1
|
Yang Z, Zhou Z, Shang C, Bai M, Xu X, Zhu S, Zhang J, Zhao M, Cao L, Chen A. Upgrading straw for lignin separation and levulinic acid production using lactic acid DES and HSO 3-based ionic liquids. Int J Biol Macromol 2025; 308:142426. [PMID: 40132706 DOI: 10.1016/j.ijbiomac.2025.142426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Deep eutectic solvents (DES) and ionic liquids (ILs) have emerged as viable alternatives for biomass fractionation. In this study, lactic acid-choline chloride deep eutectic solvents (CCLA), synthesized were utilized for the fractionation of lignin and the cellulose enriched solid (CS) derived from straw. Subsequently, the CS was subjected to hydrothermal conversion to yield levulinic acid (LA) using the IL [C3SO3HEim]Cl. The optimal lignin separation rate of 89.3 % was attained when the molar ratio of choline chloride to lactic acid was 1:4. The highest LA yield (30.3 wt%) was obtained from the CS after DES pretreatment under the 1:2 M ratio of choline chloride to lactic acid. This study adopted the approach of experiments combined with density functional theory (DFT) to reveal the positive influence for lignin fractionation and the inhibition for cellulose retention of hydrogen bond donors (HBD), as the core component of CCLA, thereby further affecting the valorization conversion of CS to cellulose based furan products by ILs. Furthermore, Lewis acid salt FeCl3 was confirmed the benefit for the conversion of CS to LA by the synergistic catalysis with [C3SO3HEim]Cl. This study proposes a tandem design of green solvent for lignin recovery and CS valorization production of LA.
Collapse
Affiliation(s)
- Zhenghang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhirui Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Cui Shang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ma Bai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiyan Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
| | - Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Mei Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Cao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Colussi F, Rodríguez H, Michelin M, Teixeira JA. Challenges in Using Ionic Liquids for Cellulosic Ethanol Production. Molecules 2023; 28:molecules28041620. [PMID: 36838608 PMCID: PMC9961591 DOI: 10.3390/molecules28041620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The growing need to expand the use of renewable energy sources in a sustainable manner, providing greater energy supply security and reducing the environmental impacts associated with fossil fuels, finds in the agricultural by-product bioethanol an economically viable alternative with significant expansion potential. In this regard, a dramatic boost in the efficiency of processes already in place is required, reducing costs, industrial waste, and our carbon footprint. Biofuels are one of the most promising alternatives to massively produce energy sustainably in a short-term period. Lignocellulosic biomass (LCB) is highly recalcitrant, and an effective pretreatment strategy should also minimize carbohydrate degradation by diminishing enzyme inhibitors and other products that are toxic to fermenting microorganisms. Ionic liquids (ILs) have been playing an important role in achieving cleaner processes as a result of their excellent physicochemical properties and outstanding performance in the dissolution and fractionation of lignocellulose. This review provides an analysis of recent advances in the production process of biofuels from LCB using ILs as pretreatment and highlighting techniques for optimizing and reducing process costs that should help to develop robust LCB conversion processes.
Collapse
Affiliation(s)
- Francieli Colussi
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-604-426
| | - Héctor Rodríguez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Michele Michelin
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Liang X, Zhang Y. Controllable recovery and regeneration of bio-derived ionic liquid choline acetate for biomass processing via bipolar membrane electrodialysis-based methodology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Zhang X, Zhu P, Li Q, Xia H. Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents. Front Chem 2022; 10:911674. [PMID: 35615315 PMCID: PMC9124943 DOI: 10.3389/fchem.2022.911674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Lignocellulose is recognized as an ideal raw material for biorefinery as it may be converted into biofuels and value-added products through a series of chemical routes. Furfural, a bio-based platform chemical generated from lignocellulosic biomass, has been identified as a very versatile alternative to fossil fuels. Deep eutectic solvents (DES) are new “green” solvents, which have been employed as green and cheap alternatives to traditional organic solvents and ionic liquids (ILs), with the advantages of low cost, low toxicity, and biodegradability, and also have been proven to be effective media for the synthesis of biomass-derived chemicals. This review summarizes the recent advances in the conversion of carbohydrates to furfural in DES solvent systems, which mainly focus on the effect of adding different catalysts to the DES system, including metal halides, water, solid acid catalyst, and certain oxides, on the production of furfural. Moreover, the challenges and perspectives of DES-assisted furfural synthesis in biorefinery systems are also discussed in this review.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Peng Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qinfang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Haian Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- *Correspondence: Haian Xia,
| |
Collapse
|
5
|
|
6
|
New EK, Tnah SK, Voon KS, Yong KJ, Procentese A, Yee Shak KP, Subramonian W, Cheng CK, Wu TY. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114385. [PMID: 35104699 DOI: 10.1016/j.jenvman.2021.114385] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.
Collapse
Affiliation(s)
- Eng Kein New
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shen Khang Tnah
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Shing Voon
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Undergraduate Research Opportunities Program (UROP), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Jie Yong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Alessandra Procentese
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor Darul Ehsan, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Wennie Subramonian
- School of Computing, Engineering & Design Technologies, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, United Kingdom
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Miao S, Jiang HJ, Imberti S, Atkin R, Warr G. Aqueous choline amino acid deep eutectic solvents. J Chem Phys 2021; 154:214504. [PMID: 34240972 DOI: 10.1063/5.0052479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have investigated the structure and phase behavior of biocompatible, aqueous deep eutectic solvents by combining choline acetate, hydrogen aspartate, and aspartate amino acid salts with water as the sole molecular hydrogen bond donor. Using contrast-variation neutron diffraction, interpreted via computational modeling, we show how the interplay between anion structure and water content affects the hydrogen bond network structure in the liquid, which, in turn, influences the eutectic composition and temperature. These mixtures expand the current range choline amino acid ionic liquids under investigation for biomass processing applications to include higher melting point salts and also explain how the ionic liquids retain their desirable properties in aqueous solution.
Collapse
Affiliation(s)
- Shurui Miao
- School of Chemistry and Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Haihui Joy Jiang
- School of Chemistry and Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Silvia Imberti
- STFC, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, WA 6009, Australia
| | - Gregory Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Zhang J, Zhang X, Yang M, Singh S, Cheng G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. BIORESOURCE TECHNOLOGY 2021; 322:124522. [PMID: 33340950 DOI: 10.1016/j.biortech.2020.124522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
Processes that can convert lignocellulosic biomass into biofuels and chemicals are particularly attractive considering renewability and minimal environmental impact. Ionic liquids (ILs) have been used as novel solvents in the process development in that they can effectively deconstruct recalcitrant lignocellulosic biomass for high sugar yield and lignin recovery. From cellulose-dissolving ILs to choline-based and protic acidic ILs, extensive research in this field has been done, driven by the promising future of IL pretreatment. Meanwhile, shortcomings and technological hurdles are ascertained during research and developments. It is necessary to present a general overview of recent developments and challenges in this field. In this review paper, three aspects of advances in IL pretreatment are critically analyzed: biocompatible ILs, protic acidic ILs and combinatory pretreatments.
Collapse
Affiliation(s)
- Jinxu Zhang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Mingkun Yang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Seema Singh
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Gang Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes (Basel) 2021. [DOI: 10.3390/pr9020206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of so-called advanced bioethanol offers several advantages compared to traditional bioethanol production processes in terms of sustainability criteria. This includes, for instance, the use of nonfood crops or residual biomass as raw material and a higher potential for reducing greenhouse gas emissions. The present review focuses on the recent progress related to the production of advanced bioethanol, (i) highlighting current results from using novel biomass sources such as the organic fraction of municipal solid waste and certain industrial residues (e.g., residues from the paper, food, and beverage industries); (ii) describing new developments in pretreatment technologies for the fractionation and conversion of lignocellulosic biomass, such as the bioextrusion process or the use of novel ionic liquids; (iii) listing the use of new enzyme catalysts and microbial strains during saccharification and fermentation processes. Furthermore, the most promising biorefinery approaches that will contribute to the cost-competitiveness of advanced bioethanol production processes are also discussed, focusing on innovative technologies and applications that can contribute to achieve a more sustainable and effective utilization of all biomass fractions. Special attention is given to integrated strategies such as lignocellulose-based biorefineries for the simultaneous production of bioethanol and other high added value bioproducts.
Collapse
|
10
|
Yadav N, Pranaw K, Khare SK. Screening of lactic acid bacteria stable in ionic liquids and lignocellulosic by-products for bio-based lactic acid production. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Usmani Z, Sharma M, Gupta P, Karpichev Y, Gathergood N, Bhat R, Gupta VK. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. BIORESOURCE TECHNOLOGY 2020; 304:123003. [PMID: 32081446 DOI: 10.1016/j.biortech.2020.123003] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is the most plentiful renewable biomolecule and an alternative bioresource for the production of biofuels and biochemicals in biorefineries. But biomass recalcitrance is a bottleneck in their usage, thus necessitating their pretreatment for hydrolysis. Most pretreatment technologies, result in toxic by-products or have lower yield. Ionic liquids (ILs) have successfully advanced as 'greener and recyclable' alternatives to volatile organic solvents for lignocellulosic biomass dissolution. This review covers recent developments made in usage of IL-based techniques with focus on biomass breakdown mechanism, process parameter design, impact of cation and anion groups, and the advantageous impact of ILs on the subsequent processing of the fractionated biomass. Progress and barriers for large-scale commercial usage of ILs in emerging biorefineries were critically evaluated using the principles of economies of scale and green chemistry in an environmentally sustainable way.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Minaxi Sharma
- ERA Chair for Food (By-) Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Pratishtha Gupta
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad 826001, India
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nicholas Gathergood
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia; School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia; ERA Chair for Food (By-) Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia.
| |
Collapse
|