1
|
Xu H, Wang S, Sun Y, Yu T, Yang H, Xu G. Enhancing nitrogen removal by simultaneous nitritation and denitritation in a multi-cycle SBR with supplementation of solid carbon sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122672. [PMID: 39326074 DOI: 10.1016/j.jenvman.2024.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Simultaneous nitritation and denitritation have the potential to significantly improve nitrogen removal in sewage treatment processes. However, their application in low-strength sewage treatment systems presents challenges. This study explored the impact of four solid carbon sources (SCSs) on N-removal via nitrite in a multi-cycle SBR with biocarriers. Results showed that both N-removal efficiencies and nitrite accumulation rates increased with higher COD/N ratios, indicating that high COD/N ratios can improve the competition between denitrifiers and nitrite-oxidizing bacteria for nitrite, leading to stable simultaneous nitritation and denitritation. The supplementation of SCSs further enhanced this high-efficiency N-removal process, with polybutylene succinate (PBS) and polycaprolactone (PCL) showing greater increases in N-removal via nitrite than poly-hydroxybutyrate (PHB) and poly-hydroxyalkanoate (PHA). Moreover, PBS showed the most significant increase in denitrification efficiency in anoxic conditions, while PHA was the most effective external SCS at a moderate level of dissolved oxygen. These findings suggest that the incorporation of external SCSs can facilitate the simultaneous nitritation and denitrification process in multi-cycle SBRs, underscoring the importance of selecting an appropriate SCS for optimizing nitrogen removal in sewage treatment projects.
Collapse
Affiliation(s)
- Huchun Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Siya Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Yuxin Sun
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Ting Yu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Hui Yang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Guangjing Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Álvarez-Chávez E, Godbout S, Généreux M, Côté C, Rousseau AN, Fournel S. Treatment of cow manure from exercise pens: A laboratory-scale study of the effect of air injection on conventional and alternative biofilters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119637. [PMID: 38000274 DOI: 10.1016/j.jenvman.2023.119637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Woodchips in stand-off pads for wintering cows have been applied in countries like Ireland and New Zealand. Their primary role is to protect soils by effectively filtering nutrients during wet conditions, while ensuring a healthy and comfortable environment for the cows. The stand-off pad concept has the potential to be adopted in Canada to provide year-long outdoor access to tie-stall dairy cows. The objective of this study was to evaluate the effect of alternative filtering materials and bed aeration under controlled laboratory conditions. Twelve biofilter columns (0.3 m in diameter and 1-m high) were installed in 12 environmentally-controlled chambers (1.2-m wide by 2.4-m long), and divided into four treatments: a bed of conventional woodchips or an alternative mix of organic materials (sphagnum peat moss, woodchips and biochar) with and without aeration (flux rate set at 0.6 m3/min/m2). Approximately 0.6 L of semi-synthetic dairy manure and 1 L of tap water were poured on the biofilters during two experimental periods of 4 weeks, simulating the effect of either winter or summer conditions (room temperature below or over 10 °C) on the retention of nutrients and fecal bacteria. Results showed that the alternative biofilters under both summer and winter conditions were more efficient in removing COD, SS, TN, and NO3-N than conventional biofilters (maximum efficiencies of 97.6%, 99.7%, 96.4%, and 98.4%, respectively). Similarly for E. coli, they achieved a minimum concentration of 1.8 Log10 CFU/100 ml. Conventional biofilters were more efficient for PO4-P removal with a maximum efficiency of 88.2%. Aeration did not have any significant effect under the tested temperature conditions. Additional factors such as media adaptation time as well as aeration flow during this period should be considered.
Collapse
Affiliation(s)
- Elizabeth Álvarez-Chávez
- Département des sols et de génie agroalimentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Stéphane Godbout
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Mylène Généreux
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Caroline Côté
- Research and Development Institute for the Agri-Environment (IRDA), Quebec City, Quebec, G1P 3W8, Canada.
| | - Alain N Rousseau
- INRS-ETE/Institut National de la Recherche Scientifique - Eau Terre Environnement, 490 rue de la Couronne, Québec City, QC, G1K 9A9, Canada.
| | - Sébastien Fournel
- Département des sols et de génie agroalimentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Liu X, Xin X, Yang W, Zhang X. Effect mechanism of micron-scale zero-valent iron enhanced pyrite-driven denitrification biofilter for nitrogen and phosphorus removal. Bioprocess Biosyst Eng 2023; 46:1847-1860. [PMID: 37955735 DOI: 10.1007/s00449-023-02941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
This study aims to explore the effect mechanism of micron-scale zero-valent iron (mZVI) to improve nitrogen and phosphorus removal in a pyrite (FeS2)-driven denitrification biofilter (DNBF) for the secondary effluent treatment. Two similar DNBFs (DNBF-A with FeS2 as fillers and DNBF-B with the mixture mZVI and FeS2 as carrier) were developed. The results showed that NO3--N, total nitrogen (TN) and PO43--P removal efficiencies were up to 91.64%, 67.44% and 80.26% in DNBF-B, which were obviously higher than those of DNBF-A (with NO3--N, TN and PO43--P removal efficiencies of 38.39%, 44.89% and 53.02%, respectively). Kinetic analysis of both PO43--P and NO3--N showed an increase in the rate constant (K) for DNBF-B compared to DNBF-A. The addition of mZVI not only improved the electron transport system activity (ETSA), but also achieved system Fe(II)/Fe(III) redox cycle in DNBF-B. In addition, the high-throughput sequencing analysis indicated that the addition of mZVI could obviously stimulate the enrichment of functional bacteria, such as Thiobacillus (11.99%), Mesotoga (7.50%), JGI-0000079D21 (6.37%), norank_f__Bacteroidetes_vadinHA17 (6.19%), Aquimonas (5.93%) and Arenimonas (3.97%). These genus played the important role in nitrogen and phosphorus removal in DNBF-B. Addition mZVI in the FeS2-driven denitrification biofilter is highly promising for TN and TP removal during secondary effluent treatment.
Collapse
Affiliation(s)
- Xin Liu
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Wenyu Yang
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Xinyu Zhang
- School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| |
Collapse
|
4
|
Niu X, Bi X, Gu R, Yin Z, Yang B, Liu C. Modification of a plant-scale semi-centralized wastewater treatment system to enhance nitrogen and phosphorus removal from black water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2005-2019. [PMID: 37119169 DOI: 10.2166/wst.2023.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Owing to the low ratio of chemical oxygen demand to total nitrogen (SCOD/TN), effective removal of nutrient pollutants from black water is difficult. In this study, to enhance nitrogen and phosphorus removal from such wastewater, a series of operational modification strategies was investigated and applied to a plant-scale semi-centralized system used for black water treatment. The results showed that 21 mg Fe3+/L was the optimal dosage for the chemical-enhanced pretreatment process, achieving average removal efficiencies of 51.1 and 74.1% for organics and phosphorus, respectively, with a slight enhancement in nitrogen removal by 2.3%. However, nitrogen and phosphorus removal could be further enhanced to 88 and 96%, by the addition of carbon sources in the post-anoxic zone of the reversed anaerobic-anoxic-aerobic process. Contrastingly, neither the addition of carbon sources in the pre-anoxic zone nor the prolongation of the time for pre-denitrification could significantly improve the nitrogen and phosphorus removal efficiencies. Furthermore, reducing the aeration intensity promoted simultaneous nitrification and denitrification in aerobic reactors, thereby making it a potential energy-saving method for system operation.
Collapse
Affiliation(s)
- Xinyuan Niu
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Xuejun Bi
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Ruihuan Gu
- Qingdao Water Group Co., Ltd, 22 Ningde Road, Laoshan District, Qingdao 266071, China
| | - Zhixuan Yin
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Benliang Yang
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| | - Changqing Liu
- Qingdao University of Technology, 777 Jialingjiang East Road, Huangdao District, Qingdao 266520, China E-mail:
| |
Collapse
|
5
|
Makisha N. Advanced Research on Polymer Floating Carrier Application in Activated Sludge Reactors. Polymers (Basel) 2022; 14:polym14132604. [PMID: 35808651 PMCID: PMC9269137 DOI: 10.3390/polym14132604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
This research estimates the efficiency of domestic wastewater treatment in the removal of organic pollutants and nitrogen compounds with a two-stage treatment sequence (an activated sludge reactor in the first stage, and a trickling filter in the second stage), and with the application of floating carriers in the activated sludge reactor. The materials “Polyvom”, “Polystyrene” and “Bioballs” were adopted as floating carriers with previously determined filling ratios in the reactor volume of 10%, 20% and 20%, respectively. After the first stage of the study, it was found that the most effective treatment was achieved using the “Polyvom” material. Therefore, only this floating carrier was considered in the second and third stages of the study. Within the stages of the research, lab-scale benches operated under different operation modes of the treatment sequence. At the end of the study, it was possible to achieve the following levels of purification: BOD5 (2.1 mg/L), NH4 (0.4 mg/L), NO2 (1.0 mg/L), and NO3 (25 mg/L). The mean values of the concentrations of BOD, NH4, and NO3 met the requirements, but the concentration of NO2 exceeded the requirements (1.0 mg/L vs. 0.08 mg/L). These results were achieved under a hydraulic retention time in the activated sludge reactor of 8 h, and the MLSS for the free-floating and immobilized activated sludge was 0.2 and 0.9 g/L, respectively.
Collapse
Affiliation(s)
- Nikolay Makisha
- Research and Education Centre "Water Supply and Wastewater Treatment", Moscow State University of Civil Engineering, 26, Yaroslaskoye Highway, 129337 Moscow, Russia
| |
Collapse
|
6
|
Liu L, Li N, Tao C, Zhao Y, Gao J, Huang Z, Zhang J, Gao J, Zhang J, Cai M. Nitrogen removal performance and bacterial communities in zeolite trickling filter under different influent C/N ratios. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15909-15922. [PMID: 33242199 DOI: 10.1007/s11356-020-11776-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
In this study, the degradation performance of nutrients in zeolite trickling filter (ZTF) with different influent C/N ratios and aeration conditions was investigated. Microaeration was beneficial for enhancing NH4+-N removal performance. Due to the sufficient carbon source supply under a C/N ratio of 8, a high removal efficiency of NH4+-N and TN was simultaneously observed in ZTF. In addition, TN removal mainly occurred at the bottom, which might be explained by the sufficient nutrients available for bacteria to multiply in this zone. The abundant genera were Acinetobacter, Gemmobacter, Flavobacterium, and Pseudomonas, all of which are heterotrophic nitrification-aerobic denitrification (HNAD) bacteria. In addition, biofilm only slowed down the adsorption rate but did not significantly reduce the adsorption capacity of zeolite. Bio-zeolite had NH4+-N well adsorption capacity and bio-desorption capacity. Biological nitrogen removal performance was superior to physicochemical absorption of zeolite. The results suggested that the physicochemical of zeolite and biochemical reactions of microorganism coupling actions may be the main nitrogen transformation pathway in ZTF. Our research provides a reference for further understanding the nitrogen removal mechanism of zeolite bioreactors.
Collapse
Affiliation(s)
- Lina Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Na Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chunyang Tao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yubo Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jingqing Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
- Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, Henan, People's Republic of China.
| | - Zhenzhen Huang
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jingshen Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, Henan, People's Republic of China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinliang Zhang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, People's Republic of China
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, People's Republic of China
| |
Collapse
|
7
|
Dos Reis Souza A, Batista AMM, Leal CD, Fia R, de Araújo JC, Siniscalchi LAB. Evaluation of nitrogen removal and the microbial community in a submerged aerated biological filter (SABF), secondary decanters (SD), and horizontal subsurface flow constructed wetlands (HSSF-CW) for the treatment of kennel effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43125-43137. [PMID: 32729043 DOI: 10.1007/s11356-020-10263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
To ensure microbial activity and a reaction equilibrium with efficiency and energy saving, it is important to know the factors that influence microbiological nitrogen removal in wastewater. Thus, it was investigated the microorganisms and their products involved in the treatment of kennel effluents operated with different aeration times, phase 1 (7 h of continuous daily aeration), phase 2 (5 h of continuous daily aeration), and phase 3 (intermittent aeration every 2 h), monitoring chemical and physical parameters weekly, monthly microbiological, and qualitative and quantitative microbiological analyzes at the end of each applied aeration phase. The results showed a higher mean growth of nitrifying bacteria (NB) (106) and denitrifying bacteria (DB) (1022) in phase with intermittent aeration, in which better total nitrogen (TN) removal performance, with 33%, was achieved, against 21% in phase 1 and 17% in phase 2, due to the longer aeration time and lower carbon/nitrogen ratio (15.7), compared with the other phases. The presence of ammonia-oxidizing bacteria (AOB), the genus Nitrobacter nitrite-oxidizing bacteria (NOB), and DB were detected by PCR with specific primers at all phases. The analysis performed by 16S-rRNA DGGE revealed the genres Thauera at all phases; Betaproteobacteria and Acidovorax in phase 3; Azoarcus in phases 2 and 3; Clostridium, Bacillus, Lactobacillus, Turicibacter, Rhodopseudomonas, and Saccharibacteria in phase 1, which are related to the nitrogen removal, most of them by denitrifying. It is concluded that, with the characterization of the microbial community and the analysis of nitrogen compounds, it was determined, consistently, that the studied treatment system has microbiological capacity to remove TN, with the phase 3 aeration strategy, by simultaneous nitrification and denitrification (SND). Due to the high density of DB, most of the nitrification occurred by heterotrophic nitrification-aerobic. And denitrification occurred by heterotrophic and autotrophic forms, since the higher rate of oxygen application did not harm the DB. Therefore, the aeration and carbon conditions in phase 3 favored the activity of the microorganisms involved in these different routes. It is considered that, in order to increase autotrophic nitrification-aerobic, it is necessary to exhaust the volume of sludge in the secondary settlers (SD), further reducing the carbon/nitrogen ratio, through more frequent cleaning, whose periodicity should be the object of further studies. Graphical abstract.
Collapse
Affiliation(s)
- Aline Dos Reis Souza
- Department of Water Resource and Sanitation, Federal University Lavras, Aquenta Sol, Lavras, Minas Gerais, 37200-000, Brazil
| | - Ana Maria Moreira Batista
- State University of Minas Gerais, João Monlevade Unit, Brasília Avenue, 1304 - Bau, João Monlevade, Minas Gerais, 35930-314, Brazil
| | - Cíntia Dutra Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais, 31270-90, Brazil
| | - Ronaldo Fia
- Department of Water Resource and Sanitation, Federal University Lavras, Aquenta Sol, Lavras, Minas Gerais, 37200-000, Brazil
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais, 31270-90, Brazil
| | | |
Collapse
|
8
|
Metagenomic insights into microbial characterizations in explaining the distinction of biofilter performance during start-up. Biodegradation 2020; 31:183-199. [PMID: 32462278 DOI: 10.1007/s10532-020-09902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
As an effective alternative for dissolved nitrogen removal, biofilter closely associates its treatment performance to structural and/or operational conditions. In this study, a set of four different biofilters including MAVF (mature aerated vertical flow), NAVF (new aerated vertical flow), NVF (new non-aerated vertical flow), and BHF (baffled non-aerated horizontal flow) were employed to purify low C/N ratio (3.8) domestic wastewater. All the filters were packed with round ceramsite operated under varying hydraulic loading rates (HLRs) of 0.024-0.18 m/day. During the start-up, both the physicochemical and microbial characterizations were investigated. It was found that, carbon and nitrogen could achieve ideal removal in MAVF once added with further sedimentation, while phosphorus displayed an unsatisfactory sequestration in any of the four filters probably due to the high inflow load and/or lack of alternate anaerobic/aerobic conditions. Filter clustering based on percent removal and removal rate constant displayed a consistent pattern, which was similar to that based on taxa of phylum from 16S rRNA sequencing, or phylum/genus/species from shotgun metagenomic sequencing although there were obvious distinctions in taxa compositions among direct comparison. Meanwhile, gene function annotation revealed that filter clustering based on metabolic pathways was consistent with that based on purification performance. These consistencies might imply that the treatment performance was mainly determined by microbial degradation. The enrichment of specific functional microbes responsible for the degradation of certain pollutants, such as carbohydrates, matched well with the defined purification performance.
Collapse
|