1
|
Van Duc L, Inoue D, Ike M. Combined inhibition of anaerobic digestion by sulfate, salinity, and ammonium: potential inhibitory factors in forward osmosis-concentrated municipal wastewater. CHEMOSPHERE 2025; 377:144318. [PMID: 40101676 DOI: 10.1016/j.chemosphere.2025.144318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
This study investigated the combined and interactive effects of sulfate, salinity (NaCl), and ammonium on mesophilic anaerobic digestion using synthetic wastewater simulating concentrated municipal wastewater from the forward osmosis (FO) process. Batch anaerobic digestion experiments were conducted with varying concentrations of sulfate, NaCl, and ammonium. Complete sulfate reduction was observed in all test systems, regardless of the NaCl and ammonium concentration, indicating no significant inhibitory effect on sulfate-reducing bacteria (SRB). However, the increased toxicity of hydrogen sulfide produced by SRB under high concentrations of sulfate, NaCl, and ammonium inhibited methanogenic activity, resulting in reduced methane production. Despite this, methanogens, primarily Methanosarcina, tolerated low and moderate levels of sulfate, NaCl, and ammonium; thus, their coexistence with SRB (Desulfotomaculales) enabled efficient acetate utilization and methane production. The enhanced Methanosarcina activity was further confirmed through the antagonistic effects between NaCl and ammonium. No significant decrease in methane production was observed in the co-presence of 0.5 g/L sulfate, 10 g/L NaCl, and 1 g/L ammonium-nitrogen compared to the reference condition without the addition of these components. This study identified the inhibitory mechanisms resulting from sulfate, NaCl, and ammonium interactions, which may occur in FO-concentrated municipal wastewater. These findings offer insights for optimizing the FO process to maintain sulfate, NaCl, and ammonium concentrations below inhibitory levels, thereby ensuring efficient methane production.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Aryanti PTP, Harsono B, Biantoro MFW, Romariyo R, Putri TA, Hakim AN, Setia GA, Saputra DI, Khoiruddin K. The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124094. [PMID: 39837149 DOI: 10.1016/j.jenvman.2025.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability. Several case studies and quantitative data have demonstrated the reduction of chemical oxygen demand (COD), total suspended solids (TSS), and biological oxygen demand (BOD), illustrating the impact of these technologies. This comprehensive review also explores recent advancements, such as the integration of Zero Liquid Discharge (ZLD) processes, providing insights into the benefits and challenges of membrane technology for POME treatment. This article aims to inform future research and guide industrial applications toward more sustainable and efficient wastewater management in the palm oil industry.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia.
| | - Budi Harsono
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Muhammad Fadlan Warsa Biantoro
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Riyo Romariyo
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Tiara Ariani Putri
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Ahmad Nurul Hakim
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Giri Angga Setia
- Electrical Engineering, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Dede Irawan Saputra
- Electrical Engineering, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Khoiruddin Khoiruddin
- Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
3
|
Patel D, Singh A, Ambati SR, Singh RS, Sonwani RK. An overview of recent advances in treatment of complex dye-containing wastewater and its techno-economic assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122804. [PMID: 39388813 DOI: 10.1016/j.jenvman.2024.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Industries such as textiles, polymers, pharmaceuticals, papers, and tanneries are the key contributors to the global economy. These industries utilize various types of synthetic dyes in their processes, leading to discharge of dyes-contaminated wastewater. The wastewater generally contains various types of dyes (such as methyl orange, congo red, malachite green, etc.), which have a detrimental impact on the ecosystem and human health due to their toxic, carcinogenic, and mutagenic nature. As the result, it is crucial to treat the dyes-contaminated wastewater to protect the environment and render it suitable for reuse, mitigating the escalating global demand for clean water. This review provides a comprehensive overview of dyes and their treatment technologies (i.e., physical, chemical, and biological treatment). Among various treatment methods, the biological treatment is widely employed due to its energy efficiency and eco-friendliness. However, biological treatment faces challenges such as slow processing rates and limited effectiveness in handling low-biodegradability pollutants (BOD5/COD <0.2). This review also highlighted recent advancements in treatment technologies and explored the emerging integrated treatment method that aims to achieve higher removal efficiency for a low biodegradability index dye-contaminated wastewater. Additionally, a techno-economic assessment is presented, analyzing the cost-effectiveness of the emerging technologies in real-world applications. Further, the critical research gaps and future outlooks are also discussed. Overall, the review aims to contribute to the ongoing efforts to improve wastewater treatment processes and promote sustainable water management practices.
Collapse
Affiliation(s)
- Diwakar Patel
- Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Alankriti Singh
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Seshagiri Rao Ambati
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BΗU), Varanasi, 221005, Uttar Pradesh, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India.
| |
Collapse
|
4
|
Mosai AK, Ndlovu G, Tutu H. Improving acid mine drainage treatment by combining treatment technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170806. [PMID: 38350575 DOI: 10.1016/j.scitotenv.2024.170806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
The mining and processing of some minerals and coal result in the production of acid mine drainage (AMD) which contains elevated levels of sulfate and metals, which tend to pose serious environmental issues. There are different technologies that have been developed for the treatment of wastewater or AMD. However, there is no "one-size-fits-all" solution, hence a combination of available technologies should be considered to achieve effective treatment. In this review, AMD treatment technologies and the possible alignment in tandem of the different treatment technologies were discussed. The alignment was based on the target species of each technology and AMD composition. The choice of the technologies to combine depends on the quality of AMD and the desired quality of effluent depending on end use (e.g., drinking, industrial, irrigation or release into the environment). AMD treatment technologies targeting metals can be combined with membrane and/or ettringite precipitation technologies that focus on the removal of sulfates. Other technologies can be added to deal with the secondary waste products (e.g., sludge and brines) from the treatment processes. Moreover, some technologies such as ion exchange and adsorption can be added to target specific valuable elements in AMD. Such combinations have the potential to result in effective AMD treatment and minimum waste production, which are not easily achievable with the individual technologies. Overall, this review presents combinations of AMD treatment technologies which can work best together to produce optimal water quality and valuable products in a cost-effective manner.
Collapse
Affiliation(s)
- Alseno Kagiso Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| | - Gebhu Ndlovu
- Hydrometallurgy Division, Mintek, 200 Malibongwe drive, Private Bag X3015, Randburg 2125, South Africa
| | - Hlanganani Tutu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa
| |
Collapse
|
5
|
Lugo A, Xu X, Abeysiriwardana-Arachchige ISA, Bandara GLCL, Nirmalakhandan N, Xu P. Techno-economic assessment of a novel algal-membrane system versus conventional wastewater treatment and advanced potable reuse processes: Part II. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117189. [PMID: 36634420 DOI: 10.1016/j.jenvman.2022.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
This study developed a comprehensive techno-economic assessment (TEA) framework to evaluate an innovative algae resource recovery and near zero-liquid discharge potable reuse system (i.e., the main system) in comparison with a conventional potable water reuse system (i.e., the benchmark system). The TEA study aims to estimate the levelized costs of water of individual units and integrated processes including secondary wastewater treatment, advanced water purification for potable reuse, and sludge treatment. This would provide decision-makers valuable information regarding the capital and operational costs of the innovative main system versus a typical potable water reuse treatment train, along with possible routes of cost optimization and improvements for the design of full-scale facilities. The main system consists of (i) a novel algal-based wastewater treatment coupled with a dual forward osmosis and seawater reverse osmosis (Algal FO-SWRO) membranes system for potable water reuse and hydrothermal liquefaction (HTL) to produce bioenergy and subsequent nutrients extraction from the harvested algal biomass. The benchmark system includes (ii) an advanced water purification facility (AWPF) that consists of a conventional activated sludge biological treatment (CAS), microfiltration (MF), brackish water reverse osmosis (BWRO), ultraviolet/advanced oxidation process (UV-AOP), and granular activated carbon (GAC), with anaerobic digestion for sludge treatment. Capital expenditures (CAPEX) and operational expenditures (OPEX) were calculated for each unit of both systems (i.e., sub-systems). Based on a 76% overall water recovery designed for the benchmark system, the water cost was estimated at $2.03/m3. The highest costs in the benchmark system were found on the CAS and the anaerobic digester, with the UV-AOP combined with GAC for hydrogen peroxide (H2O2) quenching as the driving factor in the increased costs of the system. The cost of the main system, based on an overall 88% water recovery, was estimated to be $1.97/m3, with costs mostly driven by the FO and SWRO membranes. With further cost reduction and optimization for FO membranes such as membrane cost, water recovery, and flux, the main system can provide a much more economically viable alternative in its application than a typical benchmark system.
Collapse
Affiliation(s)
- Abdiel Lugo
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, United States
| | - Xuesong Xu
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, United States
| | | | | | - Nagamany Nirmalakhandan
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, United States
| | - Pei Xu
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, United States.
| |
Collapse
|
6
|
Shehata N, Egirani D, Olabi AG, Inayat A, Abdelkareem MA, Chae KJ, Sayed ET. Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy. CHEMOSPHERE 2023; 320:137993. [PMID: 36720408 DOI: 10.1016/j.chemosphere.2023.137993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based technologies are recently being considered as effective methods for conventional water and wastewater remediation processes to achieve the increasing demands for clean water and minimize the negative environmental effects. Although there are numerous merits of such technologies, some major challenges like high capital and operating costs . This study first focuses on reporting the current membrane-based technologies, i.e., nanofiltration, ultrafiltration, microfiltration, and forward- and reverse-osmosis membranes. The second part of this study deeply discusses the contributions of membrane-based technologies in achieving the sustainable development goals (SDGs) stated by the United Nations (UNs) in 2015 followed by their role in the circular economy. In brief, the membrane based processes directly impact 15 out of 17 SDGs which are SDG1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16 and 17. However, the merits, challenges, efficiencies, operating conditions, and applications are considered as the basis for evaluating such technologies in sustainable development, circular economy, and future development.
Collapse
Affiliation(s)
- Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Davidson Egirani
- Faculty of Science, Niger Delta University, Wilberforce Island, Nigeria
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea.
| | - Enas Taha Sayed
- Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
7
|
Danaeifar M, Ocheje OM, Mazlomi MA. Exploitation of renewable energy sources for water desalination using biological tools. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32193-32213. [PMID: 36725802 DOI: 10.1007/s11356-023-25642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The emerging impacts of climate change and the growing world population are driving the demand for more food resources and creating an urgent need for new water resources. About 93% of Earth's surface is made up of water bodies, mainly oceans. Seawater attracted a lot of attention in order to be used as a sustainable source of usable water. However, an essential step in harnessing this source of water is desalination. Utilizing renewable sources of energy, biology offers several tools for removal of salts. This article for the first time reviews all currently available biological water desalination tools and compares their efficiency with industrial systems. Bacteria are employed as electrical power generators to provide the energy needed for desalination in microbial desalination cells. Its salt removal efficiency varied from 0.8 to 30 g/L/d. Many strains of algal cells can grow in high concentrations of salts, adsorb and accumulate it inside the cell, and therefore could be used without prior treatment for seawater desalination. This biological tool can yield salt removal efficiency of 0.4-5 g/L/d. Biopolymers are also used for treatment of seawater through enhancing water evaporation as a component of solar steam generators. Despite significant advances in biological water desalination, further modifications and improvements are still needed to make its use sustainable and cost-effective.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Onuche Musa Ocheje
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Aguilar-Moreno M, Vinardell S, Reig M, Vecino X, Valderrama C, Cortina JL. Impact of Sidestream Pre-Treatment on Ammonia Recovery by Membrane Contactors: Experimental and Economic Evaluation. MEMBRANES 2022; 12:membranes12121251. [PMID: 36557158 PMCID: PMC9787290 DOI: 10.3390/membranes12121251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 05/19/2023]
Abstract
Membrane contactor is a promising technology for ammonia recovery from the anaerobic digestion centrate. However, high suspended solids and dissolved organic matter concentrations can reduce the effectiveness of the technology. In this study, coagulation-flocculation (C/F) and aeration pre-treatments were evaluated to reduce chemical oxygen demand (COD), turbidity, suspended solids and alkalinity before the ammonia recovery stage using a membrane contactor. The mass transfer coefficient (Km) and total ammonia (TAN) recovery efficiency of the membrane contactor increased from 7.80 × 10-7 to 1.04 × 10-5 m/s and from 8 to 67%, respectively, after pre-treating the real sidestream centrate. The pre-treatment results showed that dosing aluminium sulphate (Al2(SO4)3) at 30 mg Al/L was the best strategy for the C/F process, providing COD, turbidity and TSS removal efficiencies of 50 ± 5, 95 ± 3 and 90 ± 4%, respectively. The aeration step reduced 51 ± 6% the HCO3- content and allowed reducing alkaline consumption by increasing the pH before the membrane contactor. The techno-economic evaluation showed that the combination of C/F, aeration and membrane contactor can be economically feasible for ammonia recovery. Overall, the results of this study demonstrate that C/F and aeration are simple and effective techniques to improve membrane contactor performance for nitrogen recovery from the anaerobic digestion centrate.
Collapse
Affiliation(s)
- Miguel Aguilar-Moreno
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4016997
| | - Sergi Vinardell
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- CETaqua, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
9
|
Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DVN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. CHEMOSPHERE 2022; 306:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh.
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nishat Tasnim Faria
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Dai-Viet N Vo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia
| |
Collapse
|
10
|
Gu S, Su Y, Lan CQ. Effect of phosphate in medium on cell growth and Cu(II) biosorption by green alga Neochloris oleoabundans. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bel Haj Mohamed N, Bouzidi M, Ouni S, Alshammari AS, Khan Z, Gandouzi M, Mohamed M, chaaben N, Bonilla-Petriciolet A, Haouari M. Statistical physics analysis of adsorption isotherms and photocatalysis activity of MPA coated CuInS2/ZnS nanocrystals for the removal of methyl blue from wastewaters. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Liu S, Song W, Meng M, Xie M, She Q, Zhao P, Wang X. Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154048. [PMID: 35202696 DOI: 10.1016/j.scitotenv.2022.154048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Osmotic membrane bioreactors (OMBR) have gained increasing interest in wastewater treatment and reclamation due to their high product water quality and fouling resistance. However, high energy consumption (mostly by draw solution recovery) restricted the wider application of OMBR. Herein, we propose a novel pressure retarded osmosis membrane bioreactor (PRO-MBR) for improving the economic feasibility. In comparison with conventional FO-MBR, PRO-MBR exhibited similar excellent contaminants removal performance and comparable water flux. More importantly, a considerable amount of energy can be recovered by PRO-MBR (4.1 kWh/100 m2·d), as a result of which, 10.02% of the specific energy consumption (SEC) for water recovery was reduced as compared with FO-MBR (from 1.42 kWh/m3 to 1.28 kWh/m3). Membrane orientation largely determined the performance of PRO-MBR, higher power density was achieved in AL-DS orientation (peak value of 3.4 W/m2) than that in AL-FS orientation (peak value of 1.4 W/m2). However, PRO-MBR suffered more severe and complex membrane fouling when operated in AL-DS orientation, because the porous support layer was facing sludge mixed liquor. Further investigation revealed fouling was mostly reversible for PRO-MBR, it exhibited similar flux recoverability (92.4%) to that in FO-MBR (95.1%) after osmotic backwash. Nevertheless, flux decline due to membrane fouling is still a restricting factor to power generation of PRO-MBR, its power density was decreased by 38.2% in the first 60 min due to the formation of fouling. Overall, in perspective of technoeconomic feasibility, the PRO-MBR demonstrates better potential than FO-MBR in wastewater treatment and reclamation and deserves more research attention in the future.
Collapse
Affiliation(s)
- Shuyue Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Manli Meng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
13
|
Yang J, van Lier JB, Li J, Guo J, Fang F. Integrated anaerobic and algal bioreactors: A promising conceptual alternative approach for conventional sewage treatment. BIORESOURCE TECHNOLOGY 2022; 343:126115. [PMID: 34655782 DOI: 10.1016/j.biortech.2021.126115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Conventional sewage treatment applying activated sludge processes is energy-intensive and requires great financial input, hampering widespread implementation. The introduction of anaerobic membrane bioreactors (AnMBR) followed by an algal reactor growing species of commercial interest, may present an alternative, contributing to the envisaged resource recovery at sewage treatment plants. AnMBRs can be applied for organic matter removal with energy self-sufficiency, provided that effective membrane fouling management is applied. Haematococcus pluvialis, an algal species with commercial value, can be selected for ammonium and phosphate removal. Theoretical analysis showed that good pollutant removal, positive financial output, as well as a significant reduction in the amount of hazardous activated sludge can be achieved by applying the proposed process, showing interesting advantages over current sewage treatment processes. Microbial contamination to H. pluvialis is a challenge, and technologies for preventing the contamination during continuous sewage treatment need to be applied.
Collapse
Affiliation(s)
- Jixiang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401174, China
| | - Jules B van Lier
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Section of Sanitary Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Mohd Ramli MR, Mat Radzi NH, Mohamad Esham MI, Alsebaeai MK, Ahmad AL. Advanced Application and Fouling Control in Hollow Fibre Direct Contact Membrane Distillation (HF-DCMD). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Giagnorio M, Casasso A, Tiraferri A. Environmental sustainability of forward osmosis: The role of draw solute and its management. ENVIRONMENT INTERNATIONAL 2021; 152:106498. [PMID: 33730633 DOI: 10.1016/j.envint.2021.106498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Forward osmosis (FO) is a promising technology for the treatment of complex water and wastewater streams. Studies around FO are focusing on identifying potential applications and on overcoming its technological limitations. Another important aspect to be addressed is the environmental sustainability of FO. With the aim to partially fill this gap, this study presents a life cycle analysis (LCA) of a potential full-scale FO system. From a purely environmental standpoint, results suggest that significantly higher impacts would be associated with the deployment of thermolytic, organic, and fertilizer-based draw solutes, compared to more accessible inorganic compounds. The influent draw osmotic pressure in FO influences the design of the real-scale filtration system and in turn its environmental sustainability. In systems combining FO with a pressure-driven membrane process to recover the draw solute (reverse osmosis or nanofiltration), the environmental sustainability is governed by a trade-off between the energy required by the regeneration step and the draw solution management. With the deployment of environmentally sustainable draw solutes (e.g., NaCl, Na2SO4), the impacts of the FO-based coupled system are almost completely associated to the energy required to run the downstream recovery step. On the contrary, the management of the draw solution, i.e., its replacement and the required additions due to potential losses during the filtration cycles, plays a dominant role in the environmental burdens associated with FO-based systems exploiting less sustainable draw solute, such as MgCl2.
Collapse
Affiliation(s)
- Mattia Giagnorio
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Alessandro Casasso
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; CleanWaterCenter@PoliTo, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
17
|
Wu X, Lau CH, Pramanik BK, Zhang J, Xie Z. State-of-the-Art and Opportunities for Forward Osmosis in Sewage Concentration and Wastewater Treatment. MEMBRANES 2021; 11:membranes11050305. [PMID: 33919353 PMCID: PMC8143320 DOI: 10.3390/membranes11050305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
The application of membrane technologies for wastewater treatment to recover water and nutrients from different types of wastewater can be an effective strategy to mitigate the water shortage and provide resource recovery for sustainable development of industrialisation and urbanisation. Forward osmosis (FO), driven by the osmotic pressure difference between solutions divided by a semi-permeable membrane, has been recognised as a potential energy-efficient filtration process with a low tendency for fouling and a strong ability to filtrate highly polluted wastewater. The application of FO for wastewater treatment has received significant attention in research and attracted technological effort in recent years. In this review, we review the state-of-the-art application of FO technology for sewage concentration and wastewater treatment both as an independent treatment process and in combination with other treatment processes. We also provide an outlook of the future prospects and recommendations for the improvement of membrane performance, fouling control and system optimisation from the perspectives of membrane materials, operating condition optimisation, draw solution selection, and multiple technologies combination.
Collapse
Affiliation(s)
- Xing Wu
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia;
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK;
| | | | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Zongli Xie
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia;
- Correspondence:
| |
Collapse
|
18
|
Composite of magnetite and Zn/Al layered double hydroxide as a magnetically separable adsorbent for effective removal of humic acid. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zhao Y, Tong T, Wang X, Lin S, Reid EM, Chen Y. Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1359-1376. [PMID: 33439001 DOI: 10.1021/acs.est.0c04593] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective removal or enrichment of targeted solutes including micropollutants, valuable elements, and mineral scalants from complex aqueous matrices is both challenging and pivotal to the success of water purification and resource recovery from unconventional water resources. Membrane separation with precision at the subnanometer or even subangstrom scale is of paramount importance to address those challenges via enabling "fit-for-purpose" water and wastewater treatment. So far, researchers have attempted to develop novel membrane materials with precise and tailored selectivity by tuning membrane structure and chemistry. In this critical review, we first present the environmental challenges and opportunities that necessitate improved solute-solute selectivity in membrane separation. We then discuss the mechanisms and desired membrane properties required for better membrane selectivity. On the basis of the most recent progress reported in the literature, we examine the key principles of material design and fabrication, which create membranes with enhanced and more targeted selectivity. We highlight the important roles of surface engineering, nanotechnology, and molecular-level design in improving membrane selectivity. Finally, we discuss the challenges and prospects of highly selective NF membranes for practical environmental applications, identifying knowledge gaps that will guide future research to promote environmental sustainability through more precise and tunable membrane separation.
Collapse
Affiliation(s)
- Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Elliot M Reid
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Ahmed D, Isawi H, Badway N, Elbayaa A, Shawky H. Highly porous cellulosic nanocomposite membranes with enhanced performance for forward osmosis desalination. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00901-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Vinardell S, Dosta J, Mata-Alvarez J, Astals S. Unravelling the economics behind mainstream anaerobic membrane bioreactor application under different plant layouts. BIORESOURCE TECHNOLOGY 2021; 319:124170. [PMID: 33011628 DOI: 10.1016/j.biortech.2020.124170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the economic feasibility of anaerobic membrane bioreactor (AnMBR) as a mainstream technology for municipal sewage treatment. To this end, different wastewater treatment plant (WWTP) layouts were considered, including primary settler, AnMBR, degassing membrane, partial nitritation-Anammox, phosphorus precipitation and sidestream anaerobic digestion. The net treatment cost of an AnMBR-WWTP decreased from 0.42 to 0.35 € m-3 as the sewage COD concentration increased from 100 to 1100 mg COD L-1 due to revenue from electricity production. However, the net treatment cost increased above 0.51 € m-3 when nutrient removal technologies were included. The AnMBR and partial nitritation-Anammox were the costliest processes representing a 57.6 and 30.3% of the treatment cost, respectively. Energy self-sufficiency was achieved for high-strength municipal sewage treatment (1000 mg COD L-1) and a COD:SO42--S ratio above 40. Overall, the results showed that mainstream AnMBR has potential to be an economically competitive option for full-scale implementation.
Collapse
Affiliation(s)
- Sergi Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Manikandan S, Karmegam N, Subbaiya R, Karthiga Devi G, Arulvel R, Ravindran B, Kumar Awasthi M. Emerging nano-structured innovative materials as adsorbents in wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 320:124394. [PMID: 33220545 DOI: 10.1016/j.biortech.2020.124394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Water supply around the globe is struggling to meet the rapidly increasing demand by the population, drastic changes in climate and degrading water quality. Even though, many large-scale methods are employed for wastewater treatment they display several negative impacts owing to the presence of pollutants. Technological innovation is required for integrated water management with different groups of nanomaterials for the removal of toxic metal ions, microbial disease, organic and inorganic solutes. The method of manipulating atoms on a nanoscale is nanotechnology. Nanomembranes are used in nanotechnology to soften water and eliminate physical, chemical and biological pollutants. The present review concentrates on various nanotechnological approaches in wastewater remedy, mechanisms involved to promote implementation, benefits and limitations in comparison with current processes, properties, barriers and commercialization research needs. Also the review identifies opportunities for further exploiting the exclusive features for green water management by following the advances in nanotechnology.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Guruviah Karthiga Devi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ramaswamy Arulvel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
Vinardell S, Astals S, Jaramillo M, Mata-Alvarez J, Dosta J. Anaerobic membrane bioreactor performance at different wastewater pre-concentration factors: An experimental and economic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141625. [PMID: 32871369 DOI: 10.1016/j.scitotenv.2020.141625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the performance of a lab-scale anaerobic membrane bioreactor (AnMBR) treating municipal sewage pre-concentrated by forward osmosis (FO). The organic loading rate (OLR) and sodium concentrations of the synthetic sewage stepwise increased from 0.3 to 2.0 g COD L-1 d-1 and from 0.28 to 2.30 g Na+ L-1 to simulate pre-concentration factors of 1, 2, 5 and 10. No major operational problems were observed during AnMBR operation, with COD removal efficiencies ranging between 90 and 96%. The methane yield progressively increased from 214 ± 79 to 322 ± 60 mL CH4 g-1 COD as the pre-concentration factor increased from 1 to 10. This was mainly attributed to the lower fraction of methane dissolved lost in the permeate at higher OLRs. Interestingly, at the highest pre-concentration factor (2.30 g Na+ L-1) the difference between the permeate and the digester soluble COD indicated that membrane biofilm also played a role in COD removal. Finally, a preliminary energy and economic analysis showed that, at a pre-concentration factor of 10, the AnMBR temperature could be increased 10 °C and achieve a positive net present value (NPV) of 4 M€ for a newly constructed AnMBR treating 10,000 m3 d-1 of pre-concentrated sewage with an AnMBR lifetime of 20 years.
Collapse
Affiliation(s)
- Sergi Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain.
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain
| | - Marta Jaramillo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, 08001 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
24
|
Zhang F, Ju Y, Dong P, Wang A, Santibanez Gonzalez EDR. Multi-period evaluation and selection of rural wastewater treatment technologies: a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45897-45910. [PMID: 32804380 DOI: 10.1007/s11356-020-10307-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Rapid population growth and agricultural development are generating a considerable amount of effluents, which poses threats to the quality of rural water resources as well as sanitary conditions. However, with a range of rural wastewater treatment (WT) technologies available, one major problem facing the practitioners is which to choose as the most favorable option suited to specific areas. In this study, a novel decision-making framework is proposed to evaluate and select the optimal alternative in rural areas of Xi'an within multiple consecutive time periods. Firstly, an evaluation index system is constructed and picture fuzzy numbers (PFNs) are used to represent both evaluation levels and experts' refusal due to limitation of knowledge. Secondly, fuzzy analytical hierarchy process (FAHP) is applied to derive weights of criteria, which enables experts to assign fuzzy numbers to express their preferences for comparison judgments. Thirdly, evidence theory is utilized to obtain the aggregated values from multiple time periods. Finally, based on the belief intervals obtained, sequencing batch reactor (A4) is determined as the optimal rural WT technology in Xi'an from 2006 to 2020, whereas the membrane bio-reactor (A2) is the last option. The effectiveness of the proposed framework is further validated by comparative analysis. This research can hopefully serve as useful guidance for the assessment of rural WT technologies in various regions.
Collapse
Affiliation(s)
- Fan Zhang
- School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Department of Architecture and Engineering, Yan'an University, Yan'an, 716000, People's Republic of China
| | - Yanbing Ju
- School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Peiwu Dong
- School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Aihua Wang
- Graduate School of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Ernesto D R Santibanez Gonzalez
- Department of Industrial Engineering, CES 4.0 Initiative, Faculty of Engineering, University of Talca, Los Niches Km. 1, Curicó, Chile
| |
Collapse
|
25
|
Arcanjo GS, Dos Santos CR, Costa FCR, Batista IF, Amaral MCS. Forward osmosis as an opportunity for acid mining effluent reuse - An assessment of concentration polarization effects on forward osmosis performance and economic aspects. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1826968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gemima Santos Arcanjo
- Department of Environmental Engineering, Federal University of Bahia, Salvador, BA, Brazil
- Department of Civil Engineering, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Isabela Ferreira Batista
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Blandin G, Ferrari F, Lesage G, Le-Clech P, Héran M, Martinez-Lladó X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. MEMBRANES 2020; 10:membranes10100284. [PMID: 33066490 PMCID: PMC7602145 DOI: 10.3390/membranes10100284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.
Collapse
Affiliation(s)
- Gaetan Blandin
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
- Correspondence:
| | - Federico Ferrari
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain;
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Marc Héran
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Xavier Martinez-Lladó
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
| |
Collapse
|
27
|
Shahid MK, Kashif A, Rout PR, Aslam M, Fuwad A, Choi Y, Banu J R, Park JH, Kumar G. A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110909. [PMID: 32721343 DOI: 10.1016/j.jenvman.2020.110909] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 05/25/2023]
Abstract
This review summarizes the recent development and studies of anaerobic membrane bioreactor (AnMBR) to control fouling issues. AnMBR is an emerging waste water treatment technology mainly because of its low sludge residual, high volumetric organic removal rate, complete liquid-solid separation, better effluent quality, efficient resource recovery and the small footprint. This paper surveys the fundamental aspects of AnMBRs, including its applications, membrane configurations, and recent progress for enhanced reactor performance. Furthermore, the membrane fouling, a major restriction in the practical application of AnMBR, its mechanism and antifouling strategies like membrane cleaning, quorum quenching, ultrasonic treatment, membrane modifications, and antifouling agents are briefly discussed. Based on the review, the key issues that require urgent attention to facilitate large scale and integrated application of AnMBR technology are identified and future research perspectives relating to the prevalent issues are proposed.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Kashif
- Department of Senior Health Care, Eulji University, Daejeon, Republic of Korea
| | - Prangya Ranjan Rout
- Department of Environmental Engineering, Inha University, Incheon, Republic of Korea
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Pakistan
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | - Younggyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Rajesh Banu J
- Department of Civil Engineering, Anna University, Tamilnadu, India
| | - Jeong Hoon Park
- Department of Civil Engineering, Anam Campus, Korea University, Seoul, Republic of Korea
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Norway.
| |
Collapse
|
28
|
Pervov AG, Tikhonov KV, Makisha NA. Determination of Optimal Operation Pressure Values for Ultrafiltration Wastewater Treatment. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Research on Forward Osmosis Membrane Technology Still Needs Improvement in Water Recovery and Wastewater Treatment. WATER 2019. [DOI: 10.3390/w12010107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forward osmosis (FO) has become an evolving membrane separation technology to recover water due to its strong retention capacity, sustainable membrane fouling, etc. Although a good deal of research has been extensively investigated in the past decades, major challenges still remain as follows: (1) the novel FO membrane material properties, which significantly influence the fouling of the FO membranes, the intolerance reverse solute flux (RSF), the high concentration polarization (CP), and the low permeate flux; (2) novel draw solution preparation and utilization; (3) salinity build-up in the FO system; (4) the successful implementation of the FO process. This work critically reviews the last five years’ literature in development of the novel FO membrane material, structure in modification, and preparation, including comparison and analysis on the traditional and novel draw solutes coupled with their effects on FO performance; application in wastewater treatment, especially hybrid system and integrated FO system; fouling mechanism; and cleaning strategy as discussed in the literature. The current barriers of the research results in each hotspot and the areas that can be improved are also analyzed in detail. The research hotspots in the research and development of the novel membrane materials in various countries and regions have been compared in recent years, and the work of variation in pop research hotspots in the past 10 years has been analyzed and the ideas that fill the blank gaps also have been proposed.
Collapse
|