1
|
Ben Ammar FE, Hkiri AE, Zaafouri K, Saidane Bchir F, Hamdi M. Enhanced growth of Chlorella sorokiniana on ash-enriched treated wastewater for large-scale lipid and chlorophyll a production using a hybrid raceway photobioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12610-12629. [PMID: 40316823 DOI: 10.1007/s11356-025-36440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
Nutrient concentration in microalgal cultivation media greatly influences microalgal growth and macromolecules production. In the present study, treated urban wastewater was used as a medium for Chlorella sorokiniana, incorporating mineral components and ashes in batch culture. The aim was to assess the combined effect of nutrients on microalgal growth, Chlorophyll a content, and lipid production using customized experimental design and response surface methodology. Another objective was to evaluate response improvement after using hybrid raceway photobioreactor HRPBR. The results showed that the highest microalgal biomass growth as well as the highest Chlorophyll a and lipid concentrations was obtained using 2015 mg. L-1of NaNO3 and 2086.76 mg. L-1 of NaHCO3 with a mineral solution concentration of 120 mg. L-1. After the HRPBR cultivation, Chlorophyll a content increased from 40.26 to 65.04 mg. L-1 and the lipid content rose from 37 to 40% and then to 68% under starvation conditions. In these circumstances, the FA profile of Chlorella sorokiniana became in line with the requirements of the European biodiesel standard. Thus, the low-cost nutrient sources for culture medium formulation can be used to culture C. sorokiniana as an efficient strain for sustainable and cost-effective biofuel production.
Collapse
Affiliation(s)
- Fatma Ezzahraâ Ben Ammar
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia.
| | - Alaa Eddine Hkiri
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| | - Kaouther Zaafouri
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| | - Faten Saidane Bchir
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| | - Moktar Hamdi
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| |
Collapse
|
2
|
Haider MN, O'Higgins L, O'Shea R, Archer L, Wall DM, Verma N, Rodero MDR, Mehmood MA, Murphy JD, Bose A. Selecting optimal algal strains for robust photosynthetic upgrading of biogas under temperate oceanic climates. Biotechnol Adv 2025; 82:108581. [PMID: 40258525 DOI: 10.1016/j.biotechadv.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Biogas generated from anaerobic digestion can be upgraded to biomethane by photosynthetic biogas upgrading, using CO2 as a bioresource for algal (cyanobacteria and microalgae) cultivation. This allows the upgrading technology to offer economic and environmental benefits to conventional physiochemical upgrading techniques (which can be energy-intensive and costly) by co-generating biomethane with high-value biomass. However, a critical challenge in implementing this technology in temperate oceanic climatic conditions (as found in Japan, and the northwest coasts of Europe and of North America, with average temperatures ranging between 5 and 20 °C) is the selection of algal strains that must be capable of sustained growth under lower ambient temperatures. Accordingly, this paper investigated the selection of algae that met seven key criteria: optimal growth at high pH (9-11); at alkalinity of 1.5-2.5 g inorganic carbon per litre; operation at low temperature (5-20 °C); tolerance to high CO2 concentrations (above 20 %); capability for mixotrophic cultivation; ability to accumulate high-value metabolites such as photosynthetic pigments and bioactive fatty acids; and ease of harvesting. Of the twenty-six algal species assessed and ranked using a Pugh Matrix, Anabaena sp. and Phormidium sp. were assessed as the most favourable species, followed by Oscillatoria sp., Spirulina subsalsa, and Leptolyngbya sp. Adaptive laboratory evolution together with manipulation of abiotic factors could be effectively utilised to increase the efficiency and economic feasibility of the use of the selected strain in a photosynthetic biogas upgrading system, through improvement of growth and yield of high-value compounds.
Collapse
Affiliation(s)
- Muhammad Nabeel Haider
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Linda O'Higgins
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Lorraine Archer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David M Wall
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Nikita Verma
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jerry D Murphy
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Archishman Bose
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland.
| |
Collapse
|
3
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Kashyap S, Das N, Kumar M, Mishra S, Kumar S, Nayak M. Poultry litter extract as solid waste supplement for enhanced microalgal biomass production and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35900-y. [PMID: 39786509 DOI: 10.1007/s11356-025-35900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Wastewater and livestock waste can be used as a cheap source of nutrients for microalgae growth. In this work, a cocktail waste medium (CWM) was developed using 75% Chhalera municipal wastewater (C-MWW), 25% Parag dairy wastewater (P-DWW), and 15 g L-1 of poultry litter extract (PLE-15) for low-cost cultivation of Chlorella sp. BRE4. The highest specific growth rate of 0.57 day-1 and biomass productivity of 315 mg L-1 day-1 was found in CWM. Microalgae grown in the photobioreactor with the strategic supply of PLE (PBR-4) resulted in the highest lipid productivity of 113.5 mg L-1 day-1, which was 1.3 and 5.4 times of PBR-3 (PLE supplemented since day 1) and PBR-1 (no additional PLE), respectively. The carbohydrate content (30.45%) in PBR-4 showed a 1.33-fold increase than PBR-1, confirming the suitability of the strategy for enhancing carbohydrates and lipids simultaneously. The high removal percentage of total nitrogen (92.6%) and phosphorus (97.4%) from CWM under strategic supply conditions demonstrated Chlorella sp. BRE4 is a suitable candidate for waste valorization and biofuel production.
Collapse
Affiliation(s)
- Shatakshi Kashyap
- Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Nisha Das
- Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sanjeev Mishra
- Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, 144603, India
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
5
|
Namli A, Akca MO, Perendeci NA, Yilmaz V, Ertit Tastan B. Effect of pretreated and anaerobically digested microalgae on the chemical and biochemical properties of soil and wheat grown on fluvisol. ENVIRONMENTAL TECHNOLOGY 2024; 45:2833-2846. [PMID: 36919910 DOI: 10.1080/09593330.2023.2192364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of the potential application of digestate as an agricultural fertiliser obtained from anaerobically digested microalgae treated by three pretreatment methods, namely alkaline hydrogen peroxide (AHP), high temperature and pressure (HTP), and hydrodynamic cavitation (HC) on some properties of soil, and wheat growth and yield were investigated. For this purpose, pretreated and anaerobically digested microalgae digestates alone or together with diammonium phosphate (DAP) as a chemical fertiliser were applied to soil for wheat growth. The highest dosage of AHP pretreated digestate combined with a half dose of DAP applied to soil was rich in nutrients as 0.25%N and 7.19 mg kg-1 compared to all groups. The properties of the soils were enhanced by applying the highest dosage (0.06 g kg-1) of microalgae digestate combined with a half dose of DAP. 0.02 g kg-1 dosage of HC pretreated digestate combined with a half dose of DAP also greatly improved nitrogen use efficiency indices by up to 104%. The soils' enzyme activities increased in wheat growth experiments by applying either raw or pretreated microalgae digestates. The soils' β-glycosidase, alkaline phosphatase, and urease enzyme activities increased to 1.38 mg pNP g-1 soil, 4.91 mg pNP g-1 soil, and 2.27 mg NH4-N 100 g-1 soil respectively by the application of highest dosage of HC pretreated digestate. The digestates did not have a toxic effect on wheat growth, it was determined that applied pretreatment processes did not cause significant changes in wheat plant height or wet and dry weight.
Collapse
Affiliation(s)
- Ayten Namli
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Ankara University, Ankara, Turkey
| | - Muhittin Onur Akca
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Ankara University, Ankara, Turkey
| | - Nuriye Altinay Perendeci
- Engineering Faculty, Department of Environmental Engineering, Akdeniz University, Antalya, Turkey
| | - Vedat Yilmaz
- Engineering Faculty, Department of Environmental Engineering, Artvin Çoruh University, Artvin, Turkey
| | - Burcu Ertit Tastan
- Health Services Vocational School, Gazi University, Ankara, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Xu YS, Ma W, Li J, Huang PW, Sun XM, Huang H. Metal cofactor regulation combined with rational genetic engineering of Schizochytrium sp. for high-yield production of squalene. Biotechnol Bioeng 2023; 120:1026-1037. [PMID: 36522292 DOI: 10.1002/bit.28311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The increasing market demand for squalene requires novel biotechnological production platforms. Schizochytrium sp. is an industrial oleaginous host with a high potential for squalene production due to its abundant native acetyl-CoA pool. We first found that iron starvation led to the accumulation of 1.5 g/L of squalene by Schizochytrium sp., which was 40-fold higher than in the control. Subsequent transcriptomic and lipidomic analyses showed that the high squalene titer is due to the diversion of precursors from lipid biosynthesis and increased triglycerides (TAG) content for squalene storage. Furthermore, we constructed the engineered acetyl-CoA C-acetyltransferase (ACAT)-overexpressing strain 18S::ACAT, which produced 2.79 g/L of squalene, representing an 86% increase over the original strain. Finally, a nitrogen-rich feeding strategy was developed to further increase the squalene titer of the engineered strain, which reached 10.78 g/L in fed-batch fermentation, a remarkable 161-fold increase over the control. To our best knowledge, this is the highest squalene yield in thraustochytrids reported to date.
Collapse
Affiliation(s)
- Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Two-stage cultivation of Spirulina sp. LEB 18: a strategy to increase biomass productivity and synthesis of macromolecules. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-022-00279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Casanova LM, Mendes LBB, Corrêa TDS, da Silva RB, Joao RR, Macrae A, Vermelho AB. Development of Microalgae Biodiesel: Current Status and Perspectives. Microorganisms 2022; 11:microorganisms11010034. [PMID: 36677325 PMCID: PMC9862501 DOI: 10.3390/microorganisms11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Microalgae are regarded as a promising source of biodiesel. In contrast with conventional crops currently used to produce commercial biodiesel, microalgae can be cultivated on non-arable land, besides having a higher growth rate and productivity. However, microalgal biodiesel is not yet regarded as economically competitive, compared to fossil fuels and crop-based biodiesel; therefore, it is not commercially produced. This review provides an overall perspective on technologies with the potential to increase efficiency and reduce the general costs of biodiesel production from microalgae. Opportunities and challenges for large-scale production are discussed. We present the current scenario of Brazilian research in the field and show a successful case in the research and development of microalgal biodiesel in open ponds by Petrobras. This publicly held Brazilian corporation has been investing in research in this sector for over a decade.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| | | | - Thamiris de Souza Corrêa
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Rafael Richard Joao
- Centro de Pesquisa Leopoldo Miguez de Mello, Petrobrás, Rio de Janeiro 21941-915, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (L.M.C.); (A.B.V.)
| |
Collapse
|
9
|
Lakatos GE, Ranglová K, Bárcenas-Pérez D, Grivalský T, Manoel JC, Mylenko M, Cheel J, Nyári J, Wirth R, Kovács KL, Kopecký J, Nedbalová L, Masojídek J. Cold-adapted culturing of the microalga Monoraphidium sp. in thin-layer raceway pond for biomass production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
11
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Yu BS, Yang HE, Sirohi R, Sim SJ. Novel effective bioprocess for optimal CO 2 fixation via microalgae-based biomineralization under semi-continuous culture. BIORESOURCE TECHNOLOGY 2022; 364:128063. [PMID: 36195219 DOI: 10.1016/j.biortech.2022.128063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this study, the effects of microalgae-based biomineralization in a semi-continuous process (M-BSP) on biomass productivity and CO2 fixation rate were investigated. M-BSP significantly improved biomass production and CO2 fixation rate at the second stage of induction by sustaining relatively high photosynthetic rate without exposure to toxic substances (e.g., chlorellin) from aging cells using the microalgae Chlorella HS2. In conventional systems, cells do not receive irradiated light evenly, and many cells age and burst because of the long culture period. In contrast, in the M-BSP, the photosynthesis efficiency increases and biomass production is not inhibited because most of the cells can be harvested during shorter culture period. The accumulated biomass production and CO2 fixation rate of the HS2 cells cultured under M-BSP increased by 4.67- (25 ± 1.09 g/L) and 10.9-fold (30.29 ± 1.79 g/L day-1), respectively, compared to those cultured without the CaCl2 treatment.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Ha Eun Yang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
13
|
North by Southwest: Screening the Naturally Isolated Microalgal Strains from Different Habitats of Iran for Various Pharmaceutical and Biotechnology Applications. Int J Microbiol 2022; 2022:4386268. [PMID: 35990767 PMCID: PMC9391159 DOI: 10.1155/2022/4386268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Aims Microalgae are known as a promising source for food, pharmaceutical, and biofuel production while providing environmental advantages. The present study evaluates some newly isolated microalgal strains from north and southwest of Iran as a potential source for high-value products. Methods Primitive screening was carried out regarding growth parameters. The molecular and morphological identifications of the selected strains were performed using 18S rRNA gene sequencing. After phylogenic and evolutionary studies, the selected microalgal strains were characterized in terms of protein and pigment content, in addition to the fatty acid profile content. Besides, the CO2 fixation rate was determined to assess capability for various environmental applications. Results All of the selected strains were predominantly belonging to Scenedesmus sp. and Desmodesmus sp. The isolated Scenedesmus sp. VN 009 possessed the highest productivity content and CO2 fixation rate of 0.054 g·L−1d−1 and 0.1 g·L−1d−1, respectively. Moreover, data from GC/MS analysis demonstrated the high robustness of this strain to produce several valuable fatty acids including α-linolenic acid and linoleic acid in 45% and 20% of total fatty acids. Conclusions The identified strains have a great but different potential for SCP, β-carotene, and ω-3 production, as well as CO2 fixation for environmental purposes. In this study, considering the wide range of microalgal strains in different habitats of Iran, the potential applications of native microalgae for various pharmaceutical, food, and biotechnology purposes were investigated.
Collapse
|
14
|
Wang X, Zhou Y, Peng Q, Han Y, Yang J, Xu H, Li C, Li L, Dou S, Yang M, Liu G. Development of plastic flatbed-based algal culture system deployable on non-arable land. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Wang J, Singer SD, Souto BA, Asomaning J, Ullah A, Bressler DC, Chen G. Current progress in lipid-based biofuels: Feedstocks and production technologies. BIORESOURCE TECHNOLOGY 2022; 351:127020. [PMID: 35307524 DOI: 10.1016/j.biortech.2022.127020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The expanding use of fossil fuels has caused concern in terms of both energy security and environmental issues. Therefore, attempts have been made worldwide to promote the development of renewable energy sources, among which biofuel is especially attractive. Compared to other biofuels, lipid-derived biofuels have a higher energy density and better compatibility with existing infrastructure, and their performance can be readily improved by adjusting the chemical composition of lipid feedstocks. This review thus addresses the intrinsic interactions between lipid feedstocks and lipid-based biofuels, including biodiesel, and renewable equivalents to conventional gasoline, diesel, and jet fuel. Advancements in lipid-associated biofuel technology, as well as the properties and applicability of various lipid sources in terms of biofuel production, are also discussed. Furthermore, current progress in lipid production and profile optimization in the context of plant lipids, microbial lipids, and animal fats are presented to provide a wider context of lipid-based biofuel technology.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Bernardo A Souto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Justice Asomaning
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
16
|
Ziganshina EE, Bulynina SS, Ziganshin AM. Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:1086. [PMID: 35448814 PMCID: PMC9031775 DOI: 10.3390/plants11081086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The cultivation of microalgae requires the selection of optimal parameters. In this work, the effect of various forms of nitrogen on the growth and productivity of Chlorella sorokiniana AM-02 when cultivated at different temperatures was evaluated. Regardless of the temperature conditions, the highest specific growth rate of 1.26 day-1 was observed in modified Bold's basal medium (BBM) with NH4+ as a nitrogen source, while the highest specific growth rate in BBM with NO3- as a nitrogen source achieved only 1.07 day-1. Moreover, C. sorokiniana grew well in medium based on anaerobic digester effluent (ADE; after anaerobic digestion of chicken/cow manure) with the highest growth rate being 0.92 day-1. The accumulation of proteins in algal cells was comparable in all experiments and reached a maximum of 42% of dry weight. The biomass productivity reached 0.41-0.50 g L-1 day-1 when cultivated in BBM, whereas biomass productivity of 0.32-0.35 g L-1 day-1 was obtained in ADE-based medium. The results, based on a bacterial 16S rRNA gene sequencing approach, revealed the growth of various bacterial species in ADE-based medium in the presence of algal cells (their abundance varied depending on the temperature regimen). The results indicate that biomass from C. sorokiniana AM-02 may be sustainable for animal feed production considering the high protein yields.
Collapse
|
17
|
Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. ENERGIES 2022. [DOI: 10.3390/en15041550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described.
Collapse
|
18
|
Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Energy is a major driving force for the economic development. Due to the scarcity of fossil fuels and negative impact on the environment, it is important to develop renewable and sustainable energy sources for humankind. Microalgae as the primary feedstock for biodiesel has shown great application potential. However, lipid yield from microalgae is limited by the upstream cost, which restrain the realization of large-scale biofuel production. The modification of lipid-rich microalgae cell has become the focus over the last few decades to improve the lipid content and productivity of microalgae. Carbon is a vital nutrient that regulates the growth and metabolism of microalgae. Different carbon sources are assimilated by microalgae cells via different pathways. Inorganic carbon sources are mainly used through the CO2-concentrating mechanisms (CCMs), while organic carbon sources are absorbed by microalgae mainly through the Pentose Phosphate (PPP) Pathway and the Embden-Meyerhof-Pranas (EMP) pathway. Therefore, the addition of carbon source has a significant impact on the production of microalgae biomass and lipid accumulation. In this paper, mechanisms of lipid synthesis and carbon uptake of microalgae were introduced, and the effects of different carbon conditions (types, concentrations, and addition methods) on lipid accumulation in microalgal biomass production and biodiesel production were comprehensively discussed. This review also highlights the recent advances in microalgae lipid cultivation with large-scale commercialization and the development prospects of biodiesel production. Current challenges and constructive suggestions are proposed on cost-benefit concerns in large-scale production of microalgae biodiesel.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, China
| | - Yuwei Mi
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chen Zhao
- China Construction Fifth Engineering Division Corp., Ltd, 9 Kaixuan Rd, Liangqing District, Nanning, Guangxi 530000, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
19
|
Ben Hlima H, Karray A, Dammak M, Elleuch F, Michaud P, Fendri I, Abdelkafi S. Production and structure prediction of amylases from Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51046-51059. [PMID: 33973124 DOI: 10.1007/s11356-021-14357-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia
| | - Mouna Dammak
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Fatma Elleuch
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
20
|
Chang JY, Narindri Rara Winayu B, Hsueh HT, Chu H. Nitrogen and 17β-Estradiol level regulate Thermosynechococcus sp. CL-1 carbon dioxide fixation, monosaccharide production, and estrogen degradation. BIORESOURCE TECHNOLOGY 2021; 336:125313. [PMID: 34044240 DOI: 10.1016/j.biortech.2021.125313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Thermosynechococcus sp. CL-1 (TCL-1), a thermophilic cyanobacterium from a hot spring in Taiwan, has been known of its efficiency in CO2 fixation, byproducts production (pigments, macromolecules). This study observed the performance of TCL-1 in CO2 fixation, estrogen degradation, and monosaccharide production under various levels of Dissolved Inorganic Nitrogen (DIN) and 17β-estradiol (E2) as nitrogen supply and estrogen addition. Under nitrogen starvation, TCL-1 performed similar results on CO2 fixation rate and biomass production but enhanced the monosaccharide production compared to the cases of high nitrogen supply. The highest CO2 fixation rate and glucose productivity reached to 151.8 ± 6.6 and 38.1 ± 0.9 mg/L/h, under DIN level of 0.58 mM and 0.5 mg/L E2. Adding E2 in the system did not inhibit the performance of TCL-1. During the cultivation, TCL-1 converted E2 into E1 and the biodegradation was the main path for estrogen degradation. Total E2 degradation reached to 69.4 ± 2.0%.
Collapse
Affiliation(s)
- Jia-Yuan Chang
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | | | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
21
|
Liyanaarachchi VC, Premaratne M, Ariyadasa TU, Nimarshana P, Malik A. Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102353] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Xie Z, Lin W, Luo J. Co-cultivation of microalga and xylanolytic bacterium by a continuous two-step strategy to enhance algal lipid production. BIORESOURCE TECHNOLOGY 2021; 330:124953. [PMID: 33725519 DOI: 10.1016/j.biortech.2021.124953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
To enhance microalgal lipid production, canonical two-step cultivation strategy that by transferring the microalgal cells grown in nutrient-replete medium to nutrient-depleted medium is widely used. However, the harvesting step during the transfer raises the production cost. To avoid the harvesting step, this study developed a continuous two-step (CTS) cultivation strategy. In the strategy, Chlorella sacchrarophila was grown in bioreactor while a xylanolytic bacterium Cellvibrio pealriver grown in an inner bag that embedded in the bioreactor; after the first-step co-cultivation, the inner bag is removed which then start the second-step cultivation of C. sacchrarophila. Based on the strategy, the lipid production was determined as 825.34-929.79 mg·L-1, which were 1.7-1.9 times higher than that of cultivation in canonical two-step strategy using glucose as feedstock. During the CTS strategy, the co-cultivation using xylan as feedstock promotes the microalgal growth and the removal of inner bag produces nutrient-depleted condition for enhancing microalgal lipid production.
Collapse
Affiliation(s)
- Zhangzhang Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Science, Guangdong Academy of Science, Guangzhou 510650, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
23
|
Matula EE, Nabity JA. Effects of stepwise changes in dissolved carbon dioxide concentrations on metabolic activity in Chlorella for spaceflight applications. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:73-84. [PMID: 33888291 DOI: 10.1016/j.lssr.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This paper assesses the impacts to the growth rate, health, oxygen production, and carbon dioxide fixation and nitrogen assimilation of Chlorella vulgaris while sparging the culture with various influent concentrations of carbon dioxide. Selected concentrations reflect a cabin environment with one crew member (0.12% v/v) and four crew members (0.45% v/v). Stepwise, sustained changes in influent carbon dioxide concentration on day four of the eight-day experiments simulated a dynamic crew size, reflective of a planetary surface mission. Control experiments used constant influent concentrations across eight days. Significant changes in growth rate (0.12%-to-0.45%: 57% increase; 0.45%-to-0.12%: 59% reduction) suggest a positive correlation between metabolic activity of C. vulgaris and environmental carbon dioxide concentration. Statistical tests illustrate that algae are more sensitive to reductions in influent carbon dioxide. No specific correlation of the nitrogen assimilation rate to influent carbon dioxide, suggesting a nitrogen-limited or irradiance-limited system. Photosynthetic yield results (0.59-0.72) indicate that the culture was minimally stressed in all tested conditions. This paper compares these results to findings of published, steady-state experiments conducted under similar carbon dioxide environments. The findings presented here imply that a sufficient volume of C. vulgaris, with nutrient supplementation or biomass harvesting, could support the respiratory requirements of a long duration human mission with a dynamic cabin environment and these data can be used in future dynamic models.
Collapse
Affiliation(s)
- Emily E Matula
- Aerospace Engineering Sciences, University of Colorado Boulder, 429 UCB, Boulder, CO 80309, United States.
| | - James A Nabity
- Aerospace Engineering Sciences, University of Colorado Boulder, 429 UCB, Boulder, CO 80309, United States
| |
Collapse
|
24
|
Zhao T, Liu M, Zhao T, Chen A, Zhang L, Liu H, Ding K, Xiao P. Enhancement of lipid productivity in Chlorella pyrenoidosa by collecting cells at the maximum cell number in a two-stage culture strategy. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, Katayama T, Nakakuni M, Koyama M, Nakasaki K, Toda T. Tolerance of Tetraselmis tetrathele to High Ammonium Nitrogen and Its Effect on Growth Rate, Carotenoid, and Fatty Acids Productivity. Front Bioeng Biotechnol 2021; 9:568776. [PMID: 33585428 PMCID: PMC7876249 DOI: 10.3389/fbioe.2021.568776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022] Open
Abstract
Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (Fv/Fm), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31–0.87 gL−1) for 6 days under a light source with an intensity of 300 μmol photons m−2 s−1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (NH4+-N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of NH4+-N. Chlorophyll a content in T. tetrathele grown in all of the different NH4+-N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of NH4+-N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
Collapse
Affiliation(s)
- Abd Wahab Farahin
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ikhsan Natrah
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.,International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norio Nagao
- Bluescientific Shinkamigoto Co. Ltd., Nagasaki, Japan
| | - Fatimah Md Yusoff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.,International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohamed Shariff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicines, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sanjoy Banerjee
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tomoyo Katayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | | | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, Ookayama, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, Ookayama, Japan
| | - Tatsuki Toda
- Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka Meguro University, Hachioji, Japan
| |
Collapse
|
26
|
Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12219083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae have received widespread interest owing to their potential in biofuel production. However, economical microalgal biomass production is conditioned by enhancing the lipid accumulation without decreasing growth rate or by increasing both simultaneously. While extensive investigation has been performed on promoting the economic feasibility of microalgal-based biofuel production that aims to increase the productivity of microalgae species, only a handful of them deal with increasing lipid productivity (based on lipid contents and growth rate) in the feedstock production process. The purpose of this review is to provide an overview of the recent advances and novel approaches in promoting lipid productivity (depends on biomass and lipid contents) in feedstock production from strain selection to after-harvesting stages. The current study comprises two parts. In the first part, bilateral improving biomass/lipid production will be investigated in upstream measures, including strain selection, genetic engineering, and cultivation stages. In the second part, the enhancement of lipid productivity will be discussed in the downstream measure included in the harvesting and after-harvesting stages. An integrated approach involving the strategies for increasing lipid productivity in up- and down-stream measures can be a breakthrough approach that would promote the commercialization of market-driven microalgae-derived biofuel production.
Collapse
|
27
|
Lee H, Shin WS, Kim YU, Jeon S, Kim M, Kang NK, Chang YK. Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in Chlorella sp. HS2. J Microbiol Biotechnol 2020; 30:1597-1606. [PMID: 32807753 PMCID: PMC9728203 DOI: 10.4014/jmb.2005.05048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRTPCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 344, Republic of Korea
| | - Won-Sub Shin
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea
| | - Young Uk Kim
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea
| | - Seungjib Jeon
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea,Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansan 15629, Republic of Korea
| | - Minsik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 344, Republic of Korea,Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Corresponding authors N.K.Kang Phone: +1-217-607-3151 E-mail:
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 344, Republic of Korea,Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea,Y.K.Chang Phone: +82-42-350-3927 Fax: +82-42-350-3910 E-mail:
| |
Collapse
|
28
|
Almutairi AW. Improvement of Chemical Composition of Tisochrysis lutea Grown Mixotrophically under Nitrogen Depletion towards Biodiesel Production. Molecules 2020; 25:E4609. [PMID: 33050388 PMCID: PMC7587180 DOI: 10.3390/molecules25204609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, the marine microalga Tisochrysis lutea was cultivated mixotrophically in F2 growth medium with sodium acetate as exogenous carbon source. The medium was composed of different concentrations of nitrogen to determine the impact of nitrogen depletion on cellular growth and chemical composition. Nitrogen depletion led to severely decreased growth and protein content. However, mild nitrogen depletion (0.22 mM NaNO3) led to maximum lipid yield. The fatty acid methyl ester profile also showed increased unsaturation as the nitrogen content decreased. Growth in nitrogen-free medium increased the proportions of mono- and poly-unsaturated fatty acids, while the proportion of saturated fatty acids decreased. Growth under all tested nitrogen levels showed undetectable fatty acids with ≥4 double bonds, indicating these fatty acids had oxidative stability. In addition, all tested nitrogen concentrations led to specific gravity, kinematic viscosity, iodine value, and cetane number that meet the standards for Europe and the U.S.A. However, growth in the presence of nitrogen deficiency enhanced the higher heating value of the resulting biodiesel, a clear advantage from the perspective of energy efficiency. Thus, mixotrophic cultivation of T. lutea with nitrogen limitation provides a promising approach to achieve high lipid productivity and production of high-quality biodiesel.
Collapse
Affiliation(s)
- Adel W Almutairi
- Biological Sciences Department, Rabigh-Faculty of Science & Arts, King Abdulaziz University, P. O. Box 344, Rabigh 21911, Saudi Arabia
| |
Collapse
|
29
|
Cui N, Feng Y, Xiao J, Ding W, Zhao Y, Yu X, Xu JW, Li T, Zhao P. Isolation and identification of a novel strain of Heveochlorella sp. and presentation of its capacity as biodiesel feedstock. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Nayak M, Suh WI, Cho JM, Kim HS, Lee B, Chang YK. Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111041. [PMID: 32778320 DOI: 10.1016/j.jenvman.2020.111041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Lipid production in microalgae under nitrogen (N) starved condition can be enhanced by excess phosphorus (P) supply in the second stage of two-stage cultivation strategy. However, implementing two-stage cultivation is difficult in large-scale cultivation system as it requires high energy of transferring large algal biomass from first stage to second stage. To address this problem, we have optimized a continuous two-stage (CTS) cultivation strategy using Chlorella sp. HS2, where nitrogen in the growth environment is depleted naturally via consumption. To enhance both biomass and lipid productivity this strategy explored supplementation of additional P from 50% to 2500% of the initial concentration at the start of N-limited second stage of growth. The results of the optimization study in photobioreactor (PBR) showed that supplementing 500% of initial P and 100% of initial other nutrients (O) (N0-P500-O100) on 5th day showed the maximum biomass productivity of 774.4 mg L-1 d-1. It was observed that Chlorella sp. HS2 grown in PBR yielded higher biomass (3.8 times), lipid (6.1 times) and carbohydrate (5.5 times) productivity in comparison to the open raceway ponds (ORP) study, under optimum nutrient and carbon supply condition. The maximum lipid (289.6 mg L-1 d-1) and carbohydrate (219.2 mg L-1 d-1) productivities were obtained in TPBR-3, which were 1.9 and 1.3 times higher than that of TPBR-2 (+ve control) and 9.6 and 3.7 times higher than that of TPBR-1 (-ve control), respectively. Fatty acid mainly composed of C16/C18 (84.5%-85.7%), which makes the microalgal oil suitable for biofuel production. This study concluded that feeding excess amount of P is an effective and scalable strategy to improve the biomass and lipid productivity of CTS cultivation.
Collapse
Affiliation(s)
- Manoranjan Nayak
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea; Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - William I Suh
- Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Jun Muk Cho
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea; Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Hee Su Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea; Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-Gu, Daejeon, 35349, Republic of Korea.
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea; Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
31
|
Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application. 3 Biotech 2020; 10:331. [PMID: 32656064 DOI: 10.1007/s13205-020-02323-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/24/2020] [Indexed: 10/23/2022] Open
Abstract
Present study aimed to evaluate the influence of carbon/nitrogen ratio (C/N) on mixotrophic growth of microalgae and role of nanomaterial in cell recovery and lipid improvement. In this study, three microalgae species were isolated, screened from local freshwater body for lipid assimilation. The microalgae were identified as Chlorococcum sp., Scenedesmus sp., and Euglena sp. Mixotrophic cultivation of each microalgae strain using various organic carbon sources was preferred in contrast with photoautotrophic mode. Sucrose represented as the preeminent source for enhancing the microalgae biomass of 3.5 g/L and lipid content of 58.35%, which was a significant improvement as compared to control. Later, response surface methodology-central composite design (RSM-CCD), tool was employed to optimize the C/N ratio and demonstrated the maximum biomass production of 5.02 g/L along with the increased lipid content of 60.34%. Ti nanoparticles (Ti nps) were added to the culture for lipid enhancement in the stationary phase and biomass removal was performed by nanoparticle (np)-mediated flocculation technique. Optimized concentration of 15 ppm Ti nps determined the cell harvesting efficacy of 82.46% during 45 min of sedimentation time and 1.23-fold lipid enhancement was reported. Extracted lipid was converted to fatty acid methyl esters (FAME) by the process of transesterification and analyzed by gas chromatography-mass spectrometry (GC-MS). Characterization of FAME revealed the presence of 56.31% of saturated fatty acid (SFA) and 29.06% unsaturated fatty acids (UFA) that could be processed towards sustainable biodiesel production. Hence, our results suggested that integration of mixotrophic cultivation and Ti nps emerged as a new cost-effective approach for biomass and lipid enhancement in microalgae Chlorococcum sp.
Collapse
|
32
|
Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products. SUSTAINABILITY 2020. [DOI: 10.3390/su12135445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The microalgal strain Scenedesmus rubescens KNUA042 was identified in freshwater in Korea and characterized by evaluating its stress responses in an effort to increase lipid and carotenoid production. Under a two-stage cultivation process, the algal strain that generally exhibits optimal growth at a nitrate (source of nitrogen) concentration of 0.25 g L−1 was challenged to different exogenous stimuli—salinity (S), light intensity (L), combined L and S (LS), and nitrogen deficiency (C)—for 14 days. Lipid production and carotenoid concentration increased in a time-dependent manner under these physicochemical conditions during the culture periods. Lipid accumulation was confirmed by thin layer chromatography, BODIPY staining, and fatty acid composition analysis, which showed no differences in the algal cells tested under all four (C, S, L, and LS) conditions. The quality of biodiesel produced from the biomass of the algal cells met the American Society for Testing and Materials and the European standards. Total carotenoid content was increased in the LS-treated algal cells (6.94 mg L−1) compared with that in the C-, S-, and L-treated algal cells 1.75, 4.15, and 1.32 mg L−1, respectively). Accordingly, the concentration of canthaxanthin and astaxanthin was also maximized in the LS-treated algal cells at 1.73 and 1.11 mg g−1, respectively, whereas lutein showed no differences in the cells analyzed. Conversely, chlorophyll a level was similar among the C-, S-, and LS-treated algal cells, except for the L-treated algal cells. Thus, our results suggested that S. rubescens KNUA042 was capable of producing carotenoid molecules, which led to the maximum values of canthaxanthin and astaxanthin concentrations when exposed to the combined LS condition compared with that observed when exposed to the salinity condition alone. This indicates that the algal strain could be used for the production of high-value products as well as biofuel. Furthermore, this article provides the first evidence of carotenoid production in S. rubescens KNUA042.
Collapse
|
33
|
Lee SM, Lee B, Shim CK, Chang YK, Ryu CM. Plant anti-aging: Delayed flower and leaf senescence in Erinus alpinus treated with cell-free Chlorella cultivation medium. PLANT SIGNALING & BEHAVIOR 2020; 15:1763005. [PMID: 32408798 PMCID: PMC8570746 DOI: 10.1080/15592324.2020.1763005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 05/24/2023]
Abstract
Plant tissues naturally senesce over time. Attempts to improve plant robustness and increase longevity have involved genetic modification, application of synthetic chemicals, and use of beneficial microbes. Recently, culture supernatant from a microalga Chlorella fusca was found to prime innate immunity against Pseudomonas syringae in Arabidopsis thaliana. However, the capacity of Chlorella culture supernatants to prevent or delay aging in higher plants has not been elucidated. In this study, roots of the ornamental flowering plant Erinus alpinus L. were drenched with cell-free supernatants from three Chlorella species. Flower and leaf senescence in E. alpinus was significantly reduced and delayed with all three Chlorella supernatants. Investigations of the mode of action underlying delayed senescence showed that the Chlorella supernatants did not act as a chemical trigger to elicit plant immunity or as a growth-promoting fertilizer in E. alpinus. The mechanisms underlying the anti-aging effects remain undetermined, and several possible hypotheses are discussed. Several Chlorella species are industrially cultivated, and disposal of cell-free supernatant can be economically and environmentally challenging. This study provides a novel method for extending plant lifespan through use of Chlorella supernatant and discusses the potential of using industrial waste supernatants in agriculture and horticulture to reduce reliance on chemical pesticides and genetic modification.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, S. Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, S. Korea
| | - Bongsoo Lee
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, Daejeon, S. Korea
| | - Chang-Ki Shim
- Organic Agricultural Division, National Institute of Agriculture Sciences, Wanju, S. Korea
| | - Yong-Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, S. Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, S. Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, S. Korea
| |
Collapse
|
34
|
Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa. Folia Microbiol (Praha) 2020; 65:901-908. [PMID: 32415567 DOI: 10.1007/s12223-020-00800-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
The aim of the study was to identify the optimum cultivation conditions for the microalgal growth and lipid production of the oleaginous microalga Chlorella pyrenoidosa Chick (IPPAS C2). Moreover, an appropriate NO3- concentration in the cultivation medium for maximized lipid accumulation was determined. The experimental design involved a biphasic cultivation strategy with an initial biomass accumulating phase under optimized light (400 μmol/m2 per s), temperature (25 °C), and elevated CO2 concentration in the air mixture (3%), followed by a mid-elevated CO2 concentration (0.5%) for lipid induction. The highest lipid yields of 172.47 ± 18.1 and 179.65 ± 25.4 mg/L per day were detected for NO3- concentrations of 100 and 150 mg/L. The optimization approach presented here led not only to the maximization of lipid yield but also to the development of a biphasic cultivation strategy easily applicable to the cultivation process without the necessity for algal cell harvesting between the first and second cultivation phases.
Collapse
|
35
|
Feng P, Xu Z, Qin L, Asraful Alam M, Wang Z, Zhu S. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. BIORESOURCE TECHNOLOGY 2020; 301:122762. [PMID: 31972402 DOI: 10.1016/j.biortech.2020.122762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 05/20/2023]
Abstract
To assess the potential of Chlorella sp. GN1 for producing biodiesel raw materials in flat plate photobioreactors (FPPs) outdoors, we optimized the nitrogen sources and concentrations for the growth of the algae. The effects of different light paths of FPPs on the growth, lipid accumulation, and fatty acids of Chlorella sp. GN1 were also studied. As the light path of the FPPs was reduced, the alga could accumulate lipids rapidly, achieving high lipid content and lipid productivity outdoors. The highest lipid content obtained was 53.5%, when the light path was 5 cm. In addition, the lipid productivity was 66.7 mg L-1 day-1. The main fatty acids were C16/C18, accounting more than 90% of the total fatty acids. Results showed that Chlorella sp. GN1 had the ability to accumulate large quantities of lipids in FPPs outdoors and was a promising microalgal species for biofuel production.
Collapse
Affiliation(s)
- Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongbin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
36
|
Effects of Nitrogen Forms and Supply Mode on Lipid Production of Microalga Scenedesmus obliquus. ENERGIES 2020. [DOI: 10.3390/en13030697] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimization of the microalgae culture conditions could significantly reduce the production costs of microalgae-derived biodiesel. In the current study, a new process of adding different forms using the multiple small-dose method was employed. The effects of different forms of nitrogen (NaNO3, NH4Cl, and CH4N2O) and their concentrations (0.1, 0.5, 1, and 2 mg L−1) on the growth and lipid production of Scenedesmus obliquus were studied. Algae density and lipid production increased with increasing nitrogen concentration for all different forms of nitrogen except NH4Cl. The Scenedesmus obliquus growth was promoted by adding NaNO3 and CH4N2O, but was inhibited by adding NH4Cl. Adding 2 mg N L−1 of CH4N2O daily yielded the highest cell density (1.7 × 107 cells mL−1) and lipid production (242.4 mg L−1). These conditions can thus maintain the biomass of Scenedesmus obliquus, increase its lipid accumulation, and decrease the costs of biodiesel production.
Collapse
|
37
|
Kim HS, Park WK, Lee B, Seon G, Suh WI, Moon M, Chang YK. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci Rep 2019; 9:19383. [PMID: 31852948 PMCID: PMC6920485 DOI: 10.1038/s41598-019-55854-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
The heterotrophic cultivation of microalgae has a number of notable advantages, which include allowing high culture density levels as well as enabling the production of biomass in consistent and predictable quantities. In this study, the full potential of Chlorella sp. HS2 is explored through optimization of the parameters for its heterotrophic cultivation. First, carbon and nitrogen sources were screened in PhotobioBox. Initial screening using the Plackett-Burman design (PBD) was then adopted and the concentrations of the major nutrients (glucose, sodium nitrate, and dipotassium phosphate) were optimized via response surface methodology (RSM) with a central composite design (CCD). Upon validation of the model via flask-scale cultivation, the optimized BG11 medium was found to result in a three-fold improvement in biomass amounts, from 5.85 to 18.13 g/L, in comparison to a non-optimized BG11 medium containing 72 g/L glucose. Scaling up the cultivation to a 5-L fermenter resulted in a greatly improved biomass concentration of 35.3 g/L owing to more efficient oxygenation of the culture. In addition, phosphorus feeding fermentation was employed in an effort to address early depletion of phosphate, and a maximum biomass concentration of 42.95 g/L was achieved, with biomass productivity of 5.37 g/L/D.
Collapse
Affiliation(s)
- Hee Su Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won-Kun Park
- Department of Chemistry and Energy Engineering, Sangmyung University, 20 Hongimun 2-gil, Jongno-gu, Seoul, 03016, Republic of Korea
| | - Bongsoo Lee
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea
| | - Gyeongho Seon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - William I Suh
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Buk-gu, Gwangju, 61003, Republic of Korea.
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
38
|
Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. BIORESOURCE TECHNOLOGY 2019; 291:121894. [PMID: 31387839 DOI: 10.1016/j.biortech.2019.121894] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haitao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yinghui Liu
- Information Management Center of Sichuan University, Chengdu, Sichuan 610065, China
| | - Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
39
|
Gao G, Wu M, Fu Q, Li X, Xu J. A two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine bloom-forming diatom Skeletonema costatum. BIORESOURCE TECHNOLOGY 2019; 289:121717. [PMID: 31279322 DOI: 10.1016/j.biortech.2019.121717] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
To enhance biodiesel production and quality from a bloom-forming diatom Skeletonema costatum, a two-stage model, in which cells were cultured in nutrient replete conditions first and then transferred to nutrient limitation conditions, was explored. Compared to one-stage model, nutrient limitation in the second stage significantly increased lipid content in spite of decreasing growth; consequently, Si-limitation and N-Si-limitation respectively increased lipid productivity by 37.6% and 76.7% for 6 h induction, and 42.8% and 113.7% for 12 induction. Nutrient limitation enhanced the proportions of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) but reduced polyunsaturated fatty acid (PUFA). Therefore, N-Si-limitation reduced iodine value by 33.7% and 45.6% but increased cetane number by 6.4% and 21.6% for 6 and 24 h induction, respectively. These findings indicate that the two-stage model with N-Si-limitation can enhance lipid productivity as well as biodiesel quality from diatoms.
Collapse
Affiliation(s)
- Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Min Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qianqian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinshu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
40
|
Nayak M, Swain DK, Sen R. Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:475-484. [PMID: 31128367 DOI: 10.1016/j.scitotenv.2019.05.123] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/12/2023]
Abstract
Intensive use of chemical fertilizer results in environmental pollution that disturbs the local ecosystem and causes reduction in the long-term crop yield. There is a need to explore the alternative source of plant nutrition such as de-oiled microalgal biomass as biofertilizer for sustainable production of food crops in a relatively pollution free environment. This study reports sustainable and improved agriculture of rice crop (cv. IR 36) by valorizing de-oiled microalgal biomass waste (DOMBW) of Scenedesmus sp., as eco-friendly fertilizer. The microalga (MA) was cultivated in open raceway pond using wastewater and flue gas. Performance evaluation and comparison of DOMBW with respect to growth and yield of rice plants vis-à-vis commercial chemical fertilizers (CF) and vermicompost (VC) applied individually or together, established the superiority of the former. The experiment comprised of five nutrient management treatments (CF100, VC100, MA100, MA50+CF50, and MA50+VC50) meeting 100% nitrogen (N) recommendation either through a single source or combined application in the soil. Combining the application of microalgal based organic fertilizer with chemical fertilizer (MA50+CF50), showed the highest performance in terms of plant height, tiller number, biomass, and grain yield. At the harvest stage, MA50+CF50 also resulted in maximum plant dry weight, panicle weight, and 1000-grain weight in comparison to other treatments. This study revealed that the application of DOMBW as a biofertilizer is potentially sustainable and effective in improving the yields of rice crop with reduced use of chemical fertilizer.
Collapse
Affiliation(s)
- Manoranjan Nayak
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Dillip Kumar Swain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
41
|
Bhatia SK, Gurav R, Choi TR, Han YH, Park YL, Jung HR, Yang SY, Song HS, Yang YH. A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY01 by medium engineering. BIORESOURCE TECHNOLOGY 2019; 286:121383. [PMID: 31071574 DOI: 10.1016/j.biortech.2019.121383] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Odd chain fatty acids serve as anti-allergic, anti-inflammatory, and antifungal agents, and are useful for the production of biodiesel. Rhodococcus sp. YHY01 utilizes a wide range of carbon sources and accumulate lipids i.e. fructose (37% w/w dcw) glucose (56% w/w dcw), glycerol (50% w/w dcw), acetate (42% w/w dcw), butyrate (65% w/w dcw), lactate (56% w/w dcw), and propionate (62% w/w dcw). In this study, propionate was proved as the best carbon source and produced 69% odd chain fatty acids of total fatty acids, followed by glycerol (13% odd chain fatty acids of total fatty acids). A synthetic medium optimized with response surface design containing glycerol, propionate, and ammonium chloride (0.32%:0.76%:0.040% w/v) facilitated the production of total fatty acids 69% w/w of dcw, and odd chain fatty acids comprised 85% w/w of total fatty acids. Major odd chain fatty acids were in the order C17:0 > C15:0 > Cis-10-C17:1 > 10Me-C17:0 > C19:0 > Cis-10-C19:1.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yeong Hoon Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hye-Rim Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Soo-Yeon Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea.
| |
Collapse
|
42
|
Song C, Qiu Y, Xie M, Liu J, Liu Q, Li S, Sun L, Wang K, Kansha Y. Novel Regeneration and Utilization Concept Using Rich Chemical Absorption Solvent As a Carbon Source for Microalgae Biomass Production. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yiting Qiu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Meilian Xie
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shuhong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, No. 29, No. 13 Ave., TEDA, Tianjin 300457, China
| | - Luchang Sun
- China Huadian Engineering Co., Ltd., Beijing 100160, China
| | - Kailiang Wang
- China Huadian Engineering Co., Ltd., Beijing 100160, China
| | - Yasuki Kansha
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
43
|
Li M, Zhou M, Luo J, Tan C, Tian X, Su P, Gu T. Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. BIORESOURCE TECHNOLOGY 2019; 280:95-103. [PMID: 30763866 DOI: 10.1016/j.biortech.2019.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
This study developed a bubbling-type photosynthetic algae microbial fuel cell (B-PAMFC) to treat synthetic wastewater and capture CO2 using Chlorella vulgaris with simultaneous power production. The performance of B-PAMFC in CO2 fixation and bioenergy production was compared with the photosynthetic algae microbial fuel cell (PAMFC) and bubbling photobioreactor. Different nitrogen sources for C. vulgaris growth, namely sodium nitrate, urea, ammonium acetate and acetamide were studied. The maximum CO2 fixation rate in B-PAMFC with 2.8 g L-1 urea reached 605.3 mg L-1 d-1, 3.86-fold higher than that in PAMFC. Urea also enhanced the solution absorption of CO2. Furthermore, the B-PAMFC reached a high lipid productivity of 105.9 mg L-1 d-1. An energy balance analysis indicated that B-PAMFC had a maximum net energy of 1.824 kWh m-3, making it a lab-scale energy-positive system. The B-PAMFC with urea as nitrogen source would provide an attractive strategy for simultaneous CO2 sequestration and bioenergy production.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chaolin Tan
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xiaoyu Tian
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| |
Collapse
|