1
|
Zhou L, Zhang Y, Chen T, Yun J, Zhao M, Zabed HM, Zhang C, Qi X. Metabolic Remodulation of Chassis and Corn Stover Bioprocessing to Unlock 3-Hydroxypropionic Acid Biosynthesis from Agrowaste-Derived Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2536-2546. [PMID: 38261597 DOI: 10.1021/acs.jafc.3c08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Embracing the principles of sustainable development, the valorization of agrowastes into value-added chemicals has nowadays received significant attention worldwide. Herein, Escherichia coli was metabolically rewired to convert cellulosic hydrolysate of corn stover into a key platform chemical, namely, 3-hydroxypropionic acid (3-HP). First, the heterologous pathways were introduced into E. coli by coexpressing glycerol-3-P dehydrogenase and glycerol-3-P phosphatase in both single and fusion (gpdp12) forms, making the strain capable of synthesizing glycerol from glucose. Subsequently, a glycerol dehydratase (DhaB123-gdrAB) and an aldehyde dehydrogenase (GabD4) were overexpressed to convert glycerol into 3-HP. A fine-tuning between glycerol synthesis and its conversion into 3-HP was successfully established by 5'-untranslated region engineering of gpdp12 and dhaB123-gdrAB. The strain was further metabolically modulated to successfully prevent glycerol flux outside the cell and into the central metabolism. The finally remodulated chassis produced 32.91 g/L 3-HP from the cellulosic hydrolysate of stover during fed-batch fermentation.
Collapse
Affiliation(s)
- Lei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tingting Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| |
Collapse
|
2
|
Zhou S, Zhang Y, Wei Z, Park S. Recent advances in metabolic engineering of microorganisms for the production of monomeric C3 and C4 chemical compounds. BIORESOURCE TECHNOLOGY 2023; 377:128973. [PMID: 36972803 DOI: 10.1016/j.biortech.2023.128973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Bio-based C3 and C4 bi-functional chemicals are useful monomers in biopolymer production. This review describes recent progresses in the biosynthesis of four such monomers as a hydroxy-carboxylic acid (3-hydroxypropionic acid), a dicarboxylic acid (succinic acid), and two diols (1,3-propanediol and 1,4-butanediol). The use of cheap carbon sources and the development of strains and processes for better product titer, rate and yield are presented. Challenges and future perspectives for (more) economical commercial production of these chemicals are also briefly discussed.
Collapse
Affiliation(s)
- Shengfang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingli Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhiwen Wei
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Dai Z, Pomraning KR, Deng S, Kim J, Campbell KB, Robles AL, Hofstad BA, Munoz N, Gao Y, Lemmon T, Swita MS, Zucker JD, Kim YM, Burnum-Johnson KE, Magnuson JK. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:53. [PMID: 36991437 DOI: 10.1186/s13068-023-02288-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS In this study, the 3-HP β-alanine pathway consisting of aspartate decarboxylase, β-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the β-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional β-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.
Collapse
Affiliation(s)
- Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristen B Campbell
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Marie S Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jeremy D Zucker
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jon K Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
4
|
Production of 3-Hydroxypropionic Acid from Renewable Substrates by Metabolically Engineered Microorganisms: A Review. Molecules 2023; 28:molecules28041888. [PMID: 36838875 PMCID: PMC9960984 DOI: 10.3390/molecules28041888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.
Collapse
|
5
|
Zabed HM, Akter S, Rupani PF, Akor J, Zhang Y, Zhao M, Zhang C, Ragauskas AJ, Qi X. Biocatalytic gateway to convert glycerol into 3-hydroxypropionic acid in waste-based biorefineries: Fundamentals, limitations, and potential research strategies. Biotechnol Adv 2023; 62:108075. [PMID: 36502965 DOI: 10.1016/j.biotechadv.2022.108075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Microbial conversion of bioenergy-derived waste glycerol into value-added chemicals has emerged as an important bioprocessing technology due to its eco-friendliness, feasible technoeconomics, and potential to provide sustainability in biodiesel and bioethanol production. Glycerol is an abundant liquid waste from bioenergy plants with a projected volume of 6 million tons by 2025, accounting for about 10% of biodiesel and 2.5% of bioethanol yields. 3-Hydroxypropionic acid (3-HP) is a major product of glycerol bioconversion, which is the third largest biobased platform compound with expected market size and value of 3.6 million tons/year and USD 10 billion/year, respectively. Despite these biorefinery values, 3-HP biosynthesis from glycerol is still at an immature stage of commercial exploitation. The main challenges behind this immaturity are the toxic effects of 3-HPA on cells, the distribution of carbon flux to undesirable pathways, low tolerance of cells to glycerol and 3-HP, co-factor dependence of enzymes, low enzyme activity and stability, and the problems of substrate inhibition and specificity of enzymes. To address these challenges, it is necessary to understand the fundamentals of glycerol bioconversion and 3-HP production in terms of metabolic pathways, related enzymes, cell factories, midstream process configurations, and downstream 3-HP recovery, as discussed in this review critically and comprehensively. It is equally important to know the current challenges and limitations in 3-HP production, which are discussed in detail along with recent research efforts and remaining gaps. Finally, possible research strategies are outlined considering the recent technological advances in microbial biosynthesis, aiming to attract further research efforts to achieve a sustainable and industrially exploitable 3-HP production technology. By discussing the use of advanced tools and strategies to overcome the existing challenges in 3-HP biosynthesis, this review will attract researchers from many other similar biosynthesis technologies and provide a common gateway for their further development.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Parveen Fatemah Rupani
- Department of Chemical Engineering, Ku Luven, Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Joseph Akor
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yufei Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, Guangzhou 510,006, Guangdong Province, China.
| |
Collapse
|
6
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Liu H, Zhao P, Tian P. Engineering Glucose-to-Glycerol Pathway in Klebsiella pneumoniae and Boosting 3-Hydroxypropionic Acid Production Through CRISPR Interference. Front Bioeng Biotechnol 2022; 10:908431. [PMID: 35845395 PMCID: PMC9280265 DOI: 10.3389/fbioe.2022.908431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
The recent decline of the international biodiesel industry has led to decreased production and therefore increased the price of glycerol, which is a major by-product of biodiesel but a substrate for production of 3-hydroxypropionic acid (3-HP), that is, glycerol as a feedstock has no advantage over glucose in price. Hence, we engineered glucose to the glycerol pathway and improved 3-HP production by CRISPR interference (CRISPRi). To begin with, we cloned the genes encoding glycerol 3-phosphate dehydrogenase (gpd1) and glycerol 3-phosphatase (gpp2) from Saccharomyces cerevisiae, which jointly catalyze glucose into glycerol. The genes gpd1 and gpp2 were co-expressed in K. pneumoniae with the dCas9 gene integrated in genome, and this recombinant strain produced 2 g/L glycerol in the shake flask. To minimize the glucose consumption by competing pathways including the EMP pathway, glycerol oxidation pathway, and by-products pathways, we developed an CRISPRi system in aforementioned recombinant K. pneumoniae strain to inhibit the expression of the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) and 2,3-butanediol production gene (budA), resulting in a bi-functional strain harboring both glucose-to-glycerol pathway and CRISPRi system. Reverse transcription and quantitative PCR (RT-qPCR) results showed that this engineered CRISPRi system transcriptionally inhibited gapA and budA by 82% and 24%, respectively. In shake flask cultivation, this bi-functional strain produced 2.8 g/L glycerol using glucose as the carbon source, which was 46.6% increase compared to the strain without the engineered CRISPRi system. Moreover, this bi-functional strain produced 0.78 g/L 3-HP using glucose as the sole carbon source. In fed-batch cultivation, this bi-functional strain produced 1.77 g/L 3-HP. This study provides insights for co-utilization of distinct carbon sources.
Collapse
Affiliation(s)
- Hexin Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Peng Zhao
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Pingfang Tian,
| |
Collapse
|
8
|
Engineering of the Substrate Pocket of α-ketoglutaric Semialdehyde Dehydrogenase for Improving the Activity toward 3-hydroxypropanal. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
An N, Chen X, Sheng H, Wang J, Sun X, Yan Y, Shen X, Yuan Q. Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources. J Ind Microbiol Biotechnol 2021; 48:6313286. [PMID: 34215883 PMCID: PMC8788776 DOI: 10.1093/jimb/kuab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/26/2021] [Indexed: 11/14/2022]
Abstract
Carbon sources represent the most dominant cost factor in the industrial biomanufacturing of products. Thus, it has attracted much attention to seek cheap and renewable feedstocks, such as lignocellulose, crude glycerol, methanol, and carbon dioxide, for biosynthesis of value-added compounds. Co-utilization of these carbon sources by microorganisms not only can reduce the production cost but also serves as a promising approach to improve the carbon yield. However, co-utilization of mixed carbon sources usually suffers from a low utilization rate. In the past few years, the development of metabolic engineering strategies to enhance carbon source co-utilization efficiency by inactivation of carbon catabolite repression has made significant progress. In this article, we provide informative and comprehensive insights into the co-utilization of two or more carbon sources including glucose, xylose, arabinose, glycerol, and C1 compounds, and we put our focus on parallel utilization, synergetic utilization, and complementary utilization of different carbon sources. Our goal is not only to summarize strategies of co-utilization of carbon sources, but also to discuss how to improve the carbon yield and the titer of target products.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Sharshar MM, Samak NA, Ambreen S, Hao X, Mu T, Maarouf M, Zheng C, Gao Y, Liu Z, Jia Y, Li X, Zhong W, Peh S, Yang M, Xing J. Improving confirmed nanometric sulfur bioproduction using engineered Thioalkalivibrio versutus. BIORESOURCE TECHNOLOGY 2020; 317:124018. [PMID: 32836035 DOI: 10.1016/j.biortech.2020.124018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
Complicated production procedures and superior characteristics of nano-sized sulfur elevate its price to 25-40 fold higher than micrograde kind. Also, natural gas hydrogen sulfide levels are restricted because of its toxic environmental consequences. Thioalkalivibrio versutus is a polyextremophilic industrial autotroph with high natural gas desulfurization capability. Here, nanometric (>50 nm) sulfur bioproduction using T. versutus while desulfurizing natural gas was validated. Also, this production was enhanced by 166.7% via lowering sulfate production by 55.1%. A specially-developed CRISPR system, with 42% editing efficiency, simplified the genome editing workflow scheme for this challenging bacterium. In parallel, sulfur metabolism was uncovered using proteins mining and transcriptome studies for defining sulfate-producing key genes (heterodisulfide reductase-like complex, sulfur dioxygenase, sulfite dehydrogenase and sulfite oxidase). This study provided cost-effective nanometric sulfur production and improved this production using a novel CRISPR strategy, which could be suitable for industrial polyextremophiles, after uncovering sulfur pathways in T. versutus.
Collapse
Affiliation(s)
- Moustafa Mohamed Sharshar
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Nadia Abdrabou Samak
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Sadaf Ambreen
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, CAS, Beijing 100101, China
| | - Xuemi Hao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Tingzhen Mu
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, China; Virology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Chen Zheng
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Yibo Gao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Zhixia Liu
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yunpu Jia
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Xiangyuan Li
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Zhong
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Sumit Peh
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Maohua Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Jianmin Xing
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Evaluating the Engineered Saccharomyces cerevisiae With High Spermidine Contents for Increased Tolerance to Lactic, Succinic, and Malic Acids and Increased Xylose Fermentation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0020-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhao P, Ren M, Ge X, Tian P, Tan T. Development of orthogonal T7 expression system in
Klebsiella pneumoniae. Biotechnol Bioeng 2020; 117:2446-2459. [DOI: 10.1002/bit.27434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Minrui Ren
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Xizhen Ge
- College of Biochemical EngineeringBeijing Union University Beijing China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| |
Collapse
|
13
|
Lee TY, Min WK, Kim HJ, Seo JH. Improved production of 3-hydroxypropionic acid in engineered Escherichia coli by rebalancing heterologous and endogenous synthetic pathways. BIORESOURCE TECHNOLOGY 2020; 299:122600. [PMID: 31864087 DOI: 10.1016/j.biortech.2019.122600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
To improve 3-hydroxypropionic acid (3-HP) production by Escherichia coli, glycerol accumulation needs to be reduced. To accomplish this, we constructed a novel E. coli strain that overexpresses the endogenous aldehyde dehydrogenase gene (puuC) under the control of a strong promoter. The fermentation performance of the engineered strain was significantly improved compared to that of the parental control strain in the presence of glucose and xylose. We also inactivated the puu operon repressor gene, puuR, which resulted in a decrease in glycerol accumulation and an increase in 3-HP production through the co-fermentation of glucose and xylose. Through fed-batch fermentation by utilizing glucose and xylose, the engineered strain, JHS_Δgypr-PT7, produced 53.7 g/L 3-HP and accumulated 1.5 g/L glycerol. This combination strategy, wherein we overexpressed the endogenous puuC gene from a strong promoter and eliminate its transcriptional repression, may be extended to rebalance another biochemical pathway.
Collapse
Affiliation(s)
- Tae-Young Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Won-Ki Min
- Department of Food Science and Development, Kyungil University, Gyeongsan 38428, Republic of Korea
| | - Hyo Jin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Sharshar MM, Samak NA, Hao X, Mu T, Zhong W, Yang M, Peh S, Ambreen S, Xing J. Enhanced growth-driven stepwise inducible expression system development in haloalkaliphilic desulfurizing Thioalkalivibrio versutus. BIORESOURCE TECHNOLOGY 2019; 288:121486. [PMID: 31128536 DOI: 10.1016/j.biortech.2019.121486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 05/13/2023]
Abstract
Highly toxic and flammable H2S gas has become an environmental threat. Because of its ability to efficiently remove H2S by oxidation, Thioalkalivibrio versutus is gaining more attention. Haloalkaliphilic autotrophs, like the bio-desulfurizing T. versutus, grow weakly. Weak growth makes any trial for developing potent genetic tools required for genetic engineering far from achieved. In this study, the fed-batch strategy improved T. versutus growth by 1.6 fold in maximal growth rate, 9-fold in O.D600 values and about 3-fold in biomass and protein productions. The strategy also increased the favorable desulfurization product, sulfur, by 2.7 fold in percent yield and 1.5-fold in diameter. A tight iron-inducible expression system for T. versutus was successfully developed. The system was derived from fed-batch cultivation coupled with new design, build, test and validate (DPTV) approach. The inducible system was validated by toxin expression. Fed-batch cultivation coupled with DPTV approach could be applied to other autotrophs.
Collapse
Affiliation(s)
- Moustafa Mohamed Sharshar
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nadia Abdrabo Samak
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - Xuemi Hao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingzhen Mu
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Zhong
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maohua Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Sumit Peh
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sadaf Ambreen
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Genomics and Precision Medicine, Institute of Genomics, CAS, Beijing 100101, China
| | - Jianmin Xing
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|