1
|
Bian X, Zhang M, Huang J, Li F, Feng H, Ma J. A comparison study on membrane fouling in A/O-MBR and A/A-MBR at different mixed liquor-suspended solids concentrations. ENVIRONMENTAL TECHNOLOGY 2025; 46:1625-1635. [PMID: 39172023 DOI: 10.1080/09593330.2024.2394905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Membrane fouling leads to decreased membrane flux, increases the frequency of membrane tissue replacement and membrane cleaning, and increases the operating cost of membrane bioreactor. In this study, the pollutant removal effects, membrane fouling differences and microbial characteristics of anaerobic/aerobic MBR (A/O-MBR) and anaerobic/anoxic MBR (A/A-MBR) were investigated at different mixed liquor suspended solids (MLSS) concentrations. The results showed that the chemical cleaning cycle of membrane contamination was 12, 28, 44 h and 24, 40, 104 h, respectively, and the cycle was prolonged with the increase of MLSS concentration (from 6000 to 9000 mg L-1). A/O-MBR was 1.4-2.4 times the rate of membrane fouling of A/A-MBR. In irreversible resistance, extracellular polymer substances (EPS) were the most significant contributors to membrane fouling. EPS concentration in A/A-MBR (118.33, 73.75, 54.26 mg/gMLSS) was lower than that in A/O-MBR (171.68, 91.92, 62.33 mg/gMLSS). Therefore, increasing MLSS concentration could mitigate membrane fouling. 16S rRNA high-throughput sequencing demonstrated that filamentous bacteria was the primary reason for the membrane fouling difference. Filamentous bacteria were more likely to be attached to the surface of the membrane, causing membrane fouling. The abundance percentage of filamentous bacteria in A/A-MBR was smaller than that in A/O-MBR. In summary, The excellent performance of A/A-MBR in membrane fouling behaviour, resistance analysis, EPS and microorganisms proved that A/A-MBR is more promising than A/O-MBR in wastewater nitrogen and phosphorus removal. This study can provide a theoretical basis for the application of MBR in the field of sewage treatment.
Collapse
Affiliation(s)
- Xiaozheng Bian
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
- Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou, People's Republic of China
| | - Mengyuan Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
- Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou, People's Republic of China
| | - Fongyau Li
- Chemistry department, National University of Singapore, Singapore, Singapore
| | - Huatao Feng
- Chemistry department, National University of Singapore, Singapore, Singapore
| | - Jianqin Ma
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Carranza Muñoz A, Olsson J, Malovanyy A, Baresel C, Machamada-Devaiah N, Schnürer A. Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: experimentation and upscaling implications. WATER RESEARCH 2024; 266:122426. [PMID: 39276471 DOI: 10.1016/j.watres.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Stricter nutrient discharge limits at wastewater treatment plants (WWTPs) are increasing the demand for external carbon sources for denitrification, especially at cold temperatures. Production of carbon sources at WWTP by fermentation of sewage sludge often results in low yields of soluble carbon and volatile fatty acids (VFA) and high biogas losses, limiting its feasibility for full-scale application. This study investigated the overall impact of thermal hydrolysis pre-treatment (THP) on the production of VFA for denitrification through the fermentation of municipal sludge and digestate. Fermentation products and yields, denitrification efficiency and potential impacts on methane yield in the downstream process after carbon source separation were evaluated. Fermentation of THP substrates resulted in 37-70 % higher soluble chemical oxygen demand (sCOD) concentrations than fermentation of untreated substrates but did not significantly affect VFA yield after fermentation. Nevertheless, THP had a positive impact on the denitrification rates and on the methane yields of the residual solid fraction in all experiments. Among the different carbon sources tested, the one produced from the fermentation of THP-digestate showed an overall better potential as a carbon source than other substrates (e.g. sludge). It obtained a relatively high carbon solubilisation degree (39 %) and higher concentrations of sCOD (19 g sCOD/L) and VFA (9.8 g VFACOD/L), which resulted in a higher denitrification rate (8.77 mg NOx-N/g VSS∙h). After the separation of the carbon source, the solid phase from this sample produced a methane yield of 101 mL CH4/g VS. Furthermore, fermentation of a 50:50 mixture of THP-substrate and raw sludge produced also resulted in a high VFA yield (283 g VFACOD/kg VSin) and denitrification rate of 8.74 mg NOx-N/g VSS∙h, indicating a potential for reduced treatment volumes. Calculations based on a full-scale WWTP (Käppala, Stockholm) demonstrated that the carbon sources produced could replace fossil-based methanol and meet the nitrogen effluent limit (6 mg/L) despite their ammonium content. Fermentation of 50-63 % of the available sludge at Käppala WWTP in 2028 could produce enough carbon source to replace methanol, with only an 8-20 % reduction in methane production, depending on the production process. Additionally, digestate production would be sufficient to generate 81 % of the required carbon source while also increasing methane production by 5 % if a portion of the solid residues were recirculated to the digester.
Collapse
Affiliation(s)
- Andrea Carranza Muñoz
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden; Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden.
| | - Jesper Olsson
- The Käppala Association, Södra Kungsvägen 315, 181 66 Lidingö, Sweden
| | - Andriy Malovanyy
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Christian Baresel
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Nethra Machamada-Devaiah
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden
| |
Collapse
|
3
|
Xiao X, Hu H, Meng X, Huang Z, Feng Y, Gao Q, Ruan W. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. BIORESOURCE TECHNOLOGY 2024; 399:130576. [PMID: 38479625 DOI: 10.1016/j.biortech.2024.130576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
In this study, a pilot-scale anaerobic membrane bioreactor (AnMBR) was developed to continuously produce volatile fatty acids (VFAs) from kitchen waste slurry under an alkaline condition. The alkaline fermentation effectively suppressed methanogenesis, thus achieving high VFAs production of 60.3 g/L. Acetic acid, propionic acid, and butyric acid accounted for over 95.0 % of the total VFAs. The VFAs yield, productivity, and chemical oxygen demand (COD) recovery efficiency reached 0.5 g/g-CODinfluent, 6.0 kg/m3/d, and 62.8 %, respectively. Moreover, the CODVFAs/CODeffluent ratio exceeded 96.0 %, and the CODVFAs/NH3-N ratio through ammonia distillation reached up to 192.5. The microbial community was reshaped during the alkaline fermentation with increasing salinity. The membrane fouling of the AnMBR was alleviated by chemical cleaning and sludge discharge, and membrane modules displayed a sustained filtration performance. In conclusion, this study demonstrated that high-quality VFAs could be efficiently produced from kitchen waste slurry using an AnMBR process via alkaline fermentation.
Collapse
Affiliation(s)
- Xiaolan Xiao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongmei Hu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xingyao Meng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yongrui Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qi Gao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
4
|
Hangri S, Derbal K, Policastro G, Panico A, Contestabile P, Pontoni L, Race M, Fabbricino M. Combining pretreatments and co-fermentation as successful approach to improve biohydrogen production from dairy cow manure. ENVIRONMENTAL RESEARCH 2024; 246:118118. [PMID: 38199469 DOI: 10.1016/j.envres.2024.118118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The present paper is focused on enhancing the production of biohydrogen (bioH2) from dairy cow manure (DCM) through dark fermentation (DF). Two enhancement production strategies have been tested: i) the combination of H2O2 with sonification as pretreatment and ii) the co-fermentation with cheese whey as co-substrate. Concerning the pretreatment, the best combination was investigated according to the response surface methodology (RSM) by varying H2O2 dosage between 0.0015 and 0.06 g/gTS and ultrasonic specific energy input (USEI) between 35.48 and 1419.36 J/gTS. The increase of carbohydrates concentration was used as target parameter. Results showed that the combination of 0.06 g/gTS of H2O2 with 1419.36 J/gTS of USEI maximized the concentration of carbohydrates. The optimized conditions were used to pretreat the substrate prior conducting DF tests. The use of pretreatment resulted in obtaining a cumulative bioH2 volume of 51.25 mL/L and enhanced the bioH2 production by 125% compared to the control test conducted using raw DCM. Moreover, the second strategy, i.e. co-fermentation with cheese whey (20% v/v) as co-substrate ended up to enhancing the DF performance as the bioH2 production reached a value of 334.90 mL/L with an increase of 1372% compared to the control DF test. To further improve the process, dark fermentation effluents (DFEs) were valorized via photo fermentation (PF), obtaining an additional hydrogen production aliquot.
Collapse
Affiliation(s)
- S Hangri
- Department of Process Engineering National Polytechnic School of Constantine, Algeria
| | - K Derbal
- Department of Process Engineering National Polytechnic School of Constantine, Algeria
| | - G Policastro
- Department of Engineering and Computer Science Telematic University, Pegaso, Italy.
| | - A Panico
- Department of Engineering, University of Campania "Luigi Vanvitelli", Italy.
| | - P Contestabile
- Department of Engineering, University of Campania "Luigi Vanvitelli", Italy
| | - L Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| | - M Race
- Department of Civil and Mechanical Engineering University of Cassino and Southern, Lazio, Italy
| | - M Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| |
Collapse
|
5
|
Zhu Z, Zhang X, Zhou L, Wu Z, Zhang K, Ruth G, Wu P. Highly efficient and robust treatment of low C/N actual domestic sewage via integrated fermentation, partial-nitrification, partial-denitrification and anammox (IFPNDA). BIORESOURCE TECHNOLOGY 2023; 384:129347. [PMID: 37336460 DOI: 10.1016/j.biortech.2023.129347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
For achieving efficient and robust treatment of domestic sewage with C/N around 2.8, this study innovatively developed an integrated fermentation, partial-nitrification, partial-denitrification and anammox (IFPNDA) process based on the Anaerobic Baffled Reactor and Continuous-flow Stirred Tank Reactor (ABR-CSTR) bioreactor. Desirable N-removal efficiency of 87.5 ± 2.1% was obtained without external organics, correspondingly effluent total nitrogen (TN) concentration reached 6.1 ± 0.7 mg/L. The N-removal stability was greatly facilitated by the effective linkage between partial nitrification (PN) process and partial denitrification (PD) process in emergency. Highly enriched hydrolytic bacteria (6.9%) and acidogenic bacteria (5.7%) in A1, especially Comamonas (2.8%) and Longilinea (3.5%), induced the significant increase of volatile fatty acids (VFAs) in domestic sewage. Thauera (6.1%) in A2 and Nitrosomonas (5.4%) in A3 acted as the dominant flora of nitrite supplies for anammox in IFPNDA process. Candidatus_Brocadia (2.4%) dominated the advanced nitrogen removal. The IFPNDA process exhibited much potential for achieving energy neutrality during wastewater treatment.
Collapse
Affiliation(s)
- Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiqiang Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kangyu Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guerra Ruth
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Feng S, Ngo HH, Guo W, Khan MA, Zhang S, Luo G, Liu Y, An D, Zhang X. Fruit peel crude enzymes for enhancement of biohydrogen production from synthetic swine wastewater by improving biohydrogen-formation processes of dark fermentation. BIORESOURCE TECHNOLOGY 2023; 372:128670. [PMID: 36706821 DOI: 10.1016/j.biortech.2023.128670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Biohydrogen is a promising clean fuel but with a low yield. This study aims to enhance biohydrogen production from synthetic swine wastewater by employing crude enzymes obtained from different fruit peels (orange, mandarin, and banana) to improve the biohydrogen-formation processes of dark fermentation. Results indicated that dosing with crude enzymes affected volatile fatty acids (VFAs) and biogas composition insignificantly, while increased biohydrogen yield from 1.62 ± 0.00 (blank) to 1.90 ± 0.08 (orange peel), 2.01 ± 0.00 (mandarin peel), and 1.96 ± 0.01 (banana peel) mol H2/mol glucose, respectively. Banana peel crude enzyme was the most effective additive, with 1 g/L protein improving 97.41 ± 3.72 % of biohydrogen yield. The crude enzymes wielded less influence on acetic acid and butyric acid pathways but enhanced other biohydrogen production pathways. These observations demonstrated that fruit peel-based crude enzymes as additives are advantageous to improving biohydrogen yield towards higher biohydrogen production.
Collapse
Affiliation(s)
- Siran Feng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Ding An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
7
|
Current Status and Prospects of Valorizing Organic Waste via Arrested Anaerobic Digestion: Production and Separation of Volatile Fatty Acids. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile fatty acids (VFA) are intermediary degradation products during anaerobic digestion (AD) that are subsequently converted to methanogenic substrates, such as hydrogen (H2), carbon dioxide (CO2), and acetic acid (CH3COOH). The final step of AD is the conversion of these methanogenic substrates into biogas, a mixture of methane (CH4) and CO2. In arrested AD (AAD), the methanogenic step is suppressed to inhibit VFA conversion to biogas, making VFA the main product of AAD, with CO2 and H2. VFA recovered from the AAD fermentation can be further converted to sustainable biofuels and bioproducts. Although this concept is known, commercialization of the AAD concept has been hindered by low VFA titers and productivity and lack of cost-effective separation methods for recovering VFA. This article reviews the different techniques used to rewire AD to AAD and the current state of the art of VFA production with AAD, emphasizing recent developments made for increasing the production and separation of VFA from complex organic materials. Finally, this paper discusses VFA production by AAD could play a pivotal role in producing sustainable jet fuels from agricultural biomass and wet organic waste materials.
Collapse
|
8
|
Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Utilising ‘wastes’ as ‘resources’ is key to a circular economy. While there are multiple routes to waste valorisation, anaerobic digestion (AD)—a biochemical means to breakdown organic wastes in the absence of oxygen—is favoured due to its capacity to handle a variety of feedstocks. Traditional AD focuses on the production of biogas and fertiliser as products; however, such low-value products combined with longer residence times and slow kinetics have paved the way to explore alternative product platforms. The intermediate steps in conventional AD—acidogenesis and acetogenesis—have the capability to produce biohydrogen and volatile fatty acids (VFA) which are gaining increased attention due to the higher energy density (than biogas) and higher market value, respectively. This review hence focusses specifically on the production of biohydrogen and VFAs from organic wastes. With the revived interest in these products, a critical analysis of recent literature is needed to establish the current status. Therefore, intensification strategies in this area involving three main streams: substrate pre-treatment, digestion parameters and product recovery are discussed in detail based on literature reported in the last decade. The techno-economic aspects and future pointers are clearly highlighted to drive research forward in relevant areas.
Collapse
|
9
|
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S. Design of nutrient gas-phase bioreactors: a critical comprehensive review. Bioprocess Biosyst Eng 2022; 45:1239-1265. [PMID: 35562481 DOI: 10.1007/s00449-022-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
To reach an efficient and economical gas-phase bioreactor is still one of the most critical challenges in biotechnology engineering. The numerous advantages of gas-phase bioreactors (GPBs) as well as disadvantages of these bioreactors should be exactly recognized, and efforts should be made to eliminate these defects. The first step in upgrading these bioreactors is to identify their types and the results of previous research. In the present work, a summary of the studies carried out in the field of cultivation in these bioreactors, their classification, their components, their principles and relations governing elements, modeling them, and some of their inherent engineering aspects are presented. Literature review showed that inoculation of shoots, roots, adventurous roots, callus, nodal explants, anther, nodal segment, somatic embryo, hairy roots, and fungus is reported in 15, 2, 2, 2, 3, 2, 1, 1, 37, and 5 cases, respectively.
Collapse
Affiliation(s)
- Amir Hossein Mirzabe
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Ali Hajiahmad
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran. .,Department of Mechanical Engineering of Biosystems, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Fadavi
- Department of Food Technology, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Shahin Rafiee
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| |
Collapse
|
10
|
Varghese VK, Poddar BJ, Shah MP, Purohit HJ, Khardenavis AA. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152500. [PMID: 34968606 DOI: 10.1016/j.scitotenv.2021.152500] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Volatile fatty acids (VFA), the secondary metabolite of microbial fermentation, are used in a wide range of industries for production of commercially valuable chemicals. In this review, the fermentative production of VFAs by both pure as well mixed microbial cultures is highlighted along with the strategies for enhancing the VFA production through innovations in existing approaches. Role of conventionally applied tools for the optimization of operational parameters such as pH, temperature, retention time, organic loading rate, and headspace pressure has been discussed. Furthermore, a comparative assessment of above strategies on VFA production has been done with alternate developments such as co-fermentation, substrate pre-treatment, and in situ removal from fermented broth. The review also highlights the applications of different bioreactor geometries in the optimum production of VFAs and how metagenomic tools could provide a detailed insight into the microbial communities and their functional attributes that could be subjected to metabolic engineering for the efficient production of VFAs.
Collapse
Affiliation(s)
- Vijay K Varghese
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Bhagyashri J Poddar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maulin P Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab, Enviro Technology Ltd., Ankleshwar 393002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression. FERMENTATION 2022. [DOI: 10.3390/fermentation8030099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Printing and dyeing wastewater is characterized with complex water quality and poor biodegradability. In this study, a pilot-scale anaerobic baffled reactor (ABR) with packing was verified to effectively degrade the complex organic pollutants in the wastewater through the hydrolysis and acidification of anaerobic microorganisms. At a hydraulic retention time (HRT) of 12 h and an organic loading rate (OLR) of 2.0–2.5 kg COD/(m3·d), the ABR stabilized the fluctuation range of pH and achieved an average colority removal rate of 10.5%, which provided favorable conditions for subsequent aerobic treatment. During the early operation period, the reactor increased the alkalinity of the wastewater; after 97 days of operation, the volatile fatty acid (VFA) content in the wastewater decreased. To demonstrate the suitability of the support vector regression (SVR) technology in predicting the performance of the reactor, two SVR algorithms with three kernel functions were employed to relate the chemical oxygen demand (COD) removal rate to its influencing factors, and the predictions of both the training and validation groups agreed with the measurements. The results obtained from this study can contribute to the design and optimal operation of the anaerobic treatment project of the industrial wastewater treatment plant.
Collapse
|
12
|
Aslam A, Khan SJ, Shahzad HMA. Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment- potential benefits, constraints, and future perspectives: An updated review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149612. [PMID: 34438128 DOI: 10.1016/j.scitotenv.2021.149612] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The application of Anaerobic Membrane Bioreactors (AnMBRs) for municipal wastewater treatment has been made sufficiently sustainable for practical implementations. The potential benefits are significant as AnMBRs effectively remove a broad range of contaminants from wastewater for water reuse, degrade organics in wastewater to yield methane-rich biogas for resultant energy production, and concentrate nutrients for subsequent recovery for fertilizer production. However, there still exist some concerns requiring vigilant considerations to make AnMBRs economically and technically viable. This review paper briefly describes process fundamentals and the basic AnMBR configurations and highlights six major factors which obstruct the way to AnMBRs installations affecting their performance for municipal wastewater treatment: (i) organic strength, (ii) membrane fouling, (iii) salinity build-up, (iv) inhibitory substances, (v) temperature, and (vi) membrane stability. This review also covers the energy utilization and energy potential in AnMBRs aiming energy neutrality or positivity of the systems which entails the requirement to further determine the economics of AnMBRs. The implications and related discussions have also been made on future perspectives of the concurrent challenges being faced in AnMBRs operation.
Collapse
Affiliation(s)
- Alia Aslam
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Hafiz Muhammad Aamir Shahzad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
13
|
Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment: A Literature Review. MEMBRANES 2021; 11:membranes11120967. [PMID: 34940468 PMCID: PMC8703433 DOI: 10.3390/membranes11120967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Currently, there is growing scientific interest in the development of more economic, efficient and environmentally friendly municipal wastewater treatment technologies. Laboratory and pilot-scale surveys have revealed that the anaerobic membrane bioreactor (AnMBR) is a promising alternative for municipal wastewater treatment. Anaerobic membrane bioreactor technology combines the advantages of anaerobic processes and membrane technology. Membranes retain colloidal and suspended solids and provide complete solid–liquid separation. The slow-growing anaerobic microorganisms in the bioreactor degrade the soluble organic matter, producing biogas. The low amount of produced sludge and the production of biogas makes AnMBRs favorable over conventional biological treatment technologies. However, the AnMBR is not yet fully mature and challenging issues remain. This work focuses on fundamental aspects of AnMBRs in the treatment of municipal wastewater. The important parameters for AnMBR operation, such as pH, temperature, alkalinity, volatile fatty acids, organic loading rate, hydraulic retention time and solids retention time, are discussed. Moreover, through a comprehensive literature survey of recent applications from 2009 to 2021, the current state of AnMBR technology is assessed and its limitations are highlighted. Finally, the need for further laboratory, pilot- and full-scale research is addressed.
Collapse
|
14
|
Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030159] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, interest in the biorefinery concept has emerged in the utilization of volatile fatty acids (VFAs) produced by acidogenic fermentation as precursors for various biotechnological processes. This has attracted substantial attention to VFA production from low-cost substrates such as organic waste and membrane based VFA recovery techniques to achieve cost-effective and environmentally friendly processes. However, there are few reviews which emphasize the acidogenic fermentation of organic waste into VFAs, and VFA recovery. Therefore, this article comprehensively summarizes VFA production, the factors affecting VFA production, and VFA recovery strategies using membrane-based techniques. Additionally, the outlook for future research on VFA production is discussed.
Collapse
|
15
|
Potential Valorization of Organic Waste Streams to Valuable Organic Acids through Microbial Conversion: A South African Case Study. Catalysts 2021. [DOI: 10.3390/catal11080964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The notion of a “biobased economy” in the context of a developing country such as South Africa (SA) necessitates the development of technologies that utilize sustainable feedstocks, have simple and robust operations, are feasible at small scale and produce a variety of valuable bioproducts, thus fitting the biorefinery concept. This case study focuses on the microbial production of higher-value products from selected organic waste streams abundant in the South African agricultural sector using microbes adapted to utilize different parts of biomass waste streams. A ruminant-based carboxylate platform based on mixed or undefined anaerobic co-cultures of rumen microorganisms can convert the carbohydrate polymers in the lignocellulosic part of organic waste streams to carboxylic acids that can be upgraded to biofuels or green chemicals. Furthermore, yeast and fungi can convert the simpler carbohydrates (such as the sugars and malic acid in grape and apple pomace) to ethanol and high-value carboxylic acids, such as lactic, fumaric, succinic and citric acid. This review will discuss the combinational use of the ruminal carboxylate platform and native or recombinant yeasts to valorize biomass waste streams through the production of higher-value organic acids with various applications.
Collapse
|
16
|
Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time. ENERGIES 2021. [DOI: 10.3390/en14112993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to evaluate the possibility of using the process of dark fermentation to convert kitchen waste into valuable volatile fatty acids in a semi-continuous process at different values of the organic loading rate (2.5 and 5.0 gVS/(L × d)) and hydraulic retention time (5 and 10 d) using anaerobic mixed microbial consortia. The experiments were performed in a bioreactor of working volume 8L with pH control. The maximum volatile fatty acids yield in a steady state (22.3 g/L) was achieved at the organic loading rate of 5.0 gVS/(L × d) and HRT of 10 days. The main products of dark fermentation were acetic and butyric acids, constituting, respectively, 35.2–47.7% and 24.1–30.0% of all identified volatile fatty acids. Additionally, at the beginning of the fermentation and in a steady-state condition, the microbial population analysis (16S rDNA) of the fermentation mixture with the most effective volatile fatty acids generation has been performed to monitor the DF microflora development. The dominant microorganisms at a phylum level in a steady state were Firmicutes (44.9%) and Bacteroidetes (30.1%), which indicate the main role of those phyla in the volatile fatty acids synthesis.
Collapse
|
17
|
Zhang L, Loh KC, Kuroki A, Dai Y, Tong YW. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123543. [PMID: 32739727 DOI: 10.1016/j.jhazmat.2020.123543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
This review aims to encourage the technical development of microbial biodiesel production from industrial-organic-wastes-derived volatile fatty acids (VFAs). To this end, this article summarizes the current status of several key technical steps during microbial biodiesel production, including (1) acidogenic fermentation of bio-wastes for VFA collection, (2) lipid accumulation in oleaginous microorganisms, (3) microbial lipid extraction, (4) transesterification of microbial lipids into crude biodiesel, and (5) crude biodiesel purification. The emerging membrane-based bioprocesses such as electrodialysis, forward osmosis and membrane distillation, are promising approaches as they could help tackle technical challenges related to the separation and recovery of VFAs from the fermentation broth. The genetic engineering and metabolic engineering approaches could be applied to design microbial species with higher lipid productivity and rapid growth rate for enhanced fatty acids synthesis. The enhanced in situ transesterification technologies aided by microwave, ultrasound and supercritical solvents are also recommended for future research. Technical limitations and cost-effectiveness of microbial biodiesel production from bio-wastes are also discussed, in regard to its potential industrial development. Based on the overview on microbial biodiesel technologies, an integrated biodiesel production line incorporating all the critical technical steps is proposed for unified management and continuous optimization for highly efficient biodiesel production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
18
|
Castilla-Archilla J, Papirio S, Lens PN. Two step process for volatile fatty acid production from brewery spent grain: Hydrolysis and direct acidogenic fermentation using anaerobic granular sludge. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
20
|
Lagoa-Costa B, Kennes C, Veiga MC. Cheese whey fermentation into volatile fatty acids in an anaerobic sequencing batch reactor. BIORESOURCE TECHNOLOGY 2020; 308:123226. [PMID: 32251864 DOI: 10.1016/j.biortech.2020.123226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The present research explored the optimization of volatile fatty acids (VFA) production from cheese whey in an anaerobic sequencing batch reactor (AnSBR). For that purpose, changes of solid and hydraulic retention times (SRT and HRT) were applied. Moreover, the experiments were coupled to metagenomic analyses by 16S rRNA sequencing. The results showed an enhancement of the process effectiveness at longer SRT and shorter HRT. The degree of acidification (DA) improved from 0.73 to 0.83 when increasing the SRT from 5 to 15 days. It also increased from 0.79 to 0.83 when lowering the HRT from 3 to 1 day. The acidification yield (YVFA/S) improved from 0.78 to 0.87 and from 0.86 to 0.90 g COD-VFA g COD-Lactose-1 when increasing the SRT from 5 to 15 days and decreasing the HRT from 3 to 1 day, respectively. Hydrolytic bacteria dominated the microbial community at the shortest SRT, although they were replaced by acidogenic bacteria at longer SRT.
Collapse
Affiliation(s)
- Borja Lagoa-Costa
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, E - 15008 A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, E - 15008 A Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, E - 15008 A Coruña, Spain.
| |
Collapse
|
21
|
Zhang L, Loh KC, Dai Y, Tong YW. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 109:75-84. [PMID: 32388405 DOI: 10.1016/j.wasman.2020.04.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Acidogenic fermentation of food waste for production of volatile fatty acids (VFAs) contributes to both food waste minimization and resource recovery. To gain knowledge on functional bacterial communities and facilitate continuous production of VFAs, this research firstly studied the effects of initial pH values (i.e. 5, 6 and 7) and temperatures (i.e. 35 °C and 55 °C) on VFAs production, distribution, and bacterial communities during acidogenic fermentation of food waste. The optimal conditions were determined as pH 7 and 35 °C, corresponding to the highest total VFAs yield of 11.8 g COD/L with major components of acetic, propionic and butyric acid. Bioinformatic analysis showed that the relative abundance of the dominant bacterial classes (e.g. Clostridia, Bacteroidia and Bacilli) were changed by the initial pH values in both mesophilic and thermophilic reactors. NMDS analysis confirmed a significant difference between mesophilic and thermophilic communities. Finally, the feasibility of continuous production and recovery of VFAs was validated using a two-phase leachate bed bioreactor at the optimal conditions. Average concentration and yield of the total VFAs in the continuous operation were 6.3 g COD/L and 0.29 g VFA/g VSadded, respectively. The findings in this study could provide pivotal technical supports for potential pilot- and commercial-scale biorefinery plants for VFAs production from food waste.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 Singapore, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 Singapore, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 Singapore, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore.
| |
Collapse
|
22
|
Foglia A, Akyol Ç, Frison N, Katsou E, Eusebi AL, Fatone F. Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116279] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Liu J, Tian H, Luan X, Zhou X, Chen X, Xu S, Kang X. Submerged anaerobic membrane bioreactor for low-concentration domestic sewage treatment: performance and membrane fouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6785-6795. [PMID: 31873905 DOI: 10.1007/s11356-019-07135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A submerged anaerobic membrane bioreactor (SAnMBR) was used to treat low-concentration domestic sewage. The effects of hydraulic retention time (HRT) and organic load (OLR) on chemical oxygen demand (COD) removal, methanogenesis, and membrane fouling of the system were investigated. The SAnMBR achieved good COD removal efficiency as well as stable methane production, which were significantly affected by both OLR and HRT. The influent dissolved organic matter (DOM) was decomposed and transformed over time, and DOM concentration was gradually reduced. It can be inferred that the SAnMBR can effectively intercept the production of extracellular polymeric substances and improve effluent quality. The phenomenon of membrane fouling was investigated using various analytical tools. Results demonstrated that the SAnMBR was achieved good transmembrane pressures (TMP) (10-15 kPa), and the hydraulic force generated by the stirring device has a dynamic physical shearing action on the surface of the membrane, which can partly alleviate membrane fouling.
Collapse
Affiliation(s)
- Jianwei Liu
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Hongyu Tian
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinrong Luan
- China Railway 16 Bureau Group Metro Engineering Co. Ltd., Beijing, 100124, China
| | - Xiao Zhou
- Xinkai Water Environment Investment Co., Beijing, 101101, China
| | - Xuewei Chen
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Song Xu
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinyue Kang
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
24
|
Aslam A, Khan SJ, Shahzad HMA. Impact of sludge recirculation ratios on the performance of anaerobic membrane bioreactor for wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 288:121473. [PMID: 31129515 DOI: 10.1016/j.biortech.2019.121473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
The performance of a lab scale anaerobic membrane bioreactor (AnMBR) was evaluated for wastewater treatment. The efficacy of the system was determined at different operating conditions in terms of fluxes and recirculation ratios (R); 10.28 L/m2 h (R = 1, Phase I), 8.8 L/m2 h (R = 2, Phase II and R = 3, Phase III) and 6 L/m2 h (R = 2, Phase IV and R = 3, Phase V), respectively. In comparison with all the operating conditions tested, optimum efficacy of the system was found at flux of 6 L/m2 h and R of 3 in terms of highest COD removal (96.7%), and maximum biogas yield (0.44 L/g CODremoved). The MLSS and MLVSS concentrations under optimum phase were 6.23 and 4.83 g/L, respectively at OLR of 0.46 kg COD/m3 day. The system also exhibited significant reduction of foulants i.e. extracellular polymeric substances (EPS) and soluble microbial products (SMP) resulting in longer membrane runs in optimized phase.
Collapse
Affiliation(s)
- Alia Aslam
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Hafiz Muhammad Aamir Shahzad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
25
|
Khan MA, Ngo HH, Guo W, Chang SW, Nguyen DD, Varjani S, Liu Y, Deng L, Cheng C. Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2019; 283:120-128. [PMID: 30901584 DOI: 10.1016/j.biortech.2019.03.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the production of major volatile fatty acid (VFA) components in an anaerobic membrane bioreactor (AnMBR) to treat low-strength synthetic wastewater. No selective inhibition was applied for methane production and solvent-extraction method was used for VFA extraction. The results showed acetic and propionic acid were the predominant VFA components at pH 7.0 and 6.0 with concentrations of 1.444 ± 0.051 and 0.516 ± 0.032 mili-mol/l respectively. At pH 12.0 isobutyric acid was the major VFA component with a highest concentration of 0.712 ± 0.008 mili-mol/l. The highest VFA yield was 48.74 ± 1.5 mg VFA/100 mg CODfeed at pH 7.0. At different pH, AnMBR performance was evaluated in terms of COD, nutrient removal and membrane fouling rate. It was observed that the membrane fouled at a faster rate in both acidic and alkaline pH conditions, the slowest rate in membrane fouling was observed at pH 7.0.
Collapse
Affiliation(s)
- Mohd Atiqueuzzaman Khan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Yi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Chen Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
26
|
Zhou M, Yan B, Lang Q, Zhang Y. Elevated volatile fatty acids production through reuse of acidogenic off-gases during electro-fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:295-302. [PMID: 30852206 DOI: 10.1016/j.scitotenv.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Electro-fermentation is gaining attention for its advantage in promoting product recovery and valorization of organic wastes. However, emission of by-product gases during acidogenic fermentation is one of the key reasons for reduced product recovery whereas high gas pressure in the acidogenic headspace could pose an inhibitory effect on the production of volatile fatty acids (VFAs). This study presents a novel electro-fermentation (EF) system for enhancing VFAs production by in situ reuse of anodic off-gases (mainly CO2 and H2) in the cathode. A total VFAs production of 0.57 g-VFAs/g-VS was achieved through reuse of acidogenic off-gases in EF system, corresponding to 48.70% increase in comparison with the treatment without off-gases reuse. Consequently, the conversion efficiency of carbon to VFAs was improved significantly by 13.92%. Acidogenic metabolic pathway in the anode shifted to mixed -acid fermentation with the succession of dominant microbes from genus of Escherichia in the seeding inocula to Bacteroides and Desulfovibrio in the anode and cathode chambers, respectively. This would provide a way to enhance VFAs recovery from organic wastes, which also contributes to reduced carbon footprint and increased environmental sustainability.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binghua Yan
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Qiaolin Lang
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yang Zhang
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|