1
|
Moreno JF, Oulego P, Collado S, Díaz M. Biorefinery of waste activated sludge: Nutrient recovery and microbial lipid production by Yarrowia lipolytica. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121315. [PMID: 38850910 DOI: 10.1016/j.jenvman.2024.121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The rising generation of waste activated sludge (WAS) demands a fundamental shift towards resource reuse and recovery. The conventional methodologies used to manage this by-product derived from wastewater treatment plants are increasingly constrained due to stringent regulatory measures aimed at mitigating its adverse impacts on the environment and public health. Therefore, this work evaluated a promising strategy for the efficient management of WAS, transforming it into a valuable renewable source to produce high-value-added compounds, such as lipids and a slow-release fertilizer (struvite). Wet oxidation (WO) was identified as a suitable technique for solubilising WAS while generating short-chain fatty acids (primarily acetic acid). It was found that conducting WO at 200 °C for 120 min resulted in a 65% reduction of the total suspended solids (TSS) content and 87% of the volatile suspended solids (VSS) content. Additionally, under these conditions, 4440 ± 105 mg/L and 593 ± 21 mg/L of acetic and propionic acid were obtained, respectively, which were assimilated by Yarrowia lipolytica to produce biolipids. Furthermore, the rupture of WAS flocs also led to the solubilisation of 980 ± 8 mg/L of ammonium. During the struvite precipitation stage, a NH4:PO4:Mg ratio of 1:1.5:1.5 was found to be the most effective for removing soluble ammonium (97.4 ± 0.8%), resulting in a high-purity struvite formation, and enhancing the carbon/nitrogen (C/N) ratio of the oxidised WAS from 3 to 105. This improvement in the C/N ratio raised the lipid content from 36 ± 1% to 49 ± 1% during the cultivation of Y. lipolytica. The application of the sequencing batch culture strategy further increased lipid content to 59 ± 1%, with 6.0 ± 0.3 g/L as the final concentration after the fifth cycle. The lipids produced, mainly monounsaturated fatty acids with 40% of oleic acid, offer potential as biodiesel feedstock. This lipid composition led to biodiesel properties, including cetane number, iodine value, kinematic viscosity and density that met international standards. Therefore, this research presents a promising alternative not only for WAS management but also for harnessing valuable resources, thereby establishing a basis for large-scale studies.
Collapse
Affiliation(s)
- Juan F Moreno
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Asturias, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Asturias, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Asturias, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
2
|
Saini R, Tiwari BR, Brancoli P, Taherzadeh MJ, Kaur Brar S. Environmental assessment of Rhodosporidium toruloides-1588 based oil production using wood hydrolysate and crude glycerol. BIORESOURCE TECHNOLOGY 2024; 393:130102. [PMID: 38016584 DOI: 10.1016/j.biortech.2023.130102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Rhodosporidium toruloides, an oleaginous yeast, is a potential feedstock for biodiesel production due to its ability to utilize lignocellulosic biomass-derived hydrolysate with a considerably high lipid titer of 50-70 % w/w. Hence, for the first-time environmental assessment of large-scale R. toruloides-based biodiesel production from wood hydrolysate and crude glycerol was conducted. The global warming potential was observed to be 0.67 kg CO2 eq./MJ along with terrestrial ecotoxicity of 1.37 kg 1,4-DCB eq./MJ and fossil depletion of 0.13 kg oil eq./MJ. The highest impacts for global warming (∼45 %) and fossil depletion (∼37 %) are attributed to the use of chloroform for lipid extraction while fuel consumption for transportation contributed more than 50 % to terrestrial ecotoxicity. Further, sensitivity analysis revealed that maximizing biodiesel yield by increasing lipid yield and solid loading could contribute to reduced environmental impacts. In nutshell, this investigation reveals that environmental impact varies with the type of chemical utilized.
Collapse
Affiliation(s)
- Rahul Saini
- Civil Engineering Department, Lassonde School of Engineering, York University, North York, Ontario M3J 1P3, Canada
| | - Bikash R Tiwari
- INRS-ETE, University of Quebec, 490 Rue de La Couronne, Quebec G1K 9A9, Canada
| | - Pedro Brancoli
- Swedish Centre for Resource Recovery, University of Borås, Borås 501 90, Sweden
| | | | - Satinder Kaur Brar
- Civil Engineering Department, Lassonde School of Engineering, York University, North York, Ontario M3J 1P3, Canada.
| |
Collapse
|
3
|
Parisis V, Tsave O, Papanikolaou C, Pantazopoulou E, Chatzidoukas C. Comprehensive Exploration of the Growth and Lipid Synthesis Phases of T. oleaginosus Cultures Implementing Design of Experiments and Response Surface Methodology. Bioengineering (Basel) 2023; 10:1359. [PMID: 38135950 PMCID: PMC10741121 DOI: 10.3390/bioengineering10121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Trichosporon oleaginosus is an unconventional oleaginous yeast distinguished by its remarkable capacity to accumulate lipids in excess of 70% of its dry weight, particularly when cultivated in nitrogen-restricted conditions with ample carbon sources. A pivotal question that arises pertains to the nutrient dynamics in the culture medium, which give rise to both the excessive lipid content and corresponding lipid concentration. While previous research has predominantly focused on evaluating the impact of the initial carbon-to-nitrogen (C/N) ratio on lipid production, the precise critical thresholds of glucose and ammonium sulfate ((NH4)2SO4) at which growth and intracellular lipid production are either stimulated or impeded remain inadequately defined. This study employs an experimental design and response surface methodology to investigate the complex mechanism of lipid accumulation and its interaction with cellular growth. Application of the aforementioned methodologies resulted in the production of 10.6 g/L of microbial oil in batch cultures under conditions that correspond to a C/N ratio of 76. However, the primary objective is to generate knowledge to facilitate the development of efficient fed-batch cultivation strategies that optimize lipid production exclusively employing inorganic nitrogen sources by finely adjusting carbon and nitrogen levels. The intricate interaction between these levels is comprehensively addressed in the present study, while it is additionally revealed that as glucose levels rise within a non-inhibitory range, lipid-free biomass production decreases while lipid accumulation simultaneously increases. These findings set the stage for further exploration and the potential development of two-stage cultivation approaches, aiming to fully decouple growth and lipid production. This advancement holds the promise of bringing microbial oil production closer to commercial viability.
Collapse
Affiliation(s)
| | | | | | | | - Christos Chatzidoukas
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (V.P.); (O.T.); (C.P.); (E.P.)
| |
Collapse
|
4
|
Villegas-Méndez MÁ, Montañez J, Contreras-Esquivel JC, Salmerón I, Koutinas AA, Morales-Oyervides L. Scale-up and fed-batch cultivation strategy for the enhanced co-production of microbial lipids and carotenoids using renewable waste feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117866. [PMID: 37030236 DOI: 10.1016/j.jenvman.2023.117866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.
Collapse
Affiliation(s)
- Miguel Ángel Villegas-Méndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | - Julio Montañez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | | | - Iván Salmerón
- School of Chemical Science, Autonomous University of Chihuahua, Circuit 1, New University Campus, Chihuahua, Chihuahua, 31125, Mexico
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico.
| |
Collapse
|
5
|
Sun H, Yang M, Gao Z, Wang X, Wu C, Wang Q, Gao M. Economic and environmental evaluation for a closed loop of crude glycerol bioconversion to biodiesel. J Biotechnol 2023; 366:65-71. [PMID: 36907357 DOI: 10.1016/j.jbiotec.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Crude glycerol, a byproduct of biodiesel production, was utilized as a carbon source to produce microbial lipids by the oleaginous yeast Rhodotorula toruloides in this study. The maximum lipid production and lipid content were 10.56 g/L and 49.52%, respectively, by optimizing fermentation conditions. The obtained biodiesel met the standards of China, the United States, and the European Union. The economic value of biodiesel produced from crude glycerol increased by 48% compared with the sale of crude glycerol. In addition, biodiesel production from crude glycerol could reduce 11,928 tons of carbon dioxide emissions and 55 tons of sulfur dioxide emissions. This study provides a strategy for a closed loop of crude glycerol to biofuel and ensures sustainable and stable development of the biodiesel industries.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
6
|
Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price. SUSTAINABILITY 2022. [DOI: 10.3390/su14148684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
With China’s ongoing economic development and increasing emphasis on environmental protection, the number and treatment capacity of sewage plants is increasing annually. Simultaneously, sludge production is increasing. In recent years, researchers have investigated various approaches to the environmental and economic analysis of sludge treatment and recycling systems (STRS). These investigations did not take the universal law of different capacities for environmental impact and STRS economics into account. The aim of this study was to analyze the scale effect of STRS with different technologies (i.e., incineration, aerobic composting, used in material (brick), anaerobic digestion) on the environment and economy. Moreover, the cost–benefit impact of introducing a carbon- trading mechanism into the STRS to achieve carbon neutrality was analyzed. After reducing carbon emissions through by-products of STRS, the carbon emission quota can be sold, which will generate income. The results show that the break-even scales for incineration, anaerobic composting, used in building material (brick), and anaerobic digestion are 54,899, 6707, 48,775, and 4425 t/y, respectively. The break-even scale of each system decreased after the introduction of the carbon trading system into the STRS. These findings could provide critical technical information for superior decision-making in sewage sludge recycling systems.
Collapse
|
7
|
Coproduction of Microbial Oil and Carotenoids within the Circular Bioeconomy Concept: A Sequential Solid-State and Submerged Fermentation Approach. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main objective of integrative biorefinery platforms is to propose efficient green methodologies addressed to obtain high-value compounds with low emissions through biochemical conversions. This work first screened the capacity of various oleaginous yeast to cosynthesize high-value biomolecules such as lipids and carotenoids. Selected strains were evaluated for their ability to coproduce such biocompounds in the waste-based media of agro-food (brewer’s spent grain, pasta processing waste and bakery waste). Carbon and nitrogen source feedstock was obtained through enzymatic hydrolysis of the agro-food waste, where up to 80% of total sugar/starch conversion was obtained. Then, the profitability of the bioprocess for microbial oil (MO) and carotenoids production by Sporobolomyces roseus CFGU-S005 was estimated via simulation using SuperPro Designer®. Results showed the benefits of establishing optimum equipment scheduling by identifying bottlenecks to increase profitability. Sensitivity analysis demonstrated the impact of MO price and batch throughput on process economics. A profitable process was achieved with a MO batch throughput of 3.7 kg/batch (ROI 31%, payback time 3.13 years). The results revealed areas that require further improvement to achieve a sustainable and competitive process for the microbial production of carotenoids and lipids.
Collapse
|
8
|
Bharathiraja B, Jayamuthunagai J, Sreejith R, Iyyappan J, Praveenkumar R. Techno economic analysis of malic acid production using crude glycerol derived from waste cooking oil. BIORESOURCE TECHNOLOGY 2022; 351:126956. [PMID: 35272039 DOI: 10.1016/j.biortech.2022.126956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In the present work, Aspergillus niger was employed to produce commercially valuable malic acid from crude glycerol derived from waste cooking oil. Crude glycerol dosage, yeast extract dosage and initial pH were the influencing factors playing a significant role in the malic acid synthesis. The optimal condition for malic acid biosynthesis was studied by using response surface methodology. Further the feasibility analysis for biosynthesis of malic acid from crude glycerol was studied using the laboratory scale optimized data, with this experimentally optimized data, plant was simulated using SuperPro Designer (v10). The cost involved for malic acid synthesis per unit volume was likely expected to be $0.43/kg of malic acid using reactive extraction method. Thus, process optimization combined with techno-economical analysis of malic acid production could be beneficial.
Collapse
Affiliation(s)
- B Bharathiraja
- Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600032, Tamil Nadu, India
| | - J Jayamuthunagai
- Centre for Biotechnology,Anna university, Chennai 600025, Tamil Nadu, India
| | - R Sreejith
- Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600032, Tamil Nadu, India
| | - J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - R Praveenkumar
- Department of Biotechnology, Arunai Engineering college, Tiruvannamalai 606603, Tamil Nadu, India.
| |
Collapse
|
9
|
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2022; 207:112100. [PMID: 34619127 DOI: 10.1016/j.envres.2021.112100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial lipids (bacterial, yeast, or algal) production and its utilization as a feedstock for biodiesel production in a sustainable and economical way along with waste degradation is a promising technology. Oleaginous yeasts have demonstrated multiple advantages over algae and bacteria such as high lipid yields, lipid similarity to vegetable oil, and requirement of lesser area for cultivation. Oleaginous yeasts grown on lignocellulosic solid waste as renewable feedstocks have been widely reported and reviewed. Recently, industrial effluents and other liquid wastes have been evaluated as feedstocks for biodiesel production from oleaginous yeasts. The idea of the utilization of wastewater for the growth of oleaginous yeasts for simultaneous wastewater treatment and lipid production is gaining attention among researchers. However, the detailed knowledge on the economic aspects of different process involved during the conversion of oleaginous yeast into lipids hinders its large-scale application. Therefore, this review aims to provide an overview of yeast-derived biodiesel production by utilizing industrial effluents and other liquid wastes as feedstocks. Various technologies for biomass harvesting, lipid extraction and the economic aspects specifically focused on yeast biodiesel production were also analyzed and reported in this review. The utilization of liquid wastes and the incorporation of cost-efficient harvesting and lipid extraction strategy would facilitate large-scale commercialization of biodiesel production from oleaginous yeasts in near future.
Collapse
Affiliation(s)
- Sangeeta Singh
- National Institute of Technology Rourkela, Odisha, 769008, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| | | | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India.
| | - Kasturi Dutta
- National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| |
Collapse
|
10
|
Raof NA, Hamid HA, Mohamad Aziz NA, Yunus R. Prospects of Plant-Based Trimethylolpropane Esters in the Biolubricant Formulation for Various Applications: A Review. FRONTIERS IN MECHANICAL ENGINEERING 2022; 8. [DOI: 10.3389/fmech.2022.833438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Biodegradable lubricants from renewable feedstocks have been successfully developed to meet the demands of new machines with stringent requirements of the global standards, which address sustainability and environmental policy. Trimethylolpropane ester (TMPE) has been extensively evaluated as a biolubricant base stock and occasionally used as an additive, due to their low toxicity and excellent biodegradability. The formulation of high-performance TMPE-based lubricants involves addition of surface additives, multifunctional additives, and solid nano particles. This review focuses on the development of plant-based TMPE formulation for various applications, namely food-grade lubricant, engine oil, drilling fluid, insulating fluid, metal working fluid, hydraulic and heat transfer fluids. Even though plant-based TMPE lubricants have huge advantages over mineral oils, they have other challenging issues such as limited load-bearing capacity, hygroscopic properties, and high risk of toxic emission owing to additives selection. The details on the performance characteristics of TMPE as base stocks and additives are discussed, including the current prospects and challenges in the respective areas. This review concludes with a brief discussion on suggestions and recommendations for future advancement in the usage of TMPE and the remaining issues that must be overcome to allow for its full potential to be realized.
Collapse
|
11
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Microbial lipids from organic wastes: Outlook and challenges. BIORESOURCE TECHNOLOGY 2021; 323:124612. [PMID: 33418352 DOI: 10.1016/j.biortech.2020.124612] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Microbial lipids have recently drawn a lot of attention as renewable sources for biochemicals production. Strong research efforts have been addressed to efficiently use organic wastes as carbon source for microbial lipids, which would definitively increase the profitability of the production process and boost a bio-based economy. This review compiles interesting traits of oleaginous microorganisms and highlights current trends on microbial- and process-oriented approaches to maximize microbial oil production from inexpensive substrates like lignocellulosic sugars, volatile fatty acids and glycerol. Furthermore, downstream processes such as cell harvesting or lipid extraction, that are decisive for the cost-effectiveness of the process, are discussed. To underpin microbial oils within the so demanded circular economy, associated challenges, recent advances and possible industrial applications that are also identified in this review.
Collapse
Affiliation(s)
- E Tomás-Pejó
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain.
| | - S Morales-Palomo
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| | - C González-Fernández
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| |
Collapse
|
12
|
Kumar LR, Kaur R, Tyagi RD, Drogui P. Identifying economical route for crude glycerol valorization: Biodiesel versus polyhydroxy-butyrate (PHB). BIORESOURCE TECHNOLOGY 2021; 323:124565. [PMID: 33360115 DOI: 10.1016/j.biortech.2020.124565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Crude glycerol, a by-product of biodiesel industry, has been used for production of biodiesel and polyhydroxy-alkanoates. But question is: which product is economically favorable using crude glycerol as substrate? In this study, energy balance and economic assessment has been carried out for crude glycerol valorization for B10 biodiesel and polyhydroxy-butyrate (PHB) production. For same quantity of crude glycerol utilized, energy ratio for B10 production was higher than PHB production while unit production cost for B10 was lower than that of PHB. For 50 million L plant capacity of biodiesel, unit production cost was 0.77 $/L B10 while for 2 million kg plant capacity of PHB, unit production cost was 4.88 $/kg PHB. Thus, in present scenario production of biodiesel seems economically better than production of PHA with crude glycerol as raw material. This study is useful for researchers, environmental scientists and industries in identifying effective route for crude glycerol valorization.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, Huzhou, China; BOSK Bioproducts, 100-399 rue Jacquard, Québec G1N 4J6, Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
13
|
Kumar LR, Yellapu SK, Tyagi R, Drogui P. Purified crude glycerol by acid treatment allows to improve lipid productivity by Yarrowia lipolytica SKY7. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|