1
|
Wang X, Hou J, Cui J, Wang Z, Chen T. Engineering Corynebacterium glutamicum for the efficient production of 3-hydroxypropionic acid from glucose via the β-alanine pathway. Synth Syst Biotechnol 2024; 9:752-758. [PMID: 39007091 PMCID: PMC11245886 DOI: 10.1016/j.synbio.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
3-Hydroxypropionic Acid (3-HP) is recognized as a high value-added chemical with a broad range of applications. Among the various biosynthetic pathways for 3-HP production, the β-alanine pathway is particularly noteworthy due to its capacity to generate 3-HP from glucose at a high theoretical titer. In this study, the β-alanine biosynthesis pathway was introduced and optimized in Corynebacterium glutamicum. By strategically regulating the supply of precursors, we successfully engineered a strain capable of efficiently synthesizing 3-HP through the β-alanine pathway, utilizing glucose as the substrate. The engineered strain CgP36 produced 47.54 g/L 3-HP at a yield of 0.295 g/g glucose during the fed-batch fermentation in a 5 L fermenter, thereby attaining the highest 3-HP titer obtained from glucose via the β-alanine pathway.
Collapse
Affiliation(s)
- Xiaodi Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junyuan Hou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jieyao Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Zhou L, Zhang Y, Chen T, Yun J, Zhao M, Zabed HM, Zhang C, Qi X. Metabolic Remodulation of Chassis and Corn Stover Bioprocessing to Unlock 3-Hydroxypropionic Acid Biosynthesis from Agrowaste-Derived Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2536-2546. [PMID: 38261597 DOI: 10.1021/acs.jafc.3c08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Embracing the principles of sustainable development, the valorization of agrowastes into value-added chemicals has nowadays received significant attention worldwide. Herein, Escherichia coli was metabolically rewired to convert cellulosic hydrolysate of corn stover into a key platform chemical, namely, 3-hydroxypropionic acid (3-HP). First, the heterologous pathways were introduced into E. coli by coexpressing glycerol-3-P dehydrogenase and glycerol-3-P phosphatase in both single and fusion (gpdp12) forms, making the strain capable of synthesizing glycerol from glucose. Subsequently, a glycerol dehydratase (DhaB123-gdrAB) and an aldehyde dehydrogenase (GabD4) were overexpressed to convert glycerol into 3-HP. A fine-tuning between glycerol synthesis and its conversion into 3-HP was successfully established by 5'-untranslated region engineering of gpdp12 and dhaB123-gdrAB. The strain was further metabolically modulated to successfully prevent glycerol flux outside the cell and into the central metabolism. The finally remodulated chassis produced 32.91 g/L 3-HP from the cellulosic hydrolysate of stover during fed-batch fermentation.
Collapse
Affiliation(s)
- Lei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tingting Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- School of Life Sciences, Guangzhou University, Guangzhou 511370, Guangdong, China
| |
Collapse
|
4
|
Zhou S, Zhang Y, Wei Z, Park S. Recent advances in metabolic engineering of microorganisms for the production of monomeric C3 and C4 chemical compounds. BIORESOURCE TECHNOLOGY 2023; 377:128973. [PMID: 36972803 DOI: 10.1016/j.biortech.2023.128973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Bio-based C3 and C4 bi-functional chemicals are useful monomers in biopolymer production. This review describes recent progresses in the biosynthesis of four such monomers as a hydroxy-carboxylic acid (3-hydroxypropionic acid), a dicarboxylic acid (succinic acid), and two diols (1,3-propanediol and 1,4-butanediol). The use of cheap carbon sources and the development of strains and processes for better product titer, rate and yield are presented. Challenges and future perspectives for (more) economical commercial production of these chemicals are also briefly discussed.
Collapse
Affiliation(s)
- Shengfang Zhou
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingli Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhiwen Wei
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Dai Z, Pomraning KR, Deng S, Kim J, Campbell KB, Robles AL, Hofstad BA, Munoz N, Gao Y, Lemmon T, Swita MS, Zucker JD, Kim YM, Burnum-Johnson KE, Magnuson JK. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:53. [PMID: 36991437 DOI: 10.1186/s13068-023-02288-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS In this study, the 3-HP β-alanine pathway consisting of aspartate decarboxylase, β-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the β-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional β-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.
Collapse
Affiliation(s)
- Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristen B Campbell
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Marie S Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jeremy D Zucker
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jon K Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
6
|
Ree Yoon H, Han S, Chul Shin S, Cheong Yeom S, Jin Kim H. -Improved natural food colorant production in the filamentous fungus Monascus ruber using CRISPR-based engineering. Food Res Int 2023; 167:112651. [PMID: 37087240 DOI: 10.1016/j.foodres.2023.112651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Monascus pigments have various food industry applications and are pharmacologically active. Genome sequencing-based clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has been implemented to increase pigment production in Monascus. To increase pigment production in M. ruber KACC46666, the CRISPR/Cas9 system was used to introduce mutations in two negative regulator genes (MpigI and MpigI'), among other genes involved in the Monascus pigment biosynthesis pathway. Dual single-guide RNAs were constructed to inactivate MpigI and MpigI'. After CRISPR/Cas9 inactivation, yellow, orange, and red pigment expression in the resulting △MpigI16-7 strain (among several Cas9-mediated mutants studied) was 2.5-, 12.4-, and 18.5-fold, respectively, higher than that in the wild-type strain. This study provides valuable information regarding CRISPR-guided metabolic engineering for natural colorant production.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Suk Han
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Seung Chul Shin
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Hyo Jin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
7
|
Production of 3-Hydroxypropionic Acid from Renewable Substrates by Metabolically Engineered Microorganisms: A Review. Molecules 2023; 28:molecules28041888. [PMID: 36838875 PMCID: PMC9960984 DOI: 10.3390/molecules28041888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.
Collapse
|
8
|
Engineering of the Substrate Pocket of α-ketoglutaric Semialdehyde Dehydrogenase for Improving the Activity toward 3-hydroxypropanal. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2021; 342:125978. [PMID: 34598073 DOI: 10.1016/j.biortech.2021.125978] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Acetyl-CoA is a kind of important cofactor that is involved in many metabolic pathways. It serves as the precursor for many interesting commercial products, such as terpenes, flavonoids and anthraquinones. However, the insufficient supply of acetyl-CoA limits biosynthesis of its derived compounds in the intracellular. In this review, we outlined metabolic pathways involved in the catabolism and anabolism of acetyl-CoA, as well as some important derived products. We examined several strategies for the enhanced supply of acetyl-CoA, and provided insight into pathways that generate acetyl-CoA to balance metabolism, which can be harnessed to improve the titer, yield and productivities of interesting products in Saccharomyces cerevisiae and other eukaryotic microorganisms. We believe that peroxisomal fatty acid β-oxidation could be an attractive strategy for enhancing the supply of acetyl-CoA.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Seong J, Shin J, Kim K, Cho BK. Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Zhao P, Tian P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol 2021; 37:117. [PMID: 34128152 DOI: 10.1007/s11274-021-03091-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.
Collapse
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
12
|
Liang X, Wang J, Guo Y, Huang Z, Liu H. High-efficiency recovery, regeneration and recycling of 1-ethyl-3-methylimidazolium hydrogen sulfate for levulinic acid production from sugarcane bagasse with membrane-based techniques. BIORESOURCE TECHNOLOGY 2021; 330:124984. [PMID: 33743277 DOI: 10.1016/j.biortech.2021.124984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids have been proven efficient and environmental medium for producing platform chemical levulinic acid. Lack of high-efficiency, stable and low-cost recovery strategy with complex electrolyte form restricts the further scale-up of ionic liquids for platform chemicals production. Membrane-based techniques including ultrafiltration (UF) and bipolar membrane electrodialysis (BMED) were employed for the high-efficiency recovery, regeneration and recycling of 1-ethyl-3-methylimidazolium hydrogen sulfate [Emim][HSO4] for levulinic acid production from sugarcane bagasse. UF-BMED treatment works based on the interception of macromolecule biomass degradation products by UF treatment with regional recovery of Emim+ and SO42- by BMED treatment. Effect of major parameters on [Emim][HSO4] recovery performance was determined. Recovery ratio for Emim+ and SO42- approached 95.4% and 95.9%. Energy consumption of specific [Emim][HSO4] recovery was closed to 5.8 kWh/kg. Insight gained from this study suggests a high-efficiency and economical strategy for platform chemicals production with green solvent ionic liquids.
Collapse
Affiliation(s)
- Xiaocong Liang
- Research Center of Shanxi Province for Solar Energy Engineering and Technology, School of Energy and Power Engineering, North University of China, Taiyuan 030051, China.
| | - Junyu Wang
- Research Center of Shanxi Province for Solar Energy Engineering and Technology, School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Yongkang Guo
- Research Center of Shanxi Province for Solar Energy Engineering and Technology, School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Zhiguo Huang
- Research Center of Shanxi Province for Solar Energy Engineering and Technology, School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Hantao Liu
- Research Center of Shanxi Province for Solar Energy Engineering and Technology, School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
13
|
Jiang Y, Sheng Q, Wu XY, Ye BC, Zhang B. l-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Crit Rev Biotechnol 2020; 41:172-185. [PMID: 33153325 DOI: 10.1080/07388551.2020.1844625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As an important semi-essential amino acid, l-arginine is extensively used in the food and pharmaceutical fields. At present, l-arginine production depends on cost-effective, green, and sustainable microbial fermentation by using a renewable carbon source. To enhance its fermentative production, various metabolic engineering strategies have been employed, which provide valid paths for reducing the cost of l-arginine production. This review summarizes recent advances in molecular biology strategies for the optimization of l-arginine-producing strains, including manipulating the principal metabolic pathway, modulating the carbon metabolic pathway, improving the intracellular biosynthesis of cofactors and energy usage, manipulating the assimilation of ammonia, improving the transportation and membrane permeability, and performing biosensor-assisted high throughput screening, providing useful insight into the current state of l-arginine production.
Collapse
Affiliation(s)
- Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Hwang J, Shin SC, Han JW, Hong SP, Min WK, Chung D, Kim HJ. Complete genome sequence of Paenibacillus xylanexedens PAMC 22703, a xylan-degrading bacterium. Mar Genomics 2020; 55:100788. [PMID: 32563695 DOI: 10.1016/j.margen.2020.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Paenibacillus is widely distributed in various environments and has the potential for use as a biotechnological agent in industrial processes. Here, we report the complete genome sequence of the marine bacterium, Paenibacillus xylanexedens PAMC 22703, which utilizes xylan. The P. xylanexedens PAMC 22703 strain was isolated from marine sediments. P. xylanexedens PAMC 22703 utilizes xylan as a carbon source to grow. The genome sequence clarified that this strain possesses genes for utilizing xylan. The complete genome sequence contained one chromosome (7,053,622 bp with 46.0% GC content) and one plasmid (44,617 bp with 44.1% C + G content). The genome harbored genes that fully deploy the xylan assimilation pathway. The complete genome sequence of P. xylanexedens PAMC 22703 would prove useful in acquiring information for its application with xylan in various industries.
Collapse
Affiliation(s)
- Junsang Hwang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea
| | - Seung Chul Shin
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jae Won Han
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea
| | - Sang Pil Hong
- Research Group of Traditional Food, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Won-Ki Min
- Department of Food Science and Development, Kyungil University, Gyeongsan 38428, Republic of Korea
| | - Donghwa Chung
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|