1
|
Li C, Ren L, Gan H, Wang Y, Shen Y, Sun C, Mu G, Zhang M. Fabrication and performance of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) composites by regulating the dispersed rice husk with the silane coupling agent and alkaline. Int J Biol Macromol 2025; 307:142365. [PMID: 40120875 DOI: 10.1016/j.ijbiomac.2025.142365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Mixing poly (lactic acid) (PLA) with another biodegradable resin, poly (butylene adipate-co-terephthalate) (PBAT), is a simple strategy to toughen PLA, but its effectiveness is limited, and stiffness is usually compromised. As a consequence, the simultaneous enhancement of strength and toughness in PLA has become of significant challenge in materials driven by growing demand for green polymers in expanded biodegradable fields. In this study, we design and fabricate a novel PLA composites based on a facile processing route consisting of rice husk modified with the silane coupling agent and alkaline (RHM) as the reinforcing agent, and PBAT grafting glycidyl methacrylate (GMA) as the toughening agent. The results indicated RHM promoted the crystalline behavior of the composites and improved the thermal stability, dimensional stability, melt strength and hydrophilicity. PBAT grafted by GMA greatly increased the compatibility of RHM with PLA, which was confirmed in rheological and DSC tests. The toughness of the composites increased by 199 %-237.6 % while maintaining better stiffness and degradability. This work presents a simple and effective strategy for preparing low-cost, and well-balanced stiff and tough PLA, thereby expanding the application range of PLA.
Collapse
Affiliation(s)
- Chonghua Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Liang Ren
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Hongnian Gan
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yaobing Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yunda Shen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Chuang Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Guangming Mu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Mingyao Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
2
|
Castro-Fernandez A, Estévez S, Lema JM, Taboada-Santos A, Feijoo G, Moreira MT. Large-scale commercial-grade volatile fatty acids production from sewage sludge and food waste: A holistic environmental assessment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100518. [PMID: 39830788 PMCID: PMC11741900 DOI: 10.1016/j.ese.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The valorization of sewage sludge and food waste to produce energy and fertilizers is a well-stablished strategy within the circular economy. Despite the success of numerous laboratory-scale experiments in converting waste into high-value products such as volatile fatty acids (VFAs), large-scale implementation remains limited due to various technical and environmental challenges. Here, we evaluate the environmental performance of a hypothetical large-scale VFAs biorefinery located in Galicia, Spain, which integrates fermentation and purification processes to obtain commercial-grade VFAs based on primary data from pilot plant operations. We identify potential environmental hotspots, assess the influence of different feedstocks, and perform sensitivity analyses on critical factors like transportation distances and pH control methods, using life cycle assessment. Our findings reveal that, on a per-product basis, food waste provides superior environmental performance compared to sewage sludge, which, conversely, performs better when assessed per mass of waste valorized. This suggests that higher process productivity from more suitable wastes leads to lower environmental impacts but must be balanced against increased energy and chemical consumption, as food waste processing requires more electricity for pretreatment and solid-liquid separation. Further analysis reveals that the main operational impacts are chemical-related, primarily due to the use of NaOH for pH adjustment. Additionally, facility location is critical, potentially accounting for up to 99% of operational impacts due to transportation. Overall, our analysis demonstrates that the proposed VFAs biorefinery has a carbon footprint comparable to other bio-based technologies. However, enhancements in VFAs purification processes are necessary to fully replace petrochemical production. These findings highlight the potential of waste valorization into VFAs as a sustainable alternative, emphasizing the importance of process optimization and strategic facility placement.
Collapse
Affiliation(s)
- Ander Castro-Fernandez
- CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sofía Estévez
- CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan M. Lema
- CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antón Taboada-Santos
- CETAQUA, Water Technology Centre, A Vila da Auga, José Villar Granjel 33, E-15890, Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Hussain I, Rahman MM. Utilizing Nanostructured Materials for Hydrogen Generation, Storage, and Diverse Applications. Chem Asian J 2024; 19:e202300593. [PMID: 37787825 DOI: 10.1002/asia.202300593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/04/2023]
Abstract
The rapid advancement of refined nanostructures and nanotechnologies offers significant potential to boost research activities in hydrogen storage. Recent innovations in hydrogen storage have centered on nanostructured materials, highlighting their effectiveness in molecular hydrogen storage, chemical storage, and as nanoconfined hydride supports. Emphasizing the importance of exploring ultra-high-surface-area nanoporous materials and metals, we advocate for their mechanical stability, rigidity, and high hydride loading capacities to enhance hydrogen storage efficiency. Despite the evident benefits of nanostructured materials in hydrogen storage, we also address the existing challenges and future research directions in this domain. Recent progress in creating intricate nanostructures has had a notable positive impact on the field of hydrogen storage, particularly in the realm of storing molecular hydrogen, where these nanostructured materials are primarily utilized.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ijaz Hussain
- Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Nizzy AM, Kannan S, Kanmani S. Utilization of plant-derived wastes as the potential biohydrogen source: a sustainable strategy for waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34839-34858. [PMID: 38744759 DOI: 10.1007/s11356-024-33610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The sustainable economy has shown a renewed interest in acquiring access to the resources required to promote innovative practices that favor recycling and the reuse of existing, unconsidered things over newly produced ones. The production of biohydrogen through dark anaerobic fermentation of organic wastes is one of the intriguing possibilities for replacing fossil-based fuels through the circular economy. At present, plant-derived waste from the agro-based industry is the main global concern. When these wastes are improperly disposed of in landfills, they become the habitat for several pathogens. Additionally, it contaminates surface water as a result of runoff, and the leachate that is created from the waste enters groundwater and degrades its quality. However, cellulose and hemicellulose-rich plant wastes from agriculture fields and agro-based industries have been employed as the most efficient feedstock since carbohydrates are the primary substrate for the synthesis of biohydrogen. To produce biohydrogen from plant-derived wastes on a large scale, it is necessary to explore comprehensive knowledge of lab-scale parameters and pretreatment strategies. This paper summarizes the problems associated with the improper management of plant-derived wastes and discusses the recent developments in dark fermentation and substrate pretreatment techniques with the goal of gaining significant insight into the biohydrogen production process. It also highlights the utilization of anaerobic digestate, which is left over after biohydrogen gas as feedstock for the development of value-added products such as volatile fatty acids (VFA), biochar, and biofertilizer.
Collapse
Affiliation(s)
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sellappa Kanmani
- Centre for Environmental Studies, Anna University, Chennai, Tamil Nadu, 625021, India
| |
Collapse
|
5
|
Goren AY, Dincer I, Khalvati A. Comparative environmental sustainability assessment of biohydrogen production methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166613. [PMID: 37659568 DOI: 10.1016/j.scitotenv.2023.166613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
As energy crisis is recognized as an increasingly serious concern, the topic on biohydrogen (bioH2) production, which is renewable and eco-friendly, appears to be a highly-demanding subject. Although bioH2 production technologies are still at the developmental stage, there are many reported works available on lab- and pilot-scale systems with a promising future. This paper presents various potential methods of bioH2 production using biomass resources and comparatively assesses them for environmental impacts with a special emphasis on the specific biological processes. The environmental impact factors are then normalized with the feature scaling and normalization methods to evaluate the environmental sustainability dimensions of each bioH2 production method. The results reveals that the photofermentation (PF) process is more environmentally sustainable than the other investigated biological and thermochemical processes, in terms of emissions, water-fossil-mineral uses, and health issues. The global warming potential (GWP) and acidification potential (AP) for the PF process are then found to be 1.88 kg-CO2 eq. and 3.61 g-SO2 eq., which become the lowest among all processes, including renewable energy-based H2 production processes. However, the dark fermentation-microbial electrolysis cell (DF-MEC) hybrid process is considered the most environmentally harmful technique, with the highest GWP value of 14.6 kg-CO2 eq. due to their superior electricity and heat requirements. The water conception potential (WCP) of 84.5 m3 and water scarcity footprint (WSF) of 3632.9 m3 for the DF-MEC process is also the highest compared to all other processes due to the huge amount of wastewater formation potential of the system. Finally, the overall rankings confirm that biological processes are primarily promising candidates to produce bioH2 from an environmentally friendly point of view.
Collapse
Affiliation(s)
- A Yagmur Goren
- Ontario Tech University, Faculty of Engineering and Applied Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada; Izmir Institute of Technology, Faculty of Engineering, Department of Environmental Engineering, Urla, Izmir 35430, Türkiye.
| | - Ibrahim Dincer
- Ontario Tech University, Faculty of Engineering and Applied Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Ali Khalvati
- Agro-Environmental Innovation and Technology, Research and Development Company, Thornhill, Ontario L3T 0C6, Canada
| |
Collapse
|
6
|
Panahabadi R, Ahmadikhah A, Farrokhi N. Genetic dissection of monosaccharides contents in rice whole grain using genome-wide association study. THE PLANT GENOME 2023; 16:e20292. [PMID: 36691363 DOI: 10.1002/tpg2.20292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The simplest form of carbohydrates are monosaccharides which are the building blocks for the synthesis of polymers or complex carbohydrates. Monosaccharide contents of 197 rice accessions were quantified by HPAEC-PAD in rice (Oryza sativa L.) whole grain (RWG). A genome-wide association study (GWAS) was carried out using 33,812 single nucleotide polymorphisms (SNPs) to identify corresponding genomic regions influencing neutral monosaccharides contents. In total, 49 GWAS signals contained in 17 genomic regions (quantitative trait loci [QTLs]) on seven chromosomes of rice were determined to be associated with monosaccharides contents of whole grain. The QTLs were found for fucose (1), mannose (1), xylose (2), arabinose (2), galactose (4), and rhamnose (7) contents, all of which are novel. Based on co-location of annotated rice genes in the vicinity of GWAS signals, the constituents of the whole grain were associated with the following candidate genes: arabinose content with α-N-arabinofuranosidase, pectinesterase inhibitor, and glucosamine-fructose-6-phosphate aminotransferase 1; xylose content with ZOS1-10 (a C2H2 zinc finger transcription factor [TF]); mannose content with aldose 1-epimerase-like protein and a MYB family TF; galactose content with a GT8 family member (galacturonosyltransferase-like 3), a GRAS family TF, and a GH16 family member (xyloglucan endotransglucosylase/hydrolase xyloglucan 23); fucose content with gibberellin 20 oxidase and a lysine-rich arabinogalactan protein 19, and finally rhamnose content with myo-inositol-1-phosphate synthase, UDP-arabinopyranose mutase, and COBRA-like protein precursor. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in the biosynthesis, regulation, and turnover of monosaccharides in RWG, aiming to enhance the nutritional value of rice grain and impact the related industries.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| | | | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
7
|
Chang YJ, Chang JS, Lee DJ. Gasification of biomass for syngas production: Research update and stoichiometry diagram presentation. BIORESOURCE TECHNOLOGY 2023; 387:129535. [PMID: 37495160 DOI: 10.1016/j.biortech.2023.129535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Gasification is a thermal process that converts organic materials into syngas, bio-oil, and solid residues. This mini-review provides an update on current research on producing high-quality syngas from biomass via gasification. Specifically, the review highlights the effective valorization of feedstocks, the development of novel catalysts for reforming reactions, the configuration of novel integrated gasification processes with an assisted field, and the proposal of advanced modeling tools, including the use of machine learning strategies for process design and optimization. The review also includes examples of using a stoichiometry diagram to describe biomass gasification. The research efforts in this area are constantly evolving, and this review provides an up-to-date overview of the most recent advances and prospects for future research. The proposed advancements in gasification technology have the potential to significantly contribute to sustainable energy production and reduce greenhouse gas emissions.
Collapse
Affiliation(s)
- Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; Department of Chemical Engineering & Materials Engineering, Yuan Ze University, Chung-li, 32003, Taiwan.
| |
Collapse
|
8
|
Vesoloski JF, Todero AS, Macieski RJ, de Oliveira Pereira F, Dallago RM, Mignoni ML. Immobilization of Lipase from Candida antarctica B (CALB) by Sol-Gel Technique Using Rice Husk Ash as Silic Source and Ionic Liquid as Additive. Appl Biochem Biotechnol 2022; 194:6270-6286. [PMID: 35907063 DOI: 10.1007/s12010-022-04096-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
This work presents the immobilization in situ of commercial lipase from Candida antarctica B (CALB) by the sol-gel technique (xerogel) using silica from rice husk ash (RHA) as a source of silicon. It was used the Ionic Liquid (IL) 1-octyl-3-methylimidazolium bromide (C8MI.Br) as additive. The immobilized derivatives were characterized per SEM, XRD, and per method BET. The enzymatic activity of xerogels was evaluated with different tests, these being the reactional thermal analysis, immobilization yield, and operational and storage stability. The XDR showed that the obtained xerogels have halos in the region between 15 and 35° (2θ) what characterizes it as amorphous materials. The SEM analysis of xerogel shows irregular particles with dimensions less than 20 μm. The immobilized presented an esterification activity (EA) with 263.2 and 213.8 U/g, with and without IL, respectively, higher than the free enzyme (169.6 U/g). The immobilized, with and without IL, presented a significant improvement in the activity performance in relation to free enzyme for the three reactional temperatures (40, 60, and 80 °C) evaluated. The operational stability demonstrated that is possible to use xerogel without ionic liquid for 17 recycles and 21 recycles in IL presence. This methodology allows the preparation of new highly active and selective enzyme catalysts using the rice husk ash as a source of silicon, and the ionic liquid [C8MI]Br as additive. Furthermore, the new materials can provide greater viability in the processes, ensuring longer catalyst life.
Collapse
Affiliation(s)
- Josieli Fátima Vesoloski
- Department of Food and Chemical Engineering, URI - Erechim, Sete de Setembro Av, Erechim, RS, 162199709-910, Brazil
| | - Adriele Sabrina Todero
- Department of Food and Chemical Engineering, URI - Erechim, Sete de Setembro Av, Erechim, RS, 162199709-910, Brazil
| | - Ricardo Jorge Macieski
- Department of Food and Chemical Engineering, URI - Erechim, Sete de Setembro Av, Erechim, RS, 162199709-910, Brazil
| | - Fabiana de Oliveira Pereira
- Department of Food and Chemical Engineering, URI - Erechim, Sete de Setembro Av, Erechim, RS, 162199709-910, Brazil
| | - Rogério Marcos Dallago
- Department of Food and Chemical Engineering, URI - Erechim, Sete de Setembro Av, Erechim, RS, 162199709-910, Brazil
| | - Marcelo Luis Mignoni
- Department of Food and Chemical Engineering, URI - Erechim, Sete de Setembro Av, Erechim, RS, 162199709-910, Brazil.
| |
Collapse
|
9
|
Jayachandran V, Basak N, De Philippis R, Adessi A. Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng 2022; 45:1595-1624. [PMID: 35713786 DOI: 10.1007/s00449-022-02738-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 01/05/2023]
Abstract
In the scenario of alarming increase in greenhouse and toxic gas emissions from the burning of conventional fuels, it is high time that the population drifts towards alternative fuel usage to obviate pollution. Hydrogen is an environment-friendly biofuel with high energy content. Several production methods exist to produce hydrogen, but the least energy intensive processes are the fermentative biohydrogen techniques. Dark fermentative biohydrogen production (DFBHP) is a value-added, less energy-consuming process to generate biohydrogen. In this process, biohydrogen can be produced from sugars as well as complex substrates that are generally considered as organic waste. Yet, the process is constrained by many factors such as low hydrogen yield, incomplete conversion of substrates, accumulation of volatile fatty acids which lead to the drop of the system pH resulting in hindered growth and hydrogen production by the bacteria. To circumvent these drawbacks, researchers have come up with several strategies that improve the yield of DFBHP process. These strategies can be classified as preliminary methodologies concerned with the process optimization and the latter that deals with pretreatment of substrate and seed sludge, bioaugmentation, co-culture of bacteria, supplementation of additives, bioreactor design considerations, metabolic engineering, nanotechnology, immobilization of bacteria, etc. This review sums up some of the improvement techniques that profoundly enhance the biohydrogen productivity in a DFBHP process.
Collapse
Affiliation(s)
- Varsha Jayachandran
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144 027, Punjab, India.
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry, Florence University, Florence, Italy
| |
Collapse
|
10
|
Abstract
Growing environmental concerns, increased population, and the need to meet the diversification of the source of global energy have led to increased demand for biofuels. However, the high cost of raw materials for biofuels production has continued to slow down the acceptability, universal accessibility, and affordability of biofuels. The cost of feedstock and catalysts constitutes a major component of the production cost of biofuels. Potato is one of the most commonly consumed food crops among various populations due to its rich nutritional, health, and industrial benefits. In the current study, the application of potato peel waste (PPW) for biofuel production was interrogated. The present state of the conversion of PPW to bioethanol and biogas, through various techniques, to meet the ever-growing demand for renewable fuels was reviewed. To satisfy the escalating demand for biohydrogen for various applications, the prospects for the synthesis of biohydrogen from PPW were proposed. Additionally, there is the potential to convert PPW to low-cost, ecologically friendly, and biodegradable bio-based catalysts to replace commercial catalysts. The information provided in this review will enrich scholarship and open a new vista in the utilization of PPW. More focused investigations are required to unravel more avenues for the utilization of PPW as a low-cost and readily available catalyst and feedstock for biofuel synthesis. The application of PPW for biofuel application will reduce the pump price of biofuels, ensure the appropriate disposal of waste, and contribute towards environmental cleanliness.
Collapse
|
11
|
T H Nguyen T, Fukaya N, Sato K, Choi JC, Kataoka S. Design and assessment of an energy self-supply process producing tetraethyl orthosilicate using rice husk. BIORESOURCE TECHNOLOGY 2022; 344:126188. [PMID: 34710592 DOI: 10.1016/j.biortech.2021.126188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Combusting rice husk (RH) generates energy and rice husk ash (RHA) containing high amount of silica. Recent studies showed RHA can directly react with ethanol for producing tetraethyl orthosilicate (TEOS), an important substance for different industries. Nevertheless, this process requires an intensive energy supply. This study aims to design and evaluate an energy self-supply process producing TEOS using RH for feasibility. A process simulator was used to design the target process. The simulation results revealed that RH combustion can completely meet the RHA and high energy demands of TEOS production. The economic and environmental benefits were thoroughly evaluated and compared with processes using conventional raw materials (i.e., Simg and silica). The evaluation results showed that using RH for TEOS production could reduce CO2 emissions substantially. Large economic benefit was gained when renewable electricity was co-generated and sold to the power grid as a surplus.
Collapse
Affiliation(s)
- Thuy T H Nguyen
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Norihisa Fukaya
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jun-Chul Choi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Sho Kataoka
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
12
|
Energy Efficiency and Life Cycle Assessment with System Dynamics of Electricity Production from Rice Straw Using a Combined Gasification and Internal Combustion Engine. ENERGIES 2021. [DOI: 10.3390/en14164942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed the environmental performance and energy efficiency of electricity generation from rice straw using a combined gasification and internal combustion engine (G/ICE). A life cycle assessment (LCA) was performed to consider the conversion to electricity of rice straw, the production of which was based on the Philippine farming practice. Rice straw is treated as a milled rice coproduct and assumes an environmental burden which is allocated by mass. The results of an impact assessment for climate change was used directly in a system dynamic model to plot the accumulated greenhouse gas emissions from the system and compare with various cases in order to perform sensitivity analyses. At a productivity of 334 kWh/t, the global warming potential (GWP) of the system is equal to 0.642 kg CO2-eq/MJ, which is 27% lower than the GWP of rice straw on-site burning. Mitigating biogenic methane emissions from flooded rice fields could reduce the GWP of the system by 34%, while zero net carbon emissions can be achieved at 2.78 kg CO2/kg of milled rice carbon sequestration. Other sources of greenhouse gas (GHG) emissions are the use of fossil fuels and production of chemicals for agricultural use. The use of agricultural machinery and transport lorries has the highest impact on eutrophication potential and human toxicity, while the application of pesticides and fertilizers has the highest impact on ecotoxicity. The biomass energy ratio (BER) and net energy ratio (NER) of the system is 0.065 and 1.64, respectively. The BER and NER can be improved at a higher engine efficiency from 22% to 50%. The use of electricity produced by the G/ICE system to supply farm and plant operations could reduce the environmental impact and efficiency of the process.
Collapse
|
13
|
Farooq A, Moogi S, Jang SH, Kannapu HPR, Valizadeh S, Ahmed A, Lam SS, Park YK. Linear low-density polyethylene gasification over highly active Ni/CeO2-ZrO2 catalyst for enhanced hydrogen generation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Dahiya S, Chatterjee S, Sarkar O, Mohan SV. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. BIORESOURCE TECHNOLOGY 2021; 321:124354. [PMID: 33277136 DOI: 10.1016/j.biortech.2020.124354] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Global urbanization has resulted in amplified energy and material consumption with simultaneous waste generation. Current energy demand is mostly fulfilled by finite fossil reserves, which has critical impact on the environment and thus, there is a need for carbon-neutral energy. In this view, biohydrogen (bio-H2) is considered suitable due to its potential as a green and dependable carbon-neutral energy source in the emerging 'Hydrogen Economy'. Bio-H2 production by dark fermentation of biowaste/biomass/wastewater is gaining significant attention. However, bio-H2production still holds critical challenges towards scale-up with reference to process limitations and economic viabilities. This review illustrates the status of dark-fermentation process in the context of process sustainability and achieving commercial success. The review also provides an insight on various process integrations for maximum resource recovery including closed loop biorefinery approach towards the accomplishment of carbon neutral H2 production.
Collapse
Affiliation(s)
- Shikha Dahiya
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulogna Chatterjee
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Kadja GT, Azhari NJ, Mukti RR, Khalil M. A Mechanistic Investigation of Sustainable Solvent-Free, Seed-Directed Synthesis of ZSM-5 Zeolites in the Absence of an Organic Structure-Directing Agent. ACS OMEGA 2021; 6:925-933. [PMID: 33458544 PMCID: PMC7808162 DOI: 10.1021/acsomega.0c05070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The solvent-free, seed-directed synthesis using natural precursors has emerged as a sustainable route for the synthesis of zeolite. Albeit the significant progress in the synthesis techniques, the crystallization behaviors of zeolites are somewhat elusive. Herein, we performed a detailed investigation of the crystallization behaviors of ZSM-5 zeolites synthesized through the solvent-free, seed-directed route using rice husk silica as starting materials. The crystallization at 180 °C is completed rapidly in 10 h, with an ultrahigh zeolite yield of at least 95%. Moreover, we evaluated the crystallization kinetics at different temperatures using the nonlinear Avrami equation and found instantaneous nucleation with three-dimensional growth in the studied temperature range, with activation energies for nucleation, transition, and crystal growth of 137, 51, and 51 kJ mol-1, respectively, indicating that nucleation is the rate-determining step. Further investigation of the structural and morphological evolution revealed a preference for secondary nucleation over the seed-growth mechanism. Crystallization proceeds via structural rearrangement within the solid system. We anticipate that our work will provide extensive insights that increase the understanding of zeolite crystallization and expand the highly sustainable production of zeolites.
Collapse
Affiliation(s)
- Grandprix T.M. Kadja
- Division
of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural
Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia
- Center
for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia
| | - Noerma J. Azhari
- Division
of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural
Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia
| | - Rino R. Mukti
- Division
of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural
Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia
- Center
for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia
| | - Munawar Khalil
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
| |
Collapse
|
16
|
Sivaramakrishnan R, Ramprakash B, Ramadoss G, Suresh S, Pugazhendhi A, Incharoensakdi A. High potential of Rhizopus treated rice bran waste for the nutrient-free anaerobic fermentative biohydrogen production. BIORESOURCE TECHNOLOGY 2021; 319:124193. [PMID: 33035864 DOI: 10.1016/j.biortech.2020.124193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, Rhizopus oligosporus MTCC 556 (Rhizopus) treated rice bran was utilized for the anaerobic bacterial fermentative hydrogen production. The Enterobacter aerogenes MTCC 2822 with nutrients addition fermented the treated rice bran to give hydrogen yield of 5.4 mmol H2/g of biomass. A closely similar hydrogen yield of 4.6 mmol H2/g of biomass was obtained from the treated rice bran under the condition without nutrients addition, suggesting the potential of the fungus treatment to produce hydrogen from nutrient-free fermentation. The pretreated rice bran showed efficient hydrogen production upon anaerobic fermentation without nutrients addition. The Rhizopus pretreated biomass can provide required nutrients for the enhancement of hydrogen yield by anaerobic fermentation. The Rhizopus pretreatment of rice bran enhanced the hydrogen production under nutrient-free conditions which reduced the overall production cost. The findings provide a promising solution to efficiently utilize the rice bran waste for low cost hydrogen production.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Balasubramani Ramprakash
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Govindarajan Ramadoss
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Subramaniyam Suresh
- Department of Biotechnology, College of Science and Humanities, Ramapuram Campus, SRM Institute of Science and Technology, Bharathi Salai, Ramapuram, Chennai 600089, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
17
|
Sarkar O, Rova U, Christakopoulos P, Matsakas L. Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: Optimization and scale-up. BIORESOURCE TECHNOLOGY 2021; 319:124233. [PMID: 33254458 DOI: 10.1016/j.biortech.2020.124233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 05/27/2023]
Abstract
This two-phase, two-stage study analyzed production of biohydrogen and volatile fatty acids by acidogenic fermentation of brewery spent grains. Phase-1 served to optimize the effect of pH (4-10) on acidogenic fermentation; whereas phase-2 validated the optimized conditions by scaling up the process to 2 L, 5 L, and 10 L. Alkaline conditions (pH 9) yielded excellent cumulative H2 production (834 mL) and volatile fatty acid recovery (8936 mg/L) in phase-1. Extended fermentation time (from 5 to 10 days) upgraded the accumulated short-chain fatty acids (C2-C4) to medium-chain fatty acids (C5-C6). Enrichment for acidogens in modified mixed culture improved fatty acid production; while their consumption by methanogens in unmodified culture led to methane formation. Increased CH4 but decreased H2 content enabled biohythane generation. Scaling up confirmed the role of pH and culture type in production of renewable fuels and platform molecules from brewery spent grains.
Collapse
Affiliation(s)
- Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden.
| |
Collapse
|
18
|
Liu Z, Sun Y, Xu X, Qu J, Qu B. Adsorption of Hg(II) in an Aqueous Solution by Activated Carbon Prepared from Rice Husk Using KOH Activation. ACS OMEGA 2020; 5:29231-29242. [PMID: 33225154 PMCID: PMC7676363 DOI: 10.1021/acsomega.0c03992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 05/23/2023]
Abstract
With the development of industry, the discharge of wastewater containing mercury ions posed a serious threat to human health. Using biomass waste as an adsorbent to treat wastewater containing mercury ions was a better way due to its positive impacts on the environment and resource saving. In this research, activated carbon (AC) was prepared from rice husk (RH) by the KOH chemical activation method. The characterization results of scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) showed that rice husk-activated carbon (RHAC) had good pore structure and oxygen-containing functional groups. The influences of contact time, initial concentration of Hg(II), adsorbent dosage, pH, and ionic strength on mercury ion removal were investigated. The Langmuir model was most suitable for the adsorption isotherm of RHAC, and its maximum adsorption capacity for Hg(II) was 55.87 mg/g. RHAC still had a high removal capacity for Hg(II) after five regeneration cycles. RHAC had excellent removal efficiency for mercury ion wastewater. At the same time, RH could be used as a nonpolluting and outstanding characteristic adsorbent material.
Collapse
Affiliation(s)
- Zhiyuan Liu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
- CAS
Key Laboratory of Renewable Energy, Guangzhou
Institute of Energy Conversion, Guangzhou 510640, P. R.
China
| | - Yong Sun
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
| | - Xinrui Xu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
| | - Jingbo Qu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
| | - Bin Qu
- College
of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
- Key
Laboratory of Agricultural Renewable Resources Utilization Technology
and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, P. R. China
- CAS
Key Laboratory of Renewable Energy, Guangzhou
Institute of Energy Conversion, Guangzhou 510640, P. R.
China
| |
Collapse
|
19
|
Mi R, Hu Z, Yi C, Yang B. Catalytic Dehydration of 1,4‐Butanediol over Mg−Yb Binary Oxides and the Mechanism Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rongli Mi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| | - Zhun Hu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| | - Chunhai Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| | - Bolun Yang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University West Xian-ning Road Xi'an, Shaanxi 710049 P. R. China
| |
Collapse
|