is involved in partial denitrification. Collectively, these findings confirmed the feasibility of incorporating the H2-PDA process in a MBfR and form a foundation for the establishment of novel and practical methods for efficient nitrogen removal.
Collapse
Affiliation(s)
- Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Hong S, De Clippeleir H, Goel R. Response of mixed community anammox biomass against sulfide, nitrite and recalcitrant carbon in terms of inhibition coefficients and functional gene expressions. CHEMOSPHERE 2022; 308:136232. [PMID: 36055592 DOI: 10.1016/j.chemosphere.2022.136232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has evolved as a carbon and energy-efficient nitrogen management bioprocess. However, factors such as inhibitory chemicals still challenge the easy operation of this powerful bioprocess. This research systematically evaluated the inhibition kinetics of sulfide, nitrite, and recalcitrant carbon under a genomic framework. The inhibition at the substrate and genetic levels of sulfide, nitrite and recalcitrant carbon on anammox activity was studied using batch tests. Nitrite inhibition of anammox followed substrate inhibition and was best described by the Aiba model with an inhibition coefficient [Formula: see text] of 324.04 mg N/L. Hydrazine synthase (hzsB) gene (anammox biomarker) expression was increased over time when incubated with nitrite up to 400 mg N/L. However, despite having the highest specific nitrite removal (SNR), the expression of hzsB at 100 and 200 mg N/L of nitrite was more muted than in most other samples with lower SNRs. Sulfide severely inhibited anammox activities. The inhibition was fitted with a Monod-based model with a [Formula: see text] of 4.39 mg S/L. At a sulfide concentration of 5 mg/L, the hzsB expression decreased throughout the experiment from its original value at he beginning. Recalcitrant carbon of filtrate from thermal hydrolysis process pretreated anaerobic digester had a minimal effect on maximum specific anammox activity (MSAA), and thus the value of the inhibition coefficient could not be calculated. At the same time, its hzsB expression profile was similar to that in the control. Resiliency and recovery tests indicated that the inhibition of nitrite (up to 400 mg N/L) and recalcitrant carbon (in 100% filtrate) were reversible. About 32% of MSAA was recovered after repeated exposures to sulfide at 2.5 mg/L, while at 5 mg/L, the inhibition was irreversible. Findings from this study will be helpful for the successful design and implementation of anammox in full-scale applications.
Collapse
Affiliation(s)
- Soklida Hong
- Civil and Environmental Engineering Department, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| | | | - Ramesh Goel
- Civil and Environmental Engineering Department, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
6
|
Luo J, Yang J, Li S, Li X, Chang G, Yang Y. Initiating an anaerobic ammonium oxidation reactor by inoculation with starved anaerobic ammonium oxidation sludge and modified carriers. BIORESOURCE TECHNOLOGY 2022; 359:127438. [PMID: 35700901 DOI: 10.1016/j.biortech.2022.127438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Prolonged starved anammox sludge (SAS) obtained during initial rejuvenation was inoculated into a reactor together with activated sludge (AS), anaerobic granular sludge (AGS) and modified carriers consisting of honeycomb carrier with high biological interception and activated carbon carrier with high adsorption performance. SAS accounted for 5% of the inoculated sludge. The anammox process was started and operated at around 25℃. After 160 days, the nitrogen loading rate and nitrogen removal rate reached 1.12 kgN·m-3·d-1 and 0.97 kgN·m-3·d-1, respectively. Obvious red anammox biofilms were observed on the modified carriers. Microbial community analysis showed that the relative abundance of anammox bacteria increased from < 0.1% to 22.96%. Candidatus Jettenia and Candidatus Brocadia were the dominating anammox species. This work demonstrates the potential to reuse SAS to improve the start-up efficiency of anammox reactors, which makes good economic sense.
Collapse
Affiliation(s)
- Jingwen Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Genwang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yifei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
7
|
Balasundaram G, Banu R, Varjani S, Kazmi AA, Tyagi VK. Recalcitrant compounds formation, their toxicity, and mitigation: Key issues in biomass pretreatment and anaerobic digestion. CHEMOSPHERE 2022; 291:132930. [PMID: 34800498 DOI: 10.1016/j.chemosphere.2021.132930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Increasing energy demands and environmental issues have stressed the importance of sustainable methods of energy production. Anaerobic digestion (AD) of the biodegradable waste, i.e., agricultural residues, organic fraction of municipal solid waste (OFMSW), sewage sludge, etc., results in the production of biogas, which is a sustainable and cost feasible technique that reduces the dependence on fossil fuels and also overcomes the problems associated with biomass waste management. To solubilize the organic matter and enhance the susceptibility of hardly biodegradable fraction (i.e., lignocellulosic) for hydrolysis and increase methane production, several pretreatments, including physical, chemical, biological, and hybrid methods have been studied. However, these pretreatment methods under specific operating conditions result in the formation of recalcitrant compounds, such as sugars (xylose, Xylo-oligomers), organic acids (acetic, formic, levulinic acids), and lignin derivatives (poly and mono-phenolic compounds), causing significant inhibitory effects on anaerobic digestion. During the scaling up of these techniques from laboratory to industrial level, the focus on managing inhibitory compounds formed during pretreatment is envisaged to increase because of the need to use recalcitrant feedstocks in anaerobic digestion to increase biogas productivity. Therefore, it is crucial to understand the production mechanism of inhibitory compounds during pretreatment and work out the possible detoxification methods to improve anaerobic digestion. This paper critically reviews the earlier works based on the formation of recalcitrant compounds during feedstocks pretreatment under variable conditions, and their detrimental effects on process performance. The technologies to mitigate recalcitrant toxicity are also comprehensively discussed.
Collapse
Affiliation(s)
- Gowtham Balasundaram
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, 247667, India
| | - Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - A A Kazmi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, 247667, India
| | - Vinay Kumar Tyagi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, 247667, India.
| |
Collapse
|
8
|
Analysis of Reject Water Formed in the Mechanical Dewatering Process of Digested Sludge Conditioned by Physical and Chemical Methods. ENERGIES 2022. [DOI: 10.3390/en15051678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reject water separated from digested sludge may be a potential source of nutrients due to its high content. However, most often, reject water after sludge dewatering is directed to sewage lines at wastewater treatment plants, negatively affecting their operation, especially in the biological part. The activities related to sludge conditioning before dewatering have a direct impact on the quality of the reject water. The reject water of raw digested sludge is characterized by very high concentrations of ammonium nitrogen, at 1718 mgN-NH4+/dm3; phosphates, at 122.4 mgPO43−/dm3; and chemical oxygen demand (COD), at 2240 mgO2/dm3. The objective of the research was to determine the impact of selected sludge conditioning methods on the quality of reject water obtained after sludge dewatering. The following parameters were analyzed in the reject water: the chemical oxygen demand (COD), phosphates, ammonium nitrogen, and total suspended solids (TSS). It has been observed that the sludge sonification process increases the content of impurities (COD, phosphates) in reject water with an increase in the amplitude of the ultrasonic field. On the other hand, the chemical reagents cause a decrease in the concentration of the pollutants with an increase of the chemical dose. It has been found that the inorganic coagulant PIX 113 gives much better results regarding the reduction of contamination than the polyelectrolyte Zetag 8180.
Collapse
|
9
|
Yan W, Xu H, Lu D, Zhou Y. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions. BIORESOURCE TECHNOLOGY 2022; 344:126248. [PMID: 34743996 DOI: 10.1016/j.biortech.2021.126248] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Thermal hydrolysis pretreatment (THP), as a step prior to sludge anaerobic digestion (AD), is widely applied due to its effectiveness in enhancing organic solids hydrolysis and subsequent biogas productivity. However, THP also induces a series of problems including formation of refractory compounds in THP cylinder, high residual ammonia and organic in the AD centrate, inhibition on downstream nitrogen removal process and reduction in UV-disinfection effectiveness during post-treatment. More attention should be paid on how to mitigate these negative effects. Despite intensive studies were carried out to reduce refractory compounds formation and enhance biological performance, there is limited effort to discuss the solutions to tackle the THP associated problems in a holistic manner. This paper summarizes the solutions developed to date and analyzes their technology readiness to assess application potential in full-scale settings. The content highlights the limitations of THP and proposes potential solutions to address the technological challenges.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
10
|
Wang Q, Xu Q, Wang H, Han B, Xia D, Wang D, Zhang W. Molecular mechanisms of interaction between enzymes and Maillard reaction products formed from thermal hydrolysis pretreatment of waste activated sludge. WATER RESEARCH 2021; 206:117777. [PMID: 34688093 DOI: 10.1016/j.watres.2021.117777] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Thermal hydrolysis pretreatment (THP) is often used to improve the anaerobic digestion performance of waste activated sludge (WAS) in wastewater treatment plants (WWTPs). During the THP process, the proteins and polysaccharides in the biomass will undergo hydrolysis and Maillard reaction, producing biorefractory organic substances, such as recalcitrant dissolved organic nitrogen (rDON) and melanoidins. In this study, a series of spectroscopy methods were used to quantitatively analyze the Maillard reaction of glucose and lysine, and the interaction mechanisms of the Maillard reaction products (MRPs) and lysozyme were investigated. Results showed that the typical aromatic heterocyclic structures in MRPs, such as pyrazine and furan, were found to quench molecular fluorescence of lysozyme, resulting in an unfolding of standard protein structure and increase in lysozyme hydrophobicity. Significant loss of enzyme activity was detected during this process. Thermodynamic parameters obtained from isothermal titration calorimetry (ITC) confirmed that the interaction between MRPs and lysozyme occurred both exothermically and spontaneously. Density functional theory (DFT) calculations suggested that the molecular interactions of MRPs and protein included parallel dislocation aromatic stacking, T-shaped vertical aromatic stacking, H-bond and H-bond coupled to aromatic stacking.
Collapse
Affiliation(s)
- Qiandi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qiongying Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Huidi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dasha Xia
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310012, China
| | - Dongsheng Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
11
|
Gong H, Ding J, Wang S, Xu E, Xue Y, Yang D, Gu G, Dai X. Optimizing granular anammox retention via hydrocycloning during two-stage deammonification of high-solid sludge anaerobic digester supernatant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148048. [PMID: 34126497 DOI: 10.1016/j.scitotenv.2021.148048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
High-solid sludge anaerobic digestion leads to increased organic matters in digester supernatant, which promotes heterotrophic competition and reduces anaerobic ammonium oxidation (anammox) retention. This research demonstrated effective anammox retention by hydrocycloning during a two-stage deammonification. Anammox retention was evaluated by dividing large (>0.425 mm), medium (0.25 to 0.425 mm), and small (<0.25 mm) aggregate fractions via a sieve, whereby Candidatus Kuenenia abundance in each size aggregate was measured to be 16.8%, 5.0%, and 0.9% respectively. After hydrocyclone separation, large particles took up only 1.7% to 2.7% in the overflow discharge (upper discharge from the reactor), whereas its initial proportion was 19.4%, indicating limited anammox loss. The volume ratio change of large particles to total aggregates was defined for particle breakdown evaluation. Breakdown (23% to 32% large particles) occurred mainly during pumping (influenced by pump frequency and type), while little happened in the hydrocyclone. This research provided methods to use a sieve to evaluate anammox retention by hydrocyclone during high-solid sludge anaerobic digester supernatant deammonification, and information for reducing particle breakdown, pumping selection, and separation optimization.
Collapse
Affiliation(s)
- Hui Gong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianning Ding
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shunyu Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Enhui Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonggang Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guowei Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Application of Anammox-Based Processes in Urban WWTPs: Are We on the Right Track? Processes (Basel) 2021. [DOI: 10.3390/pr9081334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of partial nitritation and anammox processes (PN/A) to remove nitrogen can improve the energy efficiency of wastewater treatment plants (WWTPs) as well as diminish their operational costs. However, there are still several limitations that are preventing the widespread application of PN/A processes in urban WWTPs such as: (a) the loss of performance stability of the PN/A units operated at the sludge line, when the sludge is thermally pretreated to increase biogas production; (b) the proliferation of nitrite-oxidizing bacteria (NOB) in the mainstream; and (c) the maintenance of a suitable effluent quality in the mainstream. In this work, different operational strategies to overcome these limitations were modelled and analyzed. In WWTPs whose sludge is thermically hydrolyzed, the implementation of an anerobic treatment before the PN/A unit is the best alternative, from an economic point of view, to maintain the stable performance of this unit. In order to apply the PN/A process in the mainstream, the growth of ammonia-oxidizing bacteria (AOB) should be promoted in the sludge line by supplying extra sludge to the anaerobic digesters. The AOB generated would be applied to the water line to partially oxidize ammonia, and the anammox process would then be carried out. Excess nitrate generated by anammox bacteria and/or NOB can be removed by recycling a fraction of the WWTP effluent to the biological reactor to promote its denitrification.
Collapse
|
13
|
Kosgey K, Chandran K, Gokal J, Kiambi SL, Bux F, Kumari S. Critical Analysis of Biomass Retention Strategies in Mainstream and Sidestream ANAMMOX-Mediated Nitrogen Removal Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9-24. [PMID: 33350826 DOI: 10.1021/acs.est.0c00276] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ANAMMOX (anaerobic ammonium oxidation) represents an energy-efficient process for biological nitrogen removal, particularly from wastewater streams with low chemical oxygen demand (COD) to nitrogen (C/N) ratios. Its widespread application, however, is still hampered by a lack of access to biomass-enriched with ANAMMOX bacteria (AMX), slow growth rates of AMX, and their sensitivity to inhibition. Although the coupling of ANAMMOX processes with partial nitrification is already widespread, especially for sidestream treatment, maintaining a functional population density of AMX remains a challenge in these systems. Therefore, strategies that maximize retention of AMX-rich biomass are essential to promote process stability. This paper reviews existing methods of biomass retention in ANAMMOX-mediated systems, focusing on (i) granulation; (ii) biofilm formation on carrier materials; (iii) gel entrapment; and (iv) membrane technology in mainstream and sidestream systems. In addition, the microbial ecology of different ANAMMOX-mediated systems is reviewed.
Collapse
Affiliation(s)
- Kiprotich Kosgey
- Durban University of Technology, Institute for Water and Wastewater Technology, Durban, South Africa
- Durban University of Technology, Department of Chemical Engineering, Durban, South Africa
| | - Kartik Chandran
- Columbia University, Earth and Environmental Engineering, New York, New York, United States
| | - Jashan Gokal
- Durban University of Technology, Institute for Water and Wastewater Technology, Durban, South Africa
| | - Sammy Lewis Kiambi
- Durban University of Technology, Department of Chemical Engineering, Durban, South Africa
| | - Faizal Bux
- Durban University of Technology, Institute for Water and Wastewater Technology, Durban, South Africa
| | - Sheena Kumari
- Durban University of Technology, Institute for Water and Wastewater Technology, Durban, South Africa
| |
Collapse
|
14
|
Jiang Q, Liu H, Zhang Y, Cui MH, Fu B, Liu HB. Insight into sludge anaerobic digestion with granular activated carbon addition: Methanogenic acceleration and methane reduction relief. BIORESOURCE TECHNOLOGY 2021; 319:124131. [PMID: 33002784 DOI: 10.1016/j.biortech.2020.124131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, the multiple effects of granular activated carbon (GAC) on sludge anaerobic digestion at ambient (16-24 °C), mesophilic (35 °C) and thermophilic (55 °C) temperature were investigated. After GAC addition, although the methane yields of raw sludge were reduced by 6.5%-36.9%, the lag phases of methanogenesis were shortened by 19.3%-30.6% and the reductions of methane yields were declined to only 5.9%-8.1% simultaneously for pretreated sludge. The inhibitory substances like phenols that generated by thermal pretreatment were reduced after GAC addition, which were demonstrated to be responsible for the methanogenic acceleration. Meanwhile, the methane reduction due to the non-selective adsorption by GAC could be mitigated by pretreatment and elevated temperature. Thus, a strategy coupling thermal pretreatment with detoxification by GAC was proposed to improve the methane production rate and avoid the negative effects during sludge anaerobic digestion with GAC addition.
Collapse
Affiliation(s)
- Qian Jiang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Min-Hua Cui
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Hong-Bo Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| |
Collapse
|
15
|
Zhang D, Wang G, Dai X. Operation of pilot-scale nitrification-anammox reactors for the treatment of reject-water produced from the anaerobic digestion of thermal hydrolysis-treated sludge. BIORESOURCE TECHNOLOGY 2020; 314:123717. [PMID: 32645571 DOI: 10.1016/j.biortech.2020.123717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Two-stage pilot-scale partial nitrification (PN)-anammox reactors were successfully operated for the treatment of reject-water (record as TRW) produced from the anaerobic digestion of thermal hydrolysis-treated sludge (THPAD). The PN reactor was operated stalely and Nitrosomonas was the major ammonia-oxidizing bacteria. In the anammox reactor, anammox activity doubled from day 3 to day 53 demonstrating that anammox adapted to the PN effluent. After acid shock at pH 4 for approximately 1 h, anammox was seriously inhibited and required approximately 60 days for recovery. This provided a reference for handling similar accidents. In the next 166 days, the load reached 0.40-0.51 kg N/(m3·d) in the presence of high concentration COD (798-1313 mg/L), suggesting anammox can be used in high concentration organic wastewater. Under the combined action of anammox and denitrification, 94.7% nitrogen was removed. These results demonstrated TRW can be treated using PN-anammox technology which was conducive to the popularization of THPAD.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guopeng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
16
|
Li Z, Peng Y, Gao H. Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. BIORESOURCE TECHNOLOGY 2020; 305:123083. [PMID: 32145699 DOI: 10.1016/j.biortech.2020.123083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A long-term experiment in an anaerobic ammonium oxidation (anammox) reactor showed that anammox consortia could perform a stable and efficient Fe(II)-dependent dissimilatory nitrate reduction to ammonium (DNRA) coupled to the anammox (DNRA-anammox) process by controlling the EDTA-2Na/Fe(II) ratio and pH, with a total nitrogen removal rate (TNRR) of 0.23 ± 0.01 kg-N/m3/d. Anammox bacteria (Candidatus Kuenenia) were the dominant and functional microbes in such a nitrate wastewater treatment system. Visual MINTEQ analysis showed that the EDTA-2Na/Fe(II) molar ratio affected the influent composition of Fe and EDTA species and hence nitrate removal, while pH influenced both nitrate removal and the coupling degree of the Fe(II)-dependent DNRA-anammox process due to its own physiology. The kinetic simulation results showed that excess EDTA-2Na imposed a competitive inhibition on the Fe(II)-dependent DNRA-anammox process, and the Bell-shaped (A), (B), (C) and Ratkowsky models could be used to explore the pH dependency of the Fe(II)-dependent DNRA-anammox process.
Collapse
Affiliation(s)
- Zhixing Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Haijing Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
17
|
Zhang D, Feng Y, Huang H, Khunjar W, Wang ZW. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge. ENVIRONMENT INTERNATIONAL 2020; 138:105629. [PMID: 32179317 DOI: 10.1016/j.envint.2020.105629] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Thermal hydrolysis pretreatment (THP) has been considered as an advanced approach to enhance the performance of anaerobic digestion treating municipal sludge. However, several drawbacks were also identified with THP including the formation of brown and ultraviolet-quenching compounds that contain recalcitrant dissolved organic nitrogen (rDON). Melanoidins produced from the Maillard reaction between reducing sugar and amino group have been regarded as a representative of such compounds. This review presented the state-of-the-art understanding of the mechanism of melanoidin formation derived from the research of sludge THP, food processing, and model Maillard reaction systems. Special attentions were paid to factors affecting melanoidin formation and their implications to the control of rDON in the sludge THP process. These factors include reactant availability, heating temperature and time, pH, and the presence of metallic ions. It was concluded that efforts need to be focused on elucidating the extent of the Maillard reaction in sludge THP. This paper aims to provide a mechanistic recommendation on the research and control of the THP-resulted rDON in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Dian Zhang
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA
| | - Yiming Feng
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Wendell Khunjar
- Hazen and Sawyer, 4035 Ridge Top Road, Suite 400, Fairfax VA 22030, USA
| | - Zhi-Wu Wang
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA.
| |
Collapse
|
18
|
Zhou Y, Guo B, Zhang L, Zou X, Yang S, Zhang H, Xia S, Liu Y. Anaerobically digested blackwater treatment by simultaneous denitrification and anammox processes: Feeding loading affects reactor performance and microbial community succession. CHEMOSPHERE 2020; 241:125101. [PMID: 31683431 DOI: 10.1016/j.chemosphere.2019.125101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Source diverted blackwater collected from toilets can be anaerobically digested to recover energy. The anaerobically digested blackwater (ADB) contains high levels of ammonium and low carbon to nitrogen (C/N) ratio. In the present study, ADB was treated by a two-stage nitritation-denitrification/anammox process in an integrated fixed film activated sludge-continuous flow reactor (IFAS-CFR). NH4+-N, NO2--N, total nitrogen (TN), and chemical oxygen demand (COD) removal efficiencies were 80%, 82%, 76%, and 78%, respectively. Anaerobic ammonium oxidation (anammox) and denitrification contributed to 44-48%, and 52-56% of total nitrogen removal, respectively. Both of the protein- and humic acid-like matters were removed during the process. An increase in feed load promoted the sustained growth of anammox bacteria-Candidatus Brocadia in the biofilm, as well as an increase of denitrifiers (Pseudomonas, Thermotonus, Phodanobacter, Caulobacter) in both biofilm and suspended biomass, which remained higher in the suspended biomass than in biofilm. Overall, biofilm had higher nitrogen removal efficiency than suspended biomass, while suspended biomass had a higher COD removal efficiency than biofilm.
Collapse
Affiliation(s)
- Yun Zhou
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Zhang
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Xin Zou
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Sen Yang
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Huixin Zhang
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
19
|
Xie F, Ma X, Zhao B, Cui Y, Zhang X, Yue X. Promoting the nitrogen removal of anammox process by Fe-C micro-electrolysis. BIORESOURCE TECHNOLOGY 2020; 297:122429. [PMID: 31791919 DOI: 10.1016/j.biortech.2019.122429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, a process that combines iron-carbon micro-electrolysis (IC-ME) with the anammox process was successfully established for promoting nitrogen removal, especially the removal of nitrate by-product. Compared with the conventional anammox process, the average total nitrogen removal efficiency of the combined system increased from 64.6% to 90.2% and 83.8% when the system was effectively operated for 4 days (Phase 2) and 13 days (Phase 3), respectively. In this combined system, IC-ME played a dual role: 1) converting the nitrate to ammonia as the nitrogen substrate for further degradation, and 2) producing Fe2+, Fe3+ and H2 for the nitrogen removal processes of NH4+ oxidation with Fe3+ reduction (Feammox), nitrate-dependent Fe2+ oxidation (NDFO), and denitrification, in addition to the anammox process. Microbial analysis using 16S rRNA high-throughput sequencing revealed Candidatus Kuenenia and Candidatus Brocadia as the major anammox genera, accounting for 1.01% and 0.15%, respectively.
Collapse
Affiliation(s)
- Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiao Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|