1
|
Tian H, Zheng Z, Pang X, Lan S, Han Z, Liang Z, Sun D. A novel method for production of nitrogen fertilizer with low energy consumption by efficiently adsorbing and separating waste ammonia. ENVIRONMENTAL RESEARCH 2024; 247:118245. [PMID: 38244966 DOI: 10.1016/j.envres.2024.118245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Recovering waste NH3 to be used as a source of nitrogen fertilizer or liquid fuel has recently attracted much attention. Current methods mainly utilize activated carbon or metal-organic frameworks to capture NH3, but are limited due to low NH3 adsorption capacity and high cost, respectively. In this study, novel porous materials that are low cost and easy to synthesize were prepared as NH3 adsorbents by precipitation polymerization with acid optimization. The results showed that adsorption sites (‒COOH, -OH, and lactone) which form chemical adsorption or hydrogen bonds with NH3 were successfully regulated by response surface methods. Correspondingly, the dynamic NH3 adsorption capacity increased from 5.45 mg g-1 to 129 mg g-1, which is higher than most known activated carbon and metal-organic frameworks. Separation performance tests showed that NH3 could also be separated from CO2 and CH4. The findings in this study will advance the industrialization of NH3 polymer adsorbents and provide technical support for the recycling of waste NH3.
Collapse
Affiliation(s)
- Haozhong Tian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhenkun Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaobing Pang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Senchen Lan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhangliang Han
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China; Shaoxing Research Institute, Zhejing University of Technology, Shaoxing, 312000, China.
| | - Zhirong Liang
- Zhongfa Aviation Institute of Beihang University, Hangzhou, China, 310023, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Erdem Ö, Eş I, Saylan Y, Atabay M, Gungen MA, Ölmez K, Denizli A, Inci F. In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system. Nat Commun 2023; 14:4840. [PMID: 37563147 PMCID: PMC10415298 DOI: 10.1038/s41467-023-40413-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Current practices in synthesizing molecularly imprinted polymers face challenges-lengthy process, low-productivity, the need for expensive and sophisticated equipment, and they cannot be controlled in situ synthesis. Herein, we present a micro-reactor for in situ and continuously synthesizing trillions of molecularly imprinted polymeric nanoparticles that contain molecular fingerprints of bovine serum albumin in a short period of time (5-30 min). Initially, we performed COMSOL simulation to analyze mixing efficiency with altering flow rates, and experimentally validated the platform for synthesizing nanoparticles with sizes ranging from 52-106 nm. Molecular interactions between monomers and protein were also examined by molecular docking and dynamics simulations. Afterwards, we benchmarked the micro-reactor parameters through dispersity and concentration of molecularly imprinted polymers using principal component analysis. Sensing assets of molecularly imprinted polymers were examined on a metamaterial sensor, resulting in 81% of precision with high selectivity (4.5 times), and three cycles of consecutive use. Overall, our micro-reactor stood out for its high productivity (48-288 times improvement in assay-time and 2 times improvement in reagent volume), enabling to produce 1.4-1.5 times more MIPs at one-single step, and continuous production compared to conventional strategy.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Murat Alp Gungen
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
3
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
4
|
Cowen T, Cheffena M. Template Imprinting Versus Porogen Imprinting of Small Molecules: A Review of Molecularly Imprinted Polymers in Gas Sensing. Int J Mol Sci 2022; 23:ijms23179642. [PMID: 36077047 PMCID: PMC9455763 DOI: 10.3390/ijms23179642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The selective sensing of gaseous target molecules is a challenge to analytical chemistry. Selectivity may be achieved in liquids by several different methods, but many of these are not suitable for gas-phase analysis. In this review, we will focus on molecular imprinting and its application in selective binding of volatile organic compounds and atmospheric pollutants in the gas phase. The vast majority of indexed publications describing molecularly imprinted polymers for gas sensors and vapour monitors have been analysed and categorised. Specific attention was then given to sensitivity, selectivity, and the challenges of imprinting these small volatile compounds. A distinction was made between porogen (solvent) imprinting and template imprinting for the discussion of different synthetic techniques, and the suitability of each to different applications. We conclude that porogen imprinting, synthesis in an excess of template, has great potential in gas capture technology and possibly in tandem with more typical template imprinting, but that the latter generally remains preferable for selective and sensitive detection of gaseous molecules. More generally, it is concluded that gas-phase applications of MIPs are an established science, capable of great selectivity and parts-per-trillion sensitivity. Improvements in the fields are likely to emerge by deviating from standards developed for MIP in liquids, but original methodologies generating exceptional results are already present in the literature.
Collapse
|
5
|
Development of Adsorptive Membranes for Selective Removal of Contaminants in Water. Polymers (Basel) 2022; 14:polym14153146. [PMID: 35956672 PMCID: PMC9371136 DOI: 10.3390/polym14153146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023] Open
Abstract
The presence of arsenic and ammonia in ground and surface waters has resulted in severe adverse effects to human health and the environment. Removal technologies for these contaminants include adsorption and membrane processes. However, materials with high selectivity and pressure stability still need to be developed. In this work, adsorbents and adsorptive membranes were prepared using nanostructured graphitic carbon nitride decorated with molecularly imprinted acrylate polymers templated for arsenate and ammonia. The developed adsorbent removed arsenate at a capacity and selectivity similar to commercial ion-exchange resins. Ammonia was removed at higher capacity than commercial ion exchange resins, but the adsorbent showed lower selectivity. Additionally, the prepared membranes removed more arsenate and ammonia than non-imprinted controls, even in competition with abundant ions in water. Further optimization is required to improve pressure stability and selectivity.
Collapse
|
6
|
Inhibitory Effects of the Addition of KNO 3 on Volatile Sulfur Compound Emissions during Sewage Sludge Composting. Bioengineering (Basel) 2022; 9:bioengineering9060258. [PMID: 35735501 PMCID: PMC9220069 DOI: 10.3390/bioengineering9060258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
Odor released from the sewage sludge composting process often has a negative impact on the sewage sludge treatment facility and becomes a hindrance to promoting compost technology. This study investigated the effect of adding KNO3 on the emissions of volatile sulfur compounds, such as hydrogen sulfide (H2S), dimethyl sulfide (DMS), and carbon disulfide (CS2), during sewage sludge composting and on the physicochemical properties of compost products, such as arylsulfatase activity, available sulfur, total sulfur, moisture content, and germination index. The results showed that the addition of KNO3 could inhibit the emissions of volatile sulfur compounds during composting. KNO3 can also increase the heating rate and peak temperature of the compost pile and reduce the available sulfur loss. The addition of 4% and 8% KNO3 had the best effect on H2S emissions, and it reduced the emissions of H2S during composting by 19.5% and 20.0%, respectively. The addition of 4% KNO3 had the best effect on DMS and CS2 emissions, and it reduced the emissions of DMS and CS2 by 75.8% and 63.0%, respectively. Furthermore, adding 4% KNO3 had the best effect from the perspective of improving the germination index of the compost.
Collapse
|
7
|
Li Z, Wang X, Kuang W, Dong C, Fan Y, Guo Y, Qiao Q, Zhu Z, Liu Y, Zhu Y. Biofiber waste derived zwitterionic and photocatalytic dye adsorbent: Switchable selectivity, in-situ degradation and multi-tasking application. BIORESOURCE TECHNOLOGY 2022; 352:127080. [PMID: 35351559 DOI: 10.1016/j.biortech.2022.127080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Dye wastewater and discarded biofiber have brought huge pressure to sustainable developments of ecology and economy. By utilizing dopamine chemistry and benzophenone mediated "grafting onto" atom transfer radical polymerization (ATRP), this work reported a biomass adsorbent containing discarded wool substrate, photocatalytic PDA coating and zwitterionic polymer brushes for dyes removal. The grafted zwitterionic polymer brushes impart the material with not only high adsorption capacity and rapid adsorption rate, but also switchable adsorption selectivity and pH-controlled regeneration capability. Benefiting from such outstanding adsorption performance and excellent free-standing property, the adsorbent could fulfill diversified needs of both static and dynamic adsorptions. Under daylight, the constructed photocatalytic PDA coating could in-situ degrade the captured pollutant, thus achieving consecutive adsorption-degradation-regeneration utilization. Furthermore, through simple dip-coating and cleaner UV-irradiation techniques, the preparation process could be scaled up. This work contributes to both the upcycling of discarded biofiber waste and the development of advanced biomass adsorbent.
Collapse
Affiliation(s)
- Zilong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Wei Kuang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yunxiang Fan
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuan Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qiongjie Qiao
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhengjie Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingying Liu
- Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ying Zhu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
8
|
Han Z, Tian H, Pang X, Song G, Sun D. Ethylene dimethacrylate used as an NH 3 adsorbent with high adsorption capacity and selectivity. CHEMOSPHERE 2022; 293:133539. [PMID: 34998851 DOI: 10.1016/j.chemosphere.2022.133539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
NH3 molecularly imprinted polymers (NH3-MIPs) were synthesized that could successfully separate and recover NH3 during sludge aerobic composting; however, increased toluene usage during the adsorbent preparation incurred a high cost and severe environmental risks. The purpose of this study was to reduce toluene usage by optimizing the reagent composition of NH3-MIPs, based on maintaining a high NH3 adsorption capacity and selectivity. Five adsorbent groups, including NH3-MIPs, and NH3-Ethylene dimethacrylate adsorbents (NH3-EGDMA) with 0%, 75%, 90%, and 100% toluene reduction efficiencies, were prepared and tested for their adsorption performance. The results showed that NH3-EGDMA with 75% toluene reduction not only had a high NH3 adsorption capacity (104.42 mg g-1) but also had a high separation factor for NH3/methyl sulfide (3121) and NH3/dimethyl disulfide (4597). The adsorption mechanism was identified as a chemical force between NH3 and NH3-EGDMA with a 75% toluene reduction using the analysis of the kinetic model. This study significantly reduces NH3 adsorbent cost as well as harm to the environment during the adsorbent preparation, which was beneficial to the popularization and application of this NH3 adsorbent.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haozhong Tian
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiaobing Pang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejing University of Technology, Shaoxing, 312000, China
| | - Guoyong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Zhang Y, Xiao J, Zhang TC, Ouyang L, Yuan S. Synthesis of CuSiO3-loaded P-doped porous biochar derived from phytic acid-activated lemon peel for enhanced adsorption of NH3. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Song Z, Li J, Lu W, Li B, Yang G, Bi Y, Arabi M, Wang X, Ma J, Chen L. Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116504] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Han Z, Xu Y, Tian H, Liang J, Sun D. Enhanced ammonia adsorption and separation by a molecularly imprinted polymer after acid hydrolysis of its ester crosslinker. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125145. [PMID: 33516109 DOI: 10.1016/j.jhazmat.2021.125145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
While ammonia (NH3) is one of the primary hazardous emissions from sludge aerobic composting plants, it has the potential to be recycled as an energy source or nitrogen fertilizer. Recently, an NH3 molecularly imprinted polymer (NH3-MIP) was developed that efficiently separated NH3 from other compounds, but its adsorption capacity required improvement. This study improved both NH3 adsorption capacity and separation of the NH3-MIP using acid hydrolysis optimization. NH3 adsorption capacity increased 13-fold and remained between 5.59 and 7.84 mmol·g-1 during simulated sludge aerobic composting. Separation factors for NH3/methyl sulfide (DMS) (i.e. NH3 adsorption capacity/DMS adsorption capacity) and NH3/dimethyl disulfide both increased more than 15-fold. Results showed that hydrolysis of the ester crosslinker, ethylene glycol dimethacrylate, on the NH3-MIPs produced chemical adsorption sites (‒COOH and epoxides) and increased hydrogen bonds (‒COOH and alcohol hydroxyl), which promoted NH3 adsorption and separation. It is expected that this will be a beneficial strategy for elimination of odors and NH3 recovery during sludge aerobic composting.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangjie Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haozhong Tian
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiahao Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Lu Y, Li X, Chen Y, Wang Y, Zhu G, Zeng RJ. The indispensable role of assimilation in methane driven nitrate removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141089. [PMID: 32745852 DOI: 10.1016/j.scitotenv.2020.141089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 05/27/2023]
Abstract
Methane is a greenhouse gas that can be released from sludge anaerobic fermentation in wastewater treatment plants. Methane is also an alternative additional carbon source for deep nitrate removal of secondary effluent. A sequencing experiment was conducted to study the efficacy of nitrate removal with methane as the sole carbon source. The maximum nitrate removal rate was 17.2 mg-N·L-1·d-1. Nitrate removal was confirmed to arise via two pathways: aerobic methane oxidation coupled to denitrification (AME-D) contributed to 55% of the nitrate removal with the rest stemming from assimilation by methanotrophs. Additional study revealed that nitrate assimilated by methanotrophs was used for the synthesis of proteins, resulting in a protein content of 52.2% dry weight. Metagenomic sequencing revealed a high abundance of nitrate assimilation and glutamine synthetase genes, which were primarily provided by methanotrophs (mainly Methylomonas). Assimilatory nitrate removal by methanotrophs has a high potential for advanced nitrogen removal and for alleviating methane emissions. The nitrogen-rich biomass produced by nitrate absorption could also be used as a biofertilizer for nitrogen recycling.
Collapse
Affiliation(s)
- Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xin Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Yue Chen
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Yongzhen Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|