1
|
Liu Y, Li S, Xing D, Jin C, Zhao Y, Zhao J, Guo L. Performance of four thermophilic bacteria for primary sludge hydrolysis: Sludge disintegration and hydrolase activities. BIORESOURCE TECHNOLOGY 2025; 420:132123. [PMID: 39880337 DOI: 10.1016/j.biortech.2025.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Thermophilic bacteria (TB) pretreatment is an efficient and environmentally friendly way for accelerating sludge hydrolysis. In this study, a complete comparison of the hydrolysis performance of Bacillus sp. AT07-1 (X1), Parageobacillus toebii X2 (X2), Geobacillus kaustophilus X3 (X3) and Parageobacillus toebii R-35642 (X4) was performed. Results indicated that pretreatment with four strains promoted the release of organic matter in extracellular polymeric substance and the disintegration of sludge structure, causing the increase of soluble substances. The total percent fluorescence response of tyrosine-like and soluble microbial by-products in dissolved organic matter increased to 64.8% after pretreatment with strain X4. Moreover, pretreatment with strain X4 resulted in the highest relative activities of α-glucosidase (1.4) and protease (2.0). Engineering implication and economic analysis verified that TB pretreatment has the potential for economic benefits and industrial applications. This study demonstrated that strain X4 exhibited the highest hydrolysis efficiency, providing a new strategy for accelerating primary sludge hydrolysis.
Collapse
Affiliation(s)
- Yonghao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Chi B, Huang Y, Xiong Z, Tan J, Zhou W, Yang Z, Zhou K, Duan X, Chen A, Zha R, Gui K. Investigation of lysing excess sludge slurry using hydrolase secreting thermophilic bacterial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119562. [PMID: 37952379 DOI: 10.1016/j.jenvman.2023.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Sludge reduction is a critical challenge in biological wastewater treatment. Combining excess sludge slurry lysis technology with traditional activated sludge processes is a promising approach for in-situ sludge reduction. Here, a strategy for excess sludge slurry lysis based on thermophilic bacterial communities (LTBC) was proposed. This investigation focused on the process of excess sludge slurry lysis dominated by thermophilic bacterial communities domesticated at different temperatures (55-75 °C). The evolution of sludge lysate was analyzed, and the mechanism of excess sludge slurry lysis under the action of thermophilic bacterial communities was elucidated through amplicon sequencing analysis. The results demonstrated that the aerobic thermophilic bacterial communities adapted to 75 °C exhibit the highest efficiency in sludge slurry lysis. During LTBC process, the removal efficiency of volatile suspended solids reached 53.9 ± 1.8% within 2 h, and 97.0 ± 1.0% of the protein and 96.0 ± 1.0% of the polysaccharide in the extracellular polymers was solubilized, and bacterial cell walls in sludge were disrupted. Fourier transform infrared spectroscopy and excitation-emission matrix spectroscopy of the sludge lysate demonstrated that the LTBC process was accompanied by humification process. The accumulation of humic acid primarily occurred at 55 °C and 65 °C, while fulvic acid occurred at 75 °C. The thermophilic bacterial communities adapted to 75 °C were dominated by Thermus and Thermaerobacter. Phylogenetic studies showed that the LTBC hydrolase system comprises enzymes related to protein hydrolysis, carbohydrate hydrolysis, and peptidoglycan hydrolysis, including metalopeptidase MepB, neutral α-glucosidase C, N-acetyl Muramyl-L-alanine amidase, and others enzymes. These results provide a theoretical basis for the application of LTBC technology in the reduction of sludge which generated in traditional waste water activated sludge processes.
Collapse
Affiliation(s)
- Baoyan Chi
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Ying Huang
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Zhenfeng Xiong
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Jiali Tan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Weidong Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Zhuo Yang
- Central & South China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, PR China
| | - Kemei Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Xinxin Duan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Ao Chen
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Rong Zha
- Zhenjiang Esther Environment Protection Technology Co., Ltd., Jurong City, 212400, PR China
| | - Keting Gui
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
3
|
Fan X, Zhang L, Lan S, Wang B, Qi W, Wu Y, Peng Y. A pilot study of situ sludge fermentation-driven multiple biological nitrogen removal pathways (SFBNR): Revealing microbial synergy mechanism based on co-occurrence network analysis. WATER RESEARCH 2023; 247:120796. [PMID: 37918198 DOI: 10.1016/j.watres.2023.120796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
The sludge fermentation-driven biological nitrogen removal (SFBNR) has garnered increasing attention due to its efficient carbon resource utilization from waste activated sludge (WAS). This study successfully extended the application of this technique to a 38 m3 reactor, facilitating a daily ultra-low carbon to nitrogen ratio (<1) wastewater treatment capacity of 16 tons and a WAS capacity of 500 L. After 185-days operation, the system demonstrated commendable performance with a denitrification efficiency (DNE) of 93.22 % and a sludge reduction efficiency (SRE) of 72.07 %. To better understand the potential mechanisms, various functional bacteria interactions were revealed by co-occurrence network analysis. The results unveiled module hubs (e.g., Anaerolineaceae, Denitratisoma, and Candidatus Brocadia) and connectors (e.g., Tuaera and Candidatus Alysiosphaera) in the network exhibited synergistic relationships facilitated by carbon metabolism and nitrogen cycling. Furthermore, the interaction between biofilm sludge (BS) and suspended sludge (SS) contributed to the in-situ enrichment of anaerobic ammonium oxidizing bacteria (AnAOB), whose abundance in BS reached 1.8 % (200-times higher than in SS) after six months, and the suspend-biofilm interface served as a hotspot for anammox activity.
Collapse
Affiliation(s)
- Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Weikang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yuchao Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
4
|
Fan X, Shi S, Lin H, Xia Y, He X, Zhou J. The performance and microbial response of zero valent iron alleviating the thermal-alkaline stress and enhancing hydrolysis-acidification of primary sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119134. [PMID: 37793294 DOI: 10.1016/j.jenvman.2023.119134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
The biological thermal-alkaline hydrolysis-acidification (BTAHA) could promote sludge disintegration, which was conducive to producing volatile fatty acids (VFAs). However, high temperature and strong alkali could reduce the BTAHA effluent quality. Because high temperature denatures proteins and significantly changes the material and energy metabolism of bacteria, while strong alkali inhibits fermentation microorganisms (especially acid-producing microorganisms). This study investigated the internal mechanism of zero valent iron (ZVI) and magnetite (Mag.) alleviating temperature and alkali stress and improving the quality of hydrolysis-acidification effluent. At pH 7-10, compared with the control and magnetite, ZVI increased the average effluent VFAs by 24.0%-40.1% and 11.6%-18.1%, respectively. At pH 9, ZVI could provide an ecological niche for acidifying bacteria that preferred neutral and weakly alkaline conditions, with a 49.8% proportion of VFAs to soluble chemical oxygen demand (SCOD). At pH 12, the fluorescence intensity ratio of easy to difficult biodegradable organic matter in control, RMag., and RZVI were 0.63, 0.62, and 1.31, respectively. It indicated ZVI effectively alleviated high temperature and strong alkali stress. This study provides a reference for improving the quality of BTAHA effluent.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hong Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yongqiu Xia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
5
|
Ge Z, Ma Z, Zou J, Zhang Y, Li Y, Zhang L, Zhang J. Purification of aquaculture wastewater by macrophytes and biofilm systems: Efficient removal of trace antibiotics and enrichment of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165943. [PMID: 37541520 DOI: 10.1016/j.scitotenv.2023.165943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
The purification performance of aquaculture wastewater and the risk of antibiotic resistance genes (ARGs) dissemination in wetlands dominated by macrophytes remain unclear. Here, the purification effects of different macrophytes and biofilm systems on real aquaculture wastewater were investigated, as well as the distribution and abundance of ARGs. Compared to the submerged macrophytes, artificial macrophytes exhibited higher removal rates of TOC (58.80 ± 5.04 %), TN (74.50 ± 2.50 %), and TP (77.33 ± 11.66 %), and achieved approximately 79.92 % removal of accumulated trace antibiotics in the surrounding water. Additionally, the biofilm microbial communities on the surface of artificial macrophytes exhibited higher microbial diversity with fewer antibiotic-resistant bacteria (ARB) enrichment from the surrounding water. The absolute abundance of ARGs (sul1, sul2, and intI1) in the mature biofilm to be one to two orders of magnitude higher than that in the water. Although biofilms could decrease ARGs in the surrounding water by enriching ARB, the intricate network structure of biofilms further facilitated the proliferation of ARB and the dissemination of ARGs in water. Network analysis suggested that Proteobacteria and Firmicutes phyla were dominant and potential carriers of ARGs, contributing 69.00 % and 16.70 %, respectively. Our findings highlight that macrophytes and biofilm systems have great performance on aquaculture wastewater purification, but with high risk of ARGs.
Collapse
Affiliation(s)
- Zuhan Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jianmin Zou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yunyi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yaguang Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
6
|
Tan H, Zhou A, Jia L, Duan Y, Liu Z, Zhao W, He Z, Liu W, Yue X. Tailored short-chain fatty acids conversion from waste activated sludge fermentation via persulfate oxidation and C3-C5 io-SRB metabolizers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118967. [PMID: 37714089 DOI: 10.1016/j.jenvman.2023.118967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Boosting acetate production from waste activated sludge (WAS) fermentation is often hindered by the inefficient solubilization in the hydrolysis step and the high hydrogen pressure ( [Formula: see text] ) during the acidogenesis of C3-C5 short-chain fatty acid (SCFAs), i.e., propionate (HPr), butyrate (HBu) and valerate (HVa). Therefore, this study employed persulfate (PS) oxidation and C3-C5 incomplete-oxidative sulfate reducing bacteria (io-SRB) metabolizers to tailor SCFAs conversion from WAS fermentation. The decomposition efficiency, performance of SCFAs production was investigated. Results showed that the PS significantly promoted WAS decomposition, with a dissolution rate of 39.4%, which is 26.0% higher than the un-treated test. Furthermore, SCFAs yields were increased to 462.7 ± 42 mg COD/g VSS in PS-HBu-SRB, which was 7.4 and 2.2 times higher than that of un-treated and sole PS tests, respectively. In particular, the sum of acetate and HPr reached the peak value of 85%, indicating that HBu-SRB mediation promoted the biotransformation of HBu and macromolecular organics by reducing the [Formula: see text] restriction. Meanwhile, sulfate radical (SO4∙-)-based oxidation (SR-AOPs) was effective in the decomposition of WAS, the oxidative product, i.e., sulfate served the necessary electron acceptor for the metabolism of io-SRB. Further analysis of Mantel test revealed the cluster of the functional genus and their interaction with environmental variables. Additionally, molecular ecological network analysis explored the potential synergistic and competitive relationships between critical genera. Additionally, the potential synergistic and competitive relationships between critical genera was explored by molecular ecological network analysis. This study provides new insights into the integration of SR-AOPs with microbial mediation in accelerating SCFAs production from WAS fermentation.
Collapse
Affiliation(s)
- Huijie Tan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Shanan Lide Environmental Science & Technology Co., LTD, Taiyuan, 030032, China.
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| | - Lijun Jia
- Shanxi Shanan Lide Environmental Science & Technology Co., LTD, Taiyuan, 030032, China.
| | - Yanqing Duan
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China.
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Wenjing Zhao
- Shanxi Shanan Lide Environmental Science & Technology Co., LTD, Taiyuan, 030032, China.
| | - Zhangwei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 51805, China.
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
7
|
Chi B, Huang Y, Xiong Z, Tan J, Zhou W, Yang Z, Zhou K, Duan X, Chen A, Gui K. Combination of sequencing batch reactor activated sludge process with sludge lysis using thermophilic bacterial community for minimizing excess sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118902. [PMID: 37713770 DOI: 10.1016/j.jenvman.2023.118902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/17/2023]
Abstract
Sludge reduction is a major challenge in biological wastewater treatment. Hydrolytic enzymes secreted by thermophilic bacteria can lyse sludge and thus achieve sludge reduction, and the indigenous thermophilic community in sludge can lyse sludge more effectively. In this study, the feasibility of combining a sludge lysis reactor based on thermophilic bacteria community (LTBC reactor, 75 °C) with a conventional sequencing batch activated sludge reactor (SBR) for sludge reduction (i.e., LTBC-SBR process) was systematically investigated first time. The effect of lysed sludge returning to the biochemical tank on pollutant removal efficiency, sludge flocculation, sludge settling, and microbial community and function of the LTBC-SBR process was studied. In the LTBC1-SBR process, a sludge growth rate of 0.71 g TSS/day was observed when the lysed sludge reflux ratio (LRR) was 1, and the sludge generation was reduced by 81.5% compared to the conventional SBR reactor. In the LTBC1-SBR process, the removal efficiencies of chemical oxygen demand and total nitrogen were 94.0% and 80.5%, respectively. There was no significant difference in the sludge volume index from the SBR to the LTBC1-SBR stage, however, the effluent suspended solids concentration increased from 35.2 ± 2.1 mg/L to 80.1 ± 5.3 mg/L. This was attributed to the reflux of sludge lysate. In addition, the changes in extracellular polymers content and composition resulted in poor sludge flocculation performance. Heterotrophic bacteria associated with Actinobacteria and Patescibacteria enriched in LTBC1-SBR with relative abundance of 28.51 ± 1.25% and 20.01 ± 1.21%, respectively, which decomposed the macromolecules in the refluxed lysed sludge and contributed to the sludge reduction. Furthermore, due to the inhibition of nitrite-oxidizing bacteria, the nitrite concentration in the effluent of the LTBC1-SBR system reached 4.7 ± 1.1 mg/L, and part of the denitrification process was achieved by short-cut nitrification and simultaneous denitrification. These results indicate that in-situ sludge reduction technology based on lyse sludge lysing by thermophilic community has considerable potential to be widely used in wastewater treatment.
Collapse
Affiliation(s)
- Baoyan Chi
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ying Huang
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Zhenfeng Xiong
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiali Tan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Weidong Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, People's Republic of China
| | - Zhuo Yang
- Nanjing Branch of China Municipal Engineering Central South Design and Research Institute Co., Ltd., Nanjing, 210012, People's Republic of China
| | - Kemei Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, People's Republic of China
| | - Xinxin Duan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ao Chen
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Keting Gui
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
8
|
Li D, Yan S, Yong X, Zhang X, Zhou J. Ball-milled magnetic sludge biochar enables fast aerobic granulation in anoxic/oxic process for the treatment of coal chemical wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163241. [PMID: 37011673 DOI: 10.1016/j.scitotenv.2023.163241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Coal chemical wastewater (CCW) containing toxic and hazardous matters requires to be treated prior to discharge. Promoting the in-situ formation of magnetic aerobic granular sludge (mAGS) in continuous flow reactor process has a great potential for CCW remediation. However, long granulation time and low stability limit the application of AGS technology. In this study, Fe3O4/sludge biochar (Fe3O4/SC) with biochar matrix derived from coal chemical sludge were applied to facilitate the aerobic granulation in two-stage continuous flow reactors, containing separated anoxic and oxic reaction units (abbreviated as A/O process). The performance of A/O process was evaluated at various hydraulic retention times (HRTs) (42 h, 27 h, and 15 h). Magnetic Fe3O4/SC with porous structures, high specific surface area (BET = 96.69 m2/g), and abundant functional groups was successfully prepared by ball-milled method. Adding magnetic Fe3O4/SC to A/O process could promote aerobic granulation (85 days) and the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) from CCW at all tested HRTs. Since the formed mAGS had high biomass, good settling ability, and high electrochemical activities, mAGS-based A/O process had high tolerance to the decrease of HRT from 42 h to 15 h for CCW treatment. The optimized HRT for A/O process was 27 h, at which Fe3O4/SC addition can result in the increase of COD, NH4+-N and TN removal efficiencies by 2.5 %, 4.7 % and 10.5 %, respectively. Based on 16S rRNA genes sequencing, the relative abundances of genus Nitrosomonas, Hyphomicrobium/Hydrogenophaga and Gaiella in mAGS accounting for nitrification, denitrification as well as COD removal were increased during aerobic granulation. Overall, this study proved that adding Fe3O4/SC to A/O process was effective for facilitating aerobic granulation and CCW treatment.
Collapse
Affiliation(s)
- Dan Li
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Su Yan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Jun Zhou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
9
|
Wang H, Hu C, Wang Y, Zhao Y, Jin C, Guo L. Elucidating microalgae-mediated metabolism for sulfadiazine removal mechanism and transformation pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121598. [PMID: 37031851 DOI: 10.1016/j.envpol.2023.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Sulfadiazine (SDZ) as a typical sulfonamide antibiotic is commonly detected in wastewater, and its removal mechanism and transformation pathways in microalgae-mediated system remain unclear. In this study, the SDZ removal through hydrolysis, photodegradation, and biodegradation by Chlorella pyrenoidosa was investigated. Higher superoxide dismutase activity and biochemical components accumulation were obtained under SDZ stress. The SDZ removal efficiencies at different initial concentrations were 65.9-67.6%, and the removal rate followed pseudo first-order kinetic model. Batch tests and HPLC-MS/MS analyses suggested that biodegradation and photodegradation through the reactions of amine group oxidation, ring opening, hydroxylation, and the cleavage of S-N, C-N, C-S bond were dominant removal mechanisms and pathways. Characteristics of transformation products were evaluated to analyze their environmental impacts. High-value products of lipid, carbohydrate, and protein in microalgae biomass presented economic potential of microalgae-mediated metabolism for SDZ removal. The findings of this study broadened the knowledge for the microalgae self-protection from SDZ stress and provided a deep insight into SDZ removal mechanism and transformation pathways.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
10
|
Ou C, Wang J, Yang W, Bao Y, Liao Z, Shi J, Qin J. Removal of ammonia nitrogen and phosphorus by porous slow-release Ca2+ ceramsite prepared from industrial solid wastes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Zhang Y, Zhang Q, Peng H, Zhang W, Li M, Feng J, He J, Su J. The changing C/N of aggressive aniline: Metagenomic analysis of pollutant removal, metabolic pathways and functional genes. CHEMOSPHERE 2022; 309:136598. [PMID: 36174730 DOI: 10.1016/j.chemosphere.2022.136598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In order to optimize the degradation of high-concentration aniline wastewater, the operation of sequencing batch bioaugmentation reactors with different aniline concentrations (200 mg/L, 600 mg/L, 1000 mg/L) was studied. The results showed that the removal rates of aniline and COD in the three reactors could reach 100%. When the aniline increased to 600 mg/L, the nitrogen removal efficiency reached the peak (51.85%). The increase of aniline inhibited the nitrification, while denitrification was enhanced due to the increase of C/N ratio. But this change was reversed by the toxicity of high concentrations of aniline. The metagenomic analysis showed that when the aniline concentration was 600 mg/L, the abundance distribution of microbial samples was more uniform. The improved of aniline concentration had led to the increase of aromatic compounds degradation metabolic pathways. In addition, the abundance of aniline degradation and nitrogen metabolism genes (dmpB, xylE, norB) was also promoted.
Collapse
Affiliation(s)
- Yunjie Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Haojin Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenli Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jing He
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
12
|
Qu M, Liu Y, Hao M, Wang M, Chen R, Wang XC, Zheng Y, Dzakpasu M. Microbial community and carbon-nitrogen metabolism pathways in integrated vertical flow constructed wetlands treating wastewater containing antibiotics. BIORESOURCE TECHNOLOGY 2022; 354:127217. [PMID: 35470002 DOI: 10.1016/j.biortech.2022.127217] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This study demonstrates effects of sulfamethoxazole (SMX) on carbon-nitrogen transformation pathways and microbial community and metabolic function response mechanisms in constructed wetlands. Findings showed co-metabolism of SMX with organic pollutants resulted in high removal of 98.92 ± 0.25% at influent concentrations of 103.08 ± 13.70 μg/L (SMX) and 601.92 ± 22.69 mg/L (COD), and 2 d hydraulic retention. Microbial community, co-occurrence networks, and metabolic pathways analyses showed SMX promoted enrichment of COD and SMX co-metabolizing bacteria like Mycobacterium, Chryseobacterium and Comamonas. Relative abundances of co-metabolic pathways like Amino acid, carbohydrate, and Xenobiotics biodegradation and metabolism were elevated. SMX also increased relative abundances of the resistant heterotrophic nitrification-aerobic denitrification bacteria Paracoccus and Comamonas and functional genes nxrA, narI, norC and nosZ involved in simultaneous heterotrophic nitrification-aerobic denitrification. Consequently, denitrification rate increased by 1.30 mg/(L∙d). However, insufficient reaction substrate and accumulation of 15.29 ± 2.30 mg/L NO3--N exacerbate inhibitory effects of SMX on expression of some denitrification genes.
Collapse
Affiliation(s)
- Miaowen Qu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ying Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Mengqing Hao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Mengting Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
13
|
Wang H, Guo L, Ren X, Gao M, Jin C, Zhao Y, Ji J, She Z. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process. BIORESOURCE TECHNOLOGY 2022; 350:126891. [PMID: 35217165 DOI: 10.1016/j.biortech.2022.126891] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/12/2023]
Abstract
Saline wastewater poses a threat to biological nitrogen removal. This study investigated whether and how static magnetic field (SMF) can improve the salt-tolerance of aerobic granular sludge (AGS) in two simultaneous partial nitrification and denitrification (SPND) reactors. Results confirmed that the SMF improved the mean size and settleability of granules, stimulated secretion of extracellular polymeric substances with high protein content, in turn enhancing the aerobic granulation. Although high salt stress inhibited functional microorganisms, the SMF maintained better SPND performance with average COD removal, TN removal and nitrite accumulation ratio finally recovering to 100%, 72.9% and 91.1% respectively. High throughput sequencing revealed that functional bacteria evolved from Paracoccus to halotolerant genera Xanthomarina, Thauera, Pseudofulvimonas and Azoarcus with stepwise increasing salinity. The enhanced salt-tolerance may be because the SMF promoted the activity of these halotolerant bacteria. Therefore, this study proposes an economic, effective and environmental biotechnology for saline wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Xiaomin Ren
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
14
|
Li X, Sui K, Zhang J, Liu X, Xu Q, Wang D, Yang Q. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150347. [PMID: 34563898 DOI: 10.1016/j.scitotenv.2021.150347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Rhamnolipid (RL), as an environmentally compatible biosurfactant, has been used to enhance waste activated sludge (WAS) fermentation. However, the effect of RL on hydrogen accumulation in anaerobic fermentation remains unclear. Therefore, this work targets to investigate the mechanism of RL-based dark fermentation system on hydrogen production of WAS. It was found that the maximum yield of hydrogen increased from 1.76 ± 0.26 to 11.01 ± 0.30 mL/g VSS (volatile suspended solids), when RL concentration increased from 0 to 0.10 g/g TSS (total suspended solids). Further enhancement of RL level to 0.12 g/g TSS slightly reduced the production to 10.80 ± 0.28 mL/g VSS. Experimental findings revealed that although RL could be degraded to generate hydrogen, it did not play a major role in enhancing hydrogen accumulation. Mechanism analysis suggested that RL decreased the surface tension between sludge liquid and hydrophobic compounds, thus accelerating the solubilization of WAS, improving the proportion of biodegradable substances which could be used for subsequent hydrogen production. Regardless of the fact that adding RL suppressed all the fermentation processes, the inhibition effect of processes associated with hydrogen consumption was much severer than that of hydrogen production. Further investigations of microbial community revealed that RL enriched the relative abundance of hydrogen producers e.g., Romboutsia but reduced that of hydrogen consumers like Desulfobulbus and Caldisericum.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Kexin Sui
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
15
|
Hu Y, Liu T, Chen N, Feng C. Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. CHEMOSPHERE 2022; 288:132476. [PMID: 34634272 DOI: 10.1016/j.chemosphere.2021.132476] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
With the increasing occurrences of nitrate and Cr(VI) pollution globally, microbially driven pollutant reduction and its interaction effects were of growing interest. Despite the increasing number of experimental reports on the simultaneous reduction of nitrate and Cr(VI), a broad picture of the keystone species and metabolic differences in this process remained elusive. This study explored the changing of microorganisms with the introduction of Cr(VI)/NO3- through analyzing 242 samples from the NCBI database. The correlation between microbial abundance and environmental factors showed that, the types of energy substances and pollutants species in the environment had an impact on the diversity of microorganisms and community structure. The genus of Zoogloea, Candidatus Accumulibacter, and Candidatus Kapabacteria sp. 59-99 had the ability of denitrification, while genus of Alcaligenes, Kerstersia, Petrimonas, and Leucobacter showed effectively Cr(VI) resistance and reducing ability. Azoarcus, Pseudomonas, and Thauera were recognized as important candidates in the simultaneous reduction of nitrate and Cr(VI). Metagenomic predictions of these microorganisms using PICRUSt2 further highlighted the enrichment of Cr(VI)and nitrate reduction-related genes (such as chrA and norC). Special attention should therefore be paid to these bacteria in subsequent studies to evaluate their performance and mechanisms involved in simultaneous denitrification and chromium removal. The microbial co-occurrence network analysis conducted on this basis emphasized a strong association between community collaboration and pollution removal. Collectively, either site surveys or laboratory experiments, subsequent studies should focus on these microbial populations and the interspecific collaborations as they strongly influence the occurrence of simultaneous nitrate and Cr(VI) reduction.
Collapse
Affiliation(s)
- Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
16
|
Sun C, Guo L, Zheng Y, Yu D, Jin C, Zhao Y, Yao Z, Gao M, She Z. Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD). BIORESOURCE TECHNOLOGY 2022; 343:126160. [PMID: 34678447 DOI: 10.1016/j.biortech.2021.126160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
As an energy-efficient and eco-friendly sludge treatment process, two-stage anaerobic digestion (AD) is widely employed to recovery biomass energy from waste sludge. However, the effect of primary and secondary sludge for two-stage AD was not clear. In this study, two-stage AD of mixed sludge in different volume ratio was investigated. The maximum cumulative H2 yield (100.5 ml) and CH4 yield (2643.6 ml) were obtained in volume ratio of 1:3 (primary sludge: secondary sludge). In two-phase AD, mixed sludge could induce positive effect on both organics releasing in extracellular polymeric substances (EPS) and the utilization of volatile fatty acids (VFAs). By investigating the compositional characteristics of dissolved organic matters (DOM) through excitation-emission matrix (EEM) coupling with fluorescence regional integration (FRI), it revealed more degradable substances utilization in mixture of sludge. Results from this work suggest that two-phase AD with mixed sludge is efficient for renewable energy recovery.
Collapse
Affiliation(s)
- Cheng Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China.
| | - Yongkang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Dan Yu
- QingDao Municipal Engineering Design Research Institute, Qingdao 266100, PR China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhiwen Yao
- QingDao Municipal Engineering Design Research Institute, Qingdao 266100, PR China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
17
|
Liu Y, Guo L, Gao P, Yu D, Yao Z, Gao M, Zhao Y, Jin C, She Z. Thermophilic bacteria combined with alkyl polyglucose pretreated mariculture solid wastes using as denitrification carbon source for marine recirculating aquaculture wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148447. [PMID: 34157524 DOI: 10.1016/j.scitotenv.2021.148447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
In marine recirculating aquaculture systems (RAS), efficient nitrogen removal is challenging due to the high NO3--N concentration, low organic matters content, and high salinity. In this study, mariculture solid wastes (MSW) acidogenic liquid pretreated by thermophilic bacteria (TB) combined with alkyl polyglucose (APG) was first used as carbon source for denitrification to remove NO3--N. TB + APG pretreatment could accelerate the hydrolysis of MSW, and the highest volatile fatty acids (VFAs) yield (40.3%) was obtained with TB + 0.2 g/g VSS APG pretreatment. MSW acidogenic liquid pretreated by TB + 0.2 g/g VSS APG was a reliable carbon source for denitrification, and the optimum COD/NO3--N ratio (C/N) was 8 with no residue of NOx--N. VFAs were more effectively utilized by denitrifiers than carbohydrate and protein. The high denitrification potential (PDN) and denitrification rate (VDN) indicated the higher denitrification ability at C/N of 8 using MSW acidogenic liquid as carbon source. The outcomes of this work could provide useful information for promoting technological innovation in marine RAS wastewater treatment.
Collapse
Affiliation(s)
- Yuanjun Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Pengtao Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dan Yu
- Qingdao Municipal Engineering Design Research Institute, Qingdao 266100, China
| | - Zhiwen Yao
- Qingdao Municipal Engineering Design Research Institute, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
18
|
Wang D, Tao L, Yang J, Xu Z, Yang Q, Zhang Y, Liu X, Liu Q, Huang J. Understanding the interaction between triclocarban and denitrifiers. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123343. [PMID: 32763677 DOI: 10.1016/j.jhazmat.2020.123343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of triclocarban (TCC) has led to its substantial release into aquatic environment. As an important microbial community in wastewater treatment, denitrifying cultures likely remove TCC and also may be affected by TCC which has not been revealed. This work therefore aims to add knowledge to these questions. Experimental results showed that 71.2 %-79.4 % of TCC was removed by denitrifying sludge in stable operation when TCC concentration was 1∼20 mg/L. Mass balance analyses revealed that TCC was dominantly removed by adsorption rather than biodegradation, and non-homogeneous multilayer adsorption was responsible for this removal, with hydroxyl groups, amides and polysaccharides acting as the possible adsorption sites. Although the physicochemical properties of denitrifying cultures were unaffected after short-term exposure, long-term exposure to TCC deteriorated the settleability, dewaterability, flocculability and hydrophobicity of denitrifying biomass. It was observed that 20 mg/L TCC decreased denitrification efficiency by 70 % in long-term operation. Mechanism studies revealed that long-term exposure to TCC resulted in the increase of extracellular polymeric substances especially proteins, and the decrease of denitrifiers' activities. High-throughput sequencing revealed that TCC decreased the diversity of microbial community and the abundances of denitrifier genera such as Hyphomicrobium, Paracoccus, Saprospiraceae and unclassified-f-Rhodocyclaceae.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Lingjuan Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jingnan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhengyong Xu
- Hunan Provincial Science and Technology Affairs Center, Changsha, 410013, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jin Huang
- Hunan Provincial Center for Ecological and Environmental Affairs, Changsha, 410014, PR China
| |
Collapse
|
19
|
Gao Y, Guo L, Shao M, Hu F, Wang G, Zhao Y, Gao M, Jin C, She Z. Denitrification performance evaluation and kinetics analysis with mariculture solid wastes (MSW) derived carbon source in marine recirculating aquaculture systems (RAS). BIORESOURCE TECHNOLOGY 2020; 313:123649. [PMID: 32559708 DOI: 10.1016/j.biortech.2020.123649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Biological denitrification using mariculture solid wastes (MSW) carbon source is a promising solution for removing nitrate (NO3--N) and disposing MSW in marine recirculating aquaculture systems (RAS). To enhance denitrification performance, heating (HT), rhamnolipid (RL), alkali (AL), thermophilic bacteria (TB) pre-treated MSW acidogenic fermentation effluents were prepared as carbon sources. Profiles of soluble organics in four types of fermentation effluents were first evaluated. The highest volatile fatty acids (VFAs) yield (52.1%) was obtained from TB treated MSW after acidification. RL and TB treated MSW acidogenic fermentation effluents showed high NO3--N removal efficiency (NRE) (around 97%). Acidogenic fermentation effluent from TB treated MSW presented a high biodegradability, with the minimum effluent chemical oxygen demand (COD) amount (35 mg/L). Denitrification kinetics parameters were also analyzed; high fraction (74.5%) of the most readily biodegradable organics (SS) demonstrated that TB treated MSW acidogenic fermentation effluent is a high-quality carbon source for enhancing denitrification.
Collapse
Affiliation(s)
- Yedong Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Mengyu Shao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fawen Hu
- Marine Biology Institute of Shandong Province, Qingdao 266104, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
20
|
Zhang Z, Guo Y, Guo L, Hu F, Zhao Y, Jin C, She Z, Gao M, Wang G. Elucidating salinity adaptation and shock loading on denitrification performance: Focusing on microbial community shift and carbon source evaluation. BIORESOURCE TECHNOLOGY 2020; 305:123030. [PMID: 32114301 DOI: 10.1016/j.biortech.2020.123030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
To understand the denitrification efficiency and microbial community shift with increasing salinity in salinity adaptation and shock loading process, nitrate (NO3--N), nitrite (NO2--N) and chemical oxygen demand (COD) removal efficiencies were monitored feeding acetate and primary sludge fermentation liquid. During adaptation process, salinity had little effect on NO3--N removal efficiency (>99.0%) with acetate-fed, while for fermentation liquid-fed, it decreased to around 97% at high salinity (>2.5%). Effluent NO2--N was lower than 0.1 mg/L, though obvious fluctuation of NO2--N was observed with fermentation liquid-fed when salinity change. During shock loading process, denitrification process all had slight decrease when the salinity abruptly increased to 5.0%. Traditional denitrifier of Thauera was the dominant genus, and a specialized microbial community of Azoarcus in salinity adaptation and Paracoccus in shock loading for denitrification showed high salinity tolerant. Meanwhile, microbial diversity was enriched with fermentation liquid-fed at high salinity condition.
Collapse
Affiliation(s)
- Zengshuai Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yiding Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Educatin, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China.
| | - Fawen Hu
- Marine Biology Institute of Shandong Province, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China
| |
Collapse
|