1
|
Huang C, Wang Y, Qiang J, Cao Y, Qu G, Zhang S, Yu X. Inclusion of α-Linolenic acid ethyl ester in flaxseed oil with β-Cyclodextrin by hydrogen bonding. Food Chem 2025; 472:142860. [PMID: 39824076 DOI: 10.1016/j.foodchem.2025.142860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
β-Cyclodextrin (β-CD) enhances functional properties by forming inclusion complexes (ICs). This study employed β-CD to form IC with fatty acid ethyl ester (FAEE) for concentrating α-Linolenic acid ethyl ester (ALAEE) from flaxseed oil FAEE, and investigated the interaction mechanisms between β-CD and ALAEE. Using the single-factor method, optimal inclusion conditions yielded an inclusion rate of 61.80 % and increased ALAEE content by 11.77 % (P < 0.05). Antioxidant activity improved by 1.32-fold after concentration (P < 0.05). Differential scanning calorimetry (DSC) indicated successful FAEE inclusion, evidenced by a dehydration peak shift to higher temperatures. Changes in characteristic peaks observed in fourier transform infrared (FTIR) spectroscopy and low-field nuclear magnetic resonance (LF-NMR) confirmed intermolecular interactions in IC. β-CD formed aggregates with FAEE via hydrogen bonding, with ALAEE stablishing a more stable IC due to stronger hydrogen bonding compared to other FAEEs.
Collapse
Affiliation(s)
- Chenxin Huang
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yuxiang Wang
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jie Qiang
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Yongsheng Cao
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Guoyi Qu
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Siyu Zhang
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Villegas-Rodríguez SB, Arreola-Vargas J, Buitrón G. Influence of pH and temperature on the performance and microbial community during the production of medium-chain carboxylic acids using winery effluents as substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33103-5. [PMID: 38558339 DOI: 10.1007/s11356-024-33103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Winery effluents containing high ethanol concentrations and diverse organic matter are ideal substrates for producing medium-chain carboxylic acids via fermentation and chain elongation. However, the process needs to be better understood. This study presents novel insights into the bioconversion mechanisms of medium-chain carboxylic acids by correlating fermentation and chain elongation kinetic profiles with the study of microbial communities at different pH (5 to 7) conditions and temperatures (30 to 40 °C). It was found that high productivities of MCCA were obtained using a native culture and winery effluents as a natural substrate. Minor pH variations significantly affected the metabolic pathway of the microorganisms for MCCA production. The maximal productivities of hexanoic (715 mg/L/d) and octanoic (350 mg/L/d) acids were found at pH 6 and 35 °C. Results evidence that the presence of Clostridium, Bacteroides, and Negativicutes promotes the high productions of MCCA. The formation of heptanoic acid was favor when Mogibacterium and Burkholderia were present.
Collapse
Affiliation(s)
- Sharon B Villegas-Rodríguez
- Laboratory for Research On Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Queretaro, Mexico
| | - Jorge Arreola-Vargas
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Germán Buitrón
- Laboratory for Research On Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Queretaro, Mexico.
| |
Collapse
|
3
|
Duber A, Zagrodnik R, Juzwa W, Gutowska N, Oleskowicz-Popiel P. Simultaneous medium chain carboxylic acids and 1,3-propanediol production in a bioaugmented lactate-based chain elongation induced with glycerol. BIORESOURCE TECHNOLOGY 2024; 393:130123. [PMID: 38042435 DOI: 10.1016/j.biortech.2023.130123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
The objective was to investigate the impact of the bioaugmentation on chain elongation process using glycerol, lactate and lactose as substrates in an open culture fermentation. In the batch trials the highest selectivity for chain elongation product, i.e. caproate, was observed in trials inoculated with co-culture of Megasphaera elsdenii and Eubacterium limosum grown on glycerol (28.6%), and in non-bioaugmented open culture run on lactose + lactate (14.8%). The results showed that E. limosum, out of two bioaugmented strains, was able to survive in the open culture. A continuous open culture fermentation of glycerol led to caproate and 1,3-propanediol (1,3-PDO) formation, while lactate addition led to 1,3-PDO and short chain carboxylates production. Moving the process into batch mode triggered even-carbon chain elongation. Presence of E. limosum promoted odd-carbon chain elongation and valerate production. Imaging flow cytometry combined with machine learning enabled the discrimination of Eubacterium cells from other microbial strains during the process.
Collapse
Affiliation(s)
- Anna Duber
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Roman Zagrodnik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland.
| | - Natalia Gutowska
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
4
|
Mariën Q, Regueira A, Ganigué R. Steerable isobutyric and butyric acid production from CO 2 and H 2 by Clostridium luticellarii. Microb Biotechnol 2024; 17:e14321. [PMID: 37649327 PMCID: PMC10832561 DOI: 10.1111/1751-7915.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
Clostridium luticellarii is a recently discovered acetogen that is uniquely capable of producing butyric and isobutyric acid from various substrates (e.g. methanol), but it is unclear which factors influence its (iso)butyric acid production from H2 and CO2 . We aimed to investigate the autotrophic metabolism of C. luticellarii by identifying the necessary growth conditions and examining the effects of pH and metabolite levels on product titers and selectivity. Results show that autotrophic growth of C. luticellarii requires the addition of complex nutrient sources and the absence of shaking conditions. Further experiments combined with thermodynamic calculations identified pH as a key parameter governing the direction of metabolic fluxes. At circumneutral pH (~6.5), acetic acid is the sole metabolic end product but C. luticellarii possesses the unique ability to co-oxidize organic acids such as valeric acid under high H2 partial pressures (>1 bar). Conversely, mildly acidic pH (≤5.5) stimulates the production of butyric and isobutyric acid while partly halting the oxidation of organic acids. Additionally, elevated acetic acid concentrations stimulated butyric and isobutyric acid production up to a combined selectivity of 53 ± 3%. Finally, our results suggest that isobutyric acid is produced by a reversible isomerization of butyric acid, but valeric and caproic acid are not isomerized. These combined insights can inform future efforts to optimize and scale-up the production of valuable chemicals from CO2 using C. luticellarii.
Collapse
Affiliation(s)
- Quinten Mariën
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE)GhentBelgium
| | - Alberte Regueira
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE)GhentBelgium
- CRETUS, Department of Chemical EngineeringUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE)GhentBelgium
| |
Collapse
|
5
|
Parera Olm I, Sousa DZ. Upgrading dilute ethanol to odd-chain carboxylic acids by a synthetic co-culture of Anaerotignum neopropionicum and Clostridium kluyveri. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:83. [PMID: 37194097 DOI: 10.1186/s13068-023-02336-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Dilute ethanol streams generated during fermentation of biomass or syngas can be used as feedstocks for the production of higher value products. In this study, we describe a novel synthetic microbial co-culture that can effectively upgrade dilute ethanol streams to odd-chain carboxylic acids (OCCAs), specifically valerate and heptanoate. The co-culture consists of two strict anaerobic microorganisms: Anaerotignum neopropionicum, a propionigenic bacterium that ferments ethanol, and Clostridium kluyveri, well-known for its chain-elongating metabolism. In this co-culture, A. neopropionicum grows on ethanol and CO2 producing propionate and acetate, which are then utilised by C. kluyveri for chain elongation with ethanol as the electron donor. RESULTS A co-culture of A. neopropionicum and C. kluyveri was established in serum bottles with 50 mM ethanol, leading to the production of valerate (5.4 ± 0.1 mM) as main product of ethanol-driven chain elongation. In a continuous bioreactor supplied with 3.1 g ethanol L-1 d-1, the co-culture exhibited high ethanol conversion (96.6%) and produced 25% (mol/mol) valerate, with a steady-state concentration of 8.5 mM and a rate of 5.7 mmol L-1 d-1. In addition, up to 6.5 mM heptanoate was produced at a rate of 2.9 mmol L-1 d-1. Batch experiments were also conducted to study the individual growth of the two strains on ethanol. A. neopropionicum showed the highest growth rate when cultured with 50 mM ethanol (μmax = 0.103 ± 0.003 h-1) and tolerated ethanol concentrations of up to 300 mM. Cultivation experiments with C. kluyveri showed that propionate and acetate were used simultaneously for chain elongation. However, growth on propionate alone (50 mM and 100 mM) led to a 1.8-fold reduction in growth rate compared to growth on acetate. Our results also revealed sub-optimal substrate use by C. kluyveri during odd-chain elongation, where excessive ethanol was oxidised to acetate. CONCLUSIONS This study highlights the potential of synthetic co-cultivation in chain elongation processes to target the production of OCCAs. Furthermore, our findings shed light on to the metabolism of odd-chain elongation by C. kluyveri.
Collapse
Affiliation(s)
- Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| |
Collapse
|
6
|
Decision Tree of Materials: A Model of Halal Control Point (HCP) Identification in Small-Scale Bakery to Support Halal Certification. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:5244586. [PMID: 35465217 PMCID: PMC9019479 DOI: 10.1155/2022/5244586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/12/2022] [Indexed: 11/30/2022]
Abstract
A bakery is a business that bakes flour-based foods, including bread, cookies, cakes, pastries, and pies, and sells them. Some bakeries are also categorized as large scale, medium scale, and small scale. Halal embraces all food category; bakery product can satisfy the challenge and opportunity of halal food segment market. The small-scale bakery will benefit from creating a halal certification to attract new customers. The first stage of submission for halal certification is identifying Halal Control Points (HCP) of materials and production. The material tracing uses a decision tree. The purpose of this study is to identify HCP in materials and production processes and provide alternative improvements. Identification of HCP in material decision trees to determine contains non-HCP (halal) material, HCP material, and haram (forbidden) material. Happy Cake bakery uses 75% non-HCP (halal) materials and 25% HCP (noncertified halal) materials from 80 ingredients. Bakery Canggi Fully has 83.3% halal materials and 16.6% noncertified halal materials from 24 ingredients. Bakery MacCheese has 79% of halal materials and 21% of noncertified halal materials from 43 ingredients. The decision tree makes it very easy to identify the halal status of ingredients. The HCP ingredients need to be replaced with clearly halal ingredients. Substitution of HCP material to halal-certified ingredients may affect production costs, product quality, and profit. Therefore, it is necessary to choose a suitable halal material. Halal certification requires a high commitment of small-scale bakery businesses.
Collapse
|
7
|
Challenges & Opportunities on Catalytic Conversion of Glycerol to Value Added Chemicals. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10524.525-547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the rapid expansion of biodiesel industry, its main by-product, crude glycerol, is anticipated to reach a global production of 6 million tons in 2025. It is actually a worrying phenomenon as glycerol could potentially emerge as an excessive product with little value. Glycerol, an alcohol and oxygenated chemical from biodiesel production, has essentially enormous potential to be converted into higher value-added chemicals. Using glycerol as a starting material for value-added chemical production will create a new demand on the glycerol market such as lactic acid, propylene glycol, alkyl lactatehydrogen, olefins and others. This paper briefly reviews the recent development on value-added chemicals derived from glycerol through catalytic conversion of refined and crude glycerol that have been proven to be promising in research stage with commercialization potential, or have been put in a corporate marketable production. Despite of the huge potential of products that can be transformed from glycerol, there are still numerous challenges to be addressed and discussed that include catalyst design and robustness; focus on crude or refined glycerol; reactor technology, reaction mechanism and thermodynamic analysis; and overall process commercial viability. The discussion will hopefully provide new insights on justified direction to focus on for glycerol transformation technology. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
8
|
Fortney NW, Hanson NJ, Rosa PRF, Donohue TJ, Noguera DR. Diverse Profile of Fermentation Byproducts From Thin Stillage. Front Bioeng Biotechnol 2021; 9:695306. [PMID: 34336807 PMCID: PMC8320890 DOI: 10.3389/fbioe.2021.695306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
The economy of biorefineries is influenced not only by biofuel production from carbohydrates but also by the production of valuable compounds from largely underutilized industrial residues. Currently, the demand for many chemicals that could be made in a biorefinery, such as succinic acid (SA), medium-chain fatty acids (MCFAs), and lactic acid (LA), is fulfilled using petroleum, palm oil, or pure carbohydrates as raw materials, respectively. Thin stillage (TS), the residual liquid material following distillation of ethanol, is an underutilized coproduct from the starch biofuel industry. This carbon-rich material has the potential for chemical upgrading by microorganisms. Here, we explored the formation of different fermentation products by microbial communities grown on TS using different bioreactor conditions. At the baseline operational condition (6-day retention time, pH 5.5, 35°C), we observed a mixture of MCFAs as the principal fermentation products. Operation of a bioreactor with a 1-day retention time induced an increase in SA production, and a temperature increase to 55°C resulted in the accumulation of lactic and propionic acids. In addition, a reactor operated with a 1-day retention time at 55°C conditions resulted in LA accumulation as the main fermentation product. The prominent members of the microbial community in each reactor were assessed by 16S rRNA gene amplicon sequencing and phylogenetic analysis. Under all operating conditions, members of the Lactobacillaceae family within Firmicutes and the Acetobacteraceae family within Proteobacteria were ubiquitous. Members of the Prevotellaceae family within Bacteroidetes and Lachnospiraceae family within the Clostridiales order of Firmicutes were mostly abundant at 35°C and not abundant in the microbial communities of the TS reactors incubated at 55°C. The ability to adjust bioreactor operating conditions to select for microbial communities with different fermentation product profiles offers new strategies to explore and compare potentially valuable fermentation products from TS and allows industries the flexibility to adapt and switch chemical production based on market prices and demands.
Collapse
Affiliation(s)
- Nathaniel W Fortney
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nathaniel J Hanson
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Wisconsin Youth Apprenticeship Program, Department of Workforce Development, Madison, WI, United States
| | - Paula R F Rosa
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Chemical Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Timothy J Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel R Noguera
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
10
|
Chu N, Liang Q, Jiang Y, Zeng RJ. Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosens Bioelectron 2020; 150:111922. [DOI: 10.1016/j.bios.2019.111922] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
|