1
|
Tang Z, Wu C, Tang W, Huang M, Ma C, He YC. Enhancing enzymatic saccharification of sunflower straw through optimal tartaric acid hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2023:129279. [PMID: 37321308 DOI: 10.1016/j.biortech.2023.129279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Sunflower straw, a usually neglected and abundant agricultural waste, has great potential for contributing to environmental protection realizing its high-value of valorization if utilizing properly. Because hemicellulose contains amorphous polysaccharide chains, relatively mild organic acid pretreatment can effectively reduce its resistance. Through hydrothermal pretreatment, sunflower straw was pretreated in tartaric acid (1 wt%) at 180 oC for 60 min to enhance its reducing sugar recovery. After tartaric acid-assisted hydrothermal pretreatment, 39.9% of lignin and 90.2% of hemicellulose were eliminated. The reducing sugar recovery increased threefold, while the solution could be effectively reused for four cycles. The properties of more porous surface, improved accessibility, and decreased surface lignin area of sunflower straw were observed through various characterizations, which explained the improved saccharide recovery and provided a basis for the mechanism of tartaric acid-assisted hydrothermal pretreatment. Overall, this tartaric acid hydrothermal pretreatment strategy greatly provided new impetus for the biomass refinery.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Menghan Huang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| |
Collapse
|
2
|
Liu B, Liu L, Deng B, Huang C, Zhu J, Liang L, He X, Wei Y, Qin C, Liang C, Liu S, Yao S. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int J Biol Macromol 2022; 222:1400-1413. [PMID: 36195224 DOI: 10.1016/j.ijbiomac.2022.09.270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
As a clean and efficient method of lignocellulosic biomass separation, organic acid pretreatment has attracted extensive research. Hemicellulose or lignin is selectively isolated and the cellulose structure is preserved. Effective fractionation of lignocellulosic biomass is achieved. The separation characteristics of hemicellulose or lignin by different organic acids were summarized. The organic acids of hemicellulose were separated into hydrogen ionized, autocatalytic and α-hydroxy acids according to the separation mechanism. The separation of lignin depends on the dissolution mechanism and spatial effect of organic acids. In addition, the challenges and prospects of organic acid pretreatment were analyzed. The separation of hemicellulose and enzymatic hydrolysis of cellulose were significantly affected by the polycondensation of lignin, which is effectively inhibited by the addition of green additives such as ketones or alcohols. Lignin separation was improved by developing a deep eutectic solvent treatment based on organic acid pretreatment. This work provides support for efficient cleaning of carbohydrate polymers and lignin to promote global carbon neutrality.
Collapse
Affiliation(s)
- Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Linlin Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xinliang He
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuxin Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry,1 Forestry Drive, Syracuse, NY 13210, United States
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
3
|
Lyu H, Yang S, Zhang J, Feng Y, Geng Z. Impacts of utilization patterns of cellulosic C5 sugar from cassava straw on bioethanol production through life cycle assessment. BIORESOURCE TECHNOLOGY 2021; 323:124586. [PMID: 33387712 DOI: 10.1016/j.biortech.2020.124586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Integrated processes of whole plant cassava bioethanol production using full components including cellulosic C5 sugar are proposed. The impacts of different utilization patterns of cellulosic C5 sugar on bioethanol production are investigated by life cycle assessment. Results show that for cassava straw bioethanol, process using cellulosic C5 sugar performs better, and the NER, renewability and GWP (global warming potential) are 0.94, 1.09 and 2929 kg CO2 eq. The integrated process WPC-2 that the cellulosic C5 sugar mash is fermented together with the cassava starch, is a better cellulosic C5 sugar utilization pattern with NER 1.49, renewability 2.20 and GWP 1579 kg CO2 eq. The process WPC-2 shows the potential to approach cassava bioethanol in terms of energy and environmental emissions. The downstream products are investigated and the E85 fuel from WPC-2 has higher application potential.
Collapse
Affiliation(s)
- Huisheng Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shuyuan Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jia Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yongxin Feng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhongfeng Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|