1
|
Suo M, Liu L, Fan H, Li N, Pan H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Wang Z, Chen J. Advancements in chain elongation technology: Transforming lactic acid into caproic acid for sustainable biochemical production. BIORESOURCE TECHNOLOGY 2025; 425:132312. [PMID: 40023331 DOI: 10.1016/j.biortech.2025.132312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This review provides an insight into the chain-elongation technology for the production of caproic acid, a chemical widely used in the food, pharmaceutical, and cosmetic industries, from lactic acid in waste organic matter. The evolution of the technology is traced, the reaction mechanism is elucidated, and the properties of key microbial agents capable of carrying out the chain-elongation technology are summarized and compared, including pure bacterial isolates and reactor-mixed microorganisms. Furthermore, the parameters that regulate caproic acid formation by influencing microbial activity, competitive pathways, product selection, and carbon flow distribution, such as pH, temperature, electron donor, electron acceptor, and hydrogen partial pressure, are highlighted and discussed. It is worth noting that various caproic acid product extraction technologies were also summarized and assessed. Finally, based on the perspective of interdisciplinary field, bold suggestions for the future research direction are put forward.
Collapse
Affiliation(s)
- Minyu Suo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongye Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña 15008, Spain
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Huo W, Yu J, Ye R, Lin Z, Zhang R, Shen Q. Enhanced ethanol-driven carboxylate chain elongation by MOF-808 from waste activated sludge: Process and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125886. [PMID: 40408861 DOI: 10.1016/j.jenvman.2025.125886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/26/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Carboxylate chain elongation can create value-added bioproducts from waste activated sludge (WAS). The bioconversion of WAS during anaerobic fermentation is often constrained by inefficient hydrolysis. The addition of MOF-808 (200 mg MOF-808/g volatile solids (VS)) increased caproate production and selectivity by approximately 38.9 % and 28.9 %, respectively. MOF-808 significantly promoted the hydrolysis of WAS, accelerated the degradation of extracellular polymeric substances, and enhanced acetate accumulation. Absolute quantitative metagenomics conducted during the acidification and chain elongation phases demonstrated that MOF-808 markedly improved enzymatic hydrolysis. The absolute gene abundance of protease and α-glucosidase increased by 168.9 % and 191.2 %, respectively, compared to the control trial. Furthermore, the reverse β-oxidation (RBO) pathway, the primary route for chain elongation, exhibited a 19.2 %-76.1 % increase in gene abundance for enzymes involved in this pathway in the presence of MOF-808. Notably, the absolute gene abundance of electron-bifurcating enzyme complexes, including butyryl-CoA dehydrogenase-electron transferring flavoprotein complex (Bcd-EtfAB), proton-translocating NAD(P)+ transhydrogenase, ATPase (subunits A-I), and NAD oxidoreductase (RnfA-E), was significantly elevated in the MOF-808 trial. These findings provide valuable insights into enhancing the efficiency of chain elongation fermentation of WAS using MOF-like materials.
Collapse
Affiliation(s)
- Weizhong Huo
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Yu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Ye
- Nanjing Institute of Environment Sciences, Ministry of Ecology & Environment, Nanjing, 210042, China
| | - Zhaofan Lin
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qirong Shen
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Qiu F, Li W, Zhang Y, Li H, Chen X, Niu J, Li X, Sun B. Effect of Saccharomyces cerevisiae inoculation on the co-fermentation of Clostridium kluyveri and Clostridium tyrobutyricum: A strategy for controlling acidity and enhancing aroma in strong-flavor Baijiu. Int J Food Microbiol 2025; 435:111172. [PMID: 40139101 DOI: 10.1016/j.ijfoodmicro.2025.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/25/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Microbial synergistic fermentation plays a vital role in the intelligent brewing and industrial upgrading of the Chinese traditional Baijiu fermentation industry. In this study, a chain-elongating microbial assemblages consisting of Clostridium and varying proportions of S. cerevisiae was applied to a solid-state simulated fermentation system to validate its functionality during strong-flavor Baijiu fermentation. The addition of S. cerevisiae promoted the hydrolysis of fermented grains and reduced the acidity compared with Clostridium biofortification (Group CFE; P < 0.05). The most significant enhancement in volatile flavor substances was achieved by the addition of S. cerevisiae at a high proportion (Group SFB), where the yields of ethyl hexanoate, phenylethyl alcohol, and ethanol increased by 191.2 %, 109.8 %, and 59.7 %, respectively. The OPLS-DA model (R2X = 0.976, Q2 = 0.992) identified seven volatile flavor substances that effectively distinguished the different co-fermented grains (VIP > 1, P < 0.05). S. cerevisiae accelerated the enrichment of Lentilactobacillus, Lactiplantibacillus, Loigolactobacillus, and Clostridium_sensu_stricto_12. Metabolic pathway and correlation analysis revealed that S. cerevisiae provides endogenous ethanol to chain-elongating microorganisms, and this fungal-bacterial synergistic fermentation enhances the reverse β-oxidation pathway, ultimately contributing to the production of volatile flavor substances. Overall, the microbial assembly pattern of chain-elongating microbial assemblages will help achieve quality enhancement and intelligent control by increasing the production of flavor ethyl esters and ethanol for Baijiu solid-state fermentation system.
Collapse
Affiliation(s)
- Fanghang Qiu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ya Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Haideng Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jialiang Niu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Sun ZF, Gao J, Chen C, Wu KK, Liu DM, Yang SS, Xing DF, Wang AJ, Ren NQ, Zhao L. Promoting caproate production using anaerobically digested sludge-derived biochar: Performances, mechanisms, and environmental impacts. BIORESOURCE TECHNOLOGY 2025; 420:132122. [PMID: 39880336 DOI: 10.1016/j.biortech.2025.132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Carbon chain elongation offers a promising pathway for converting waste resources into caproate. However, challenges in yield and selectivity have limited its broader application. To address these limitations, anaerobically digested sludge-derived biochar (ADS-B) was incorporated into the carbon chain elongation process. The findings reveal that the addition of 20 g/L ADS-B resulted in the highest net caproate yield (6.5 g/L) and selectivity (61.1%). Further analysis highlighted that ADS-B's superior physicochemical properties enhanced the conversion of butyrate to caproate and facilitated the colonization of key microorganisms, such as Terrisporobacter and Clostridium, essential for caproate production. Additionally, a life cycle assessment indicated that ADS-B addition effectively reduced the environmental impact of caprate production, with additional potential for further mitigation through feedstock substitution. This study provides critical insights into the application of anaerobically digested sludge-derived biochar for enhancing carbon chain elongation, presenting an alternative approach for waste reutilization.
Collapse
Affiliation(s)
- Zhong-Fang Sun
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Gao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai-Kai Wu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong-Mei Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Zhang R, Fang W, Wang Q, Fang Z, Liang J, Chen L, Chang J, Zhang Y, Yang W, Zhang P, Zhang G. Performances and mechanisms of granular activated carbon enhancing n-caproate production via chain elongation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124662. [PMID: 39987862 DOI: 10.1016/j.jenvman.2025.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Conversion of organic waste to medium chain fatty acids, such as n-caproate, has aroused wide attention. However, n-caproate production faces problems of low substrate conversion efficiency and low electron transfer efficiency. In this work, the influence of granular activated carbon (GAC) on n-caproate production through chain elongation using ethanol as electron donor and acetate as electron acceptor was explored for the first time. With a GAC dosage of 10 g/L, the maximum n-caproate production of 11.34 g COD/L was obtained in 15 d chain elongation, which was about 38.15% higher than that of control. It is revealed that the induced GAC of 10 g/L increased the utilization efficiency of ethanol and acetate, and improved electron transfer efficiency during chain elongation. Microbial community analysis demonstrated that the GAC addition enriched chain elongation microorganisms Clostridium_sensu_strict_12, Caproiciproduccens and Sporanaerobacter, which were responsible for the enhancement of n-caproate production. Furthermore, the GAC addition enhanced ethanol oxidation and reverse-β oxidation pathways associated with n-caproate production. This work provides a theoretical reference for n-caproate production regulation with carbon-based conductive materials.
Collapse
Affiliation(s)
- Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ziyi Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenjing Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404632, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
6
|
Zeng D, Ma M, Huang X, Zhang C. Total-solids-controlled microbial response and volatile fatty acids production in sludge and chicken manure co-fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124253. [PMID: 39854901 DOI: 10.1016/j.jenvman.2025.124253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
With the aim of exploring the association between microbial response and volatile fatty acids (VFAs) production in sludge and chicken manure co-fermentation with total solids (TS) controlled, four fermentation experimental groups (TS = 20, 40, 60, and 80 g/L) were established in this study. The results demonstrated that the yield of VFAs reached the peak (530.08 mg COD/g VSS) at the 40 g-TS group. For microbial characteristics, Firmicutes, Bacteroidota, Spirochaetota, and Proteobacteria were the main dominant phyla in each experimental group. Meanwhile, it could be proven that the enrichment of functional strains had a significant effect on the production and accumulation of VFAs at the 40 g-TS group through α analysis and microbial community structure analysis. In addition, Bacteroidota was predicted to be the main producer of VFAs in the experimental co-fermentation systems through the Faprotax function prediction. This study revealed the effects of different TS concentrations on microbial communities in sludge and chicken manure co-fermentation, and investigated the relationship between microbial community and VFAs production.
Collapse
Affiliation(s)
- Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chengdai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
7
|
Liu Y, Chen L, Duan Y, Li R, Yang Z, Liu S, Li G. Recent progress and prospects for chain elongation of transforming biomass waste into medium-chain fatty acids. CHEMOSPHERE 2024; 355:141823. [PMID: 38552798 DOI: 10.1016/j.chemosphere.2024.141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Chain elongation technology utilises microorganisms in anaerobic digestion to transform waste biomass into medium-chain fatty acids that have greater economic value. This innovative technology expands upon traditional anaerobic digestion methods, requiring abundant substrates that serve as electron donors and acceptors, and inoculating microorganisms with chain elongation functions. While this process may result in the production of by-products and elicit competitive responses, toxicity suppression of microorganisms by substrates and products remains a significant obstacle to the industrialisation of chain elongation technology. This study provides a comprehensive overview of existing research on widely employed electron donors and their synthetic reactions, competitive reactions, inoculum selection, toxicity inhibition of substrates and products, and increased chain elongation approaches. Additionally, it presents actionable recommendations for future research and development endeavours in this domain, intending to inspire and guide researchers in advancing the frontiers of chain elongation technology.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China.
| | - Long Chen
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Yacong Duan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| |
Collapse
|
8
|
Chen R, Zhou X, Huang L, Ji X, Chen Z, Zhu J. Effects of yeast inoculation methods on caproic acid production and microbial community during anaerobic fermentation of Chinese cabbage waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120632. [PMID: 38531129 DOI: 10.1016/j.jenvman.2024.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
To provide a sufficient supply of electron donors for the synthesis of caproic acid, yeast fermentation was employed to increase ethanol production in the anaerobic fermentation of Chinese cabbage waste (CCW). The results showed that the caproic acid yield of CCW with ethanol pre-fermentation was 7750.3 mg COD/L, accounting for 50.2% of the total volatile fatty acids (TVFAs), which was 32.5% higher than that of the CCW without yeast inoculation. The synchronous fermentation of yeast and seed sludge significantly promoted the growth of butyric acid consuming bacterium Bacteroides, resulting in low yields of butyric acid and caproic acid. With yeast inoculation, substrate competition for the efficient ethanol conversion in the early stage of acidogenic fermentation inhibited the hydrolysis and acidfication. Without yeast inoculation, the rapid accumulation of TVFAs severely inhibited the growth of Bacteroidetes. In the reactor with ethanol pre-fermentation, the key microorganism for caproic acid production, Clostridium_sensu_stricto_12, was selectively enriched.
Collapse
Affiliation(s)
- Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
9
|
Liu Y, Duan Y, Chen L, Yang Z, Yang X, Liu S, Song G. Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms 2024; 12:680. [PMID: 38674623 PMCID: PMC11051992 DOI: 10.3390/microorganisms12040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Y.D.); (L.C.); (Z.Y.); (X.Y.); (S.L.); (G.S.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
11
|
Song G, Zhao S, Wang J, Zhao K, Zhao J, Liang H, Liu R, Li YY, Hu C, Qu J. Enzyme-enhanced acidogenic fermentation of waste activated sludge: Insights from sludge structure, interfaces, and functional microflora. WATER RESEARCH 2024; 249:120889. [PMID: 38043351 DOI: 10.1016/j.watres.2023.120889] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Anaerobic fermentation is widely installed to recovery valuable resources and energy as CH4 from waste activated sludge (WAS), and its implementation in developing countries is largely restricted by the slow hydrolysis, poor efficiency, and complicate inert components therein. In this study, enzyme-enhanced fermentation was conducted to improve sludge solubilization from 283 to 7728 mg COD/L and to enhance volatile fatty acids (VFAs) yield by 58.6 % as compared to the conventional fermentation. The rapid release of organic carbon species, especially for tryptophan- and tyrosine-like compounds, to outer layer of extracellular polymeric substance (EPS) occurred to reduce the structural complexity and improve the sludge biodegradability towards VFAs production. Besides, upon enzymatic pretreatment the simultaneous exposure of hydrophilic and hydrophobic groups on sludge surfaces increased the interfacial hydrophilicity. By quantitative analysis via interfacial thermodynamics and XDLVO theory, it was confirmed that the stronger hydrophilic repulsion and energy barriers in particle interface enhanced interfacial mass transfer and reactions involved in acidogenic fermentation. Meanwhile, these effects stimulate the fermentation functional microflora and predominant microorganism, and the enrichment of the hydrolytic and acid-producing bacteria in metaphase and the proliferation of acetogenic bacteria, e.g., Rubrivivax (+9.4 %), in anaphase also benefits VFAs formation. This study is practically valuable to recovery valuable VFAs as carbon sources and platform chemicals from WAS and agriculture wastes.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - He Liang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Chen W, Zeng Y, Liu H, Sun D, Liu X, Xu H, Wu H, Qiu B, Dang Y. Granular activated carbon enhances volatile fatty acid production in the anaerobic fermentation of garden wastes. Front Bioeng Biotechnol 2023; 11:1330293. [PMID: 38146344 PMCID: PMC10749581 DOI: 10.3389/fbioe.2023.1330293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.
Collapse
Affiliation(s)
- Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Wang Q, Yang N, Cai Y, Zhang R, Wu Y, Ma W, Fu C, Zhang P, Zhang G. Advances in understanding entire process of medium chain carboxylic acid production from organic wastes via chain elongation. CHEMOSPHERE 2023; 339:139723. [PMID: 37543231 DOI: 10.1016/j.chemosphere.2023.139723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Chain elongation is an environmentally friendly biological technology capable of converting organic wastes into medium chain carboxylic acids (MCCAs). This review aims to offer a comprehensive analysis of MCCA production from organic wastes via chain elongation. Seven kinds of organic wastes are introduced and classified as easily degradable and hardly degradable. Among them, food waste, fruit and vegetable waste are the most potential organic wastes for MCCA production. Combined pretreatment technologies should be encouraged for the pretreatment of hardly degradable organic wastes. Furthermore, the mechanisms during MCCA production are analyzed, and the key influencing factors are evaluated, which affect the MCCA production and chain elongation efficiency indirectly. Extracting MCCA simultaneously is the most important way to improve MCCA production efficiency, and technologies for sequentially extracting different kinds of MCCAs are recommended. Finally, some perspectives for future chain elongation researches are proposed to promote the large-scale application of chain elongation.
Collapse
Affiliation(s)
- Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Nan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yajing Cai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Wu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404632, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chuan Fu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404632, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404632, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
14
|
Jiang W, Li D, Yang J, Ye Y, Luo J, Zhou X, Yang L, Liu Z. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: Passivation behavior and mechanism for Cd (II) in composting. ENVIRONMENTAL RESEARCH 2023; 231:116306. [PMID: 37268202 DOI: 10.1016/j.envres.2023.116306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Passivation of heavy metals is one of the most efficient techniques to improve the quality of compost. Many studies confirmed the passivation effect of passivators (e.g., zeolite and calcium magnesium phosphate fertilizer) on cadmium (Cd), but passivators with single component could not effectively passivate Cd in the long-term operation of composting. In the present study, a combined passivator of zeolite and calcium magnesium phosphate fertilizer (ZCP) was used to explore its impacts of adding at different composting periods (heating period, thermophilic period, cooling period) on the Cd control, compost quality (e.g., temperature, moisture content and humification), microbial community structure as well as the compost available forms of Cd and addition strategy of ZCP. Results showed that Cd passivation rate could be increased by 35.70-47.92% under all treatments in comparison to the control treatment. By altering bacterial community structure, reducing Cd bioavailability and improving the chemical properties of the compost, the combined inorganic passivator could achieve high efficiency for Cd passivation. To sum up, the addition of ZCP at different composting periods has effects on the process and quality of composting, which could provide ideas for the optimization of the passivators addition strategy.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Junlin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Jiwu Luo
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Xiaojuan Zhou
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Lin Yang
- Wuhan Huantou Solid Waste Operation Co., Ltd, No. 37 Xinye Road, Wuhan, 430024, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8 Donghu South Road, Wuhan, 430072, China
| |
Collapse
|
15
|
Dahiya S, Mohan SV. Co-fermenting lactic acid and glucose towards caproic acid production. CHEMOSPHERE 2023; 328:138491. [PMID: 36963586 DOI: 10.1016/j.chemosphere.2023.138491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The functional role of lactate (HLac), as a co-substrate along with glucose (Glu) as well as an electron donor for the synthesis of caproic acid (HCa), a medium chain fatty acid (MCFAs) was studied. A varied HLac and Glu ratios were thus investigated in fed-batch anaerobic reactors (R1-R5) operated at pH 6 with a heat-treated anaerobic consortium. R1 and R5 were noted as controls and operated with sole Glu and HLac, respectively. Strategically, ethanol (HEth) was additionally supplemented as co-electron donor after the production of short chain carboxylic acids (SCCAs) for chain elongation in all the reactors. The reactor operated with HLac and Glu in a ratio of 0.25:0.75 (1.25 g/L (HLac) and 3.75 g/L (Glu)) showed the highest HCa production of 1.86 g/L. R5 operated with solely HLac yielded propionic acid (HPr) as the major product which further led to the higher valeric acid (HVa) production of 1.1 g/L within the reactor. Butyric acid (HBu) was observed in R1, which used Glu as carbon source alone indicating the importance of HLac as electron co-donor. Clostridium observed as the most dominant genera in shotgun metagenome sequencing in R2 and R3, the reactors that produced the highest HCa in comparison to other studied reactors. The study thus provided insight into the importance of substrate and electron donor and their supplementation strategies during the production of MCFAs.
Collapse
Affiliation(s)
- Shikha Dahiya
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Wang Q, Yang N, Cai Y, Zhang G, Wu Y, Ma W, Fu C, Zhang P. Advanced treatment and valorization of food waste through staged fermentation and chain elongation. BIORESOURCE TECHNOLOGY 2023:129286. [PMID: 37277004 DOI: 10.1016/j.biortech.2023.129286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
A novel valorization approach of food waste via staged fermentation and chain elongation was proposed. Food waste was moderately saccharified, saccharification effluent was fermented to produce ethanol and saccharification residue was hydrolyzed and acidified to produce VFAs. The yeast fermentation effluent and hydrolytic acidification effluent were sequentially performed for chain elongation. Ethanol and volatile fatty acids from staged fermentation were suitable for direct chain elongation and the n-caproate production was 184.69 mg COD/g VS when yeast fermentation effluent to hydrolytic acidification effluent ratio was 2:1. Food waste was deeply utilized with an organic conversion of 80%. The relative abundance of Clostridium sensu stricto increased during chain elongation, which might be responsible for the improvement of n-caproate production. A profit of 10.65 USD/t was estimated for chain elongation of food waste staged fermentation effluent. This study provided a new technology to achieve advanced treatment and high-valued utilization of food waste.
Collapse
Affiliation(s)
- Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Nan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yajing Cai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yan Wu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chuan Fu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China.
| |
Collapse
|
17
|
Wang Q, Zhang G, Chen L, Yang N, Wu Y, Fang W, Zhang R, Wang X, Fu C, Zhang P. Volatile fatty acid production in anaerobic fermentation of food waste saccharified residue: Effect of substrate concentration. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:29-36. [PMID: 37023642 DOI: 10.1016/j.wasman.2023.03.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In this study, food waste saccharified residue was used to produce volatile fatty acids (VFAs), and the effects of substrate concentration on VFA production, VFA composition, acidogenic efficiency, microbial community, and carbon transfer were investigated. Interestingly, chain elongation from acetate to n-butyrate played an important role with a substrate concentration of 200 g/L in the acidogenesis process. Results showed that 200 g/L was a suitable substrate concentration for both VFA and n-butyrate production, the highest VFA production, and n-butyrate composition were 280.87 mg COD/g vS and more than 90.00 %, respectively, and VFA/SCOD reached 82.39 %. Microbial analysis showed that Clostridium_Sensu_Stricto_12 promoted n-butyrate production by chain elongation. Carbon transfer analysis indicated that chain elongation made a contribution of 43.93 % to n-butyrate production. Totally 38.47 % of organic matter in food waste saccharified residue was further utilized. This study provides a new way for n-butyrate production with waste recycling and low cost.
Collapse
Affiliation(s)
- Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Nan Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Wu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinyi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chuan Fu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China.
| |
Collapse
|
18
|
Huang J, Chen K, Xia X, Zhu H. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation. CHEMOSPHERE 2023:139049. [PMID: 37245599 DOI: 10.1016/j.chemosphere.2023.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Xia
- Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
19
|
Wang Q, Fu H, Zhang G, Wu Y, Ma W, Fu C, Cai Y, Zhong L, Zhao Y, Wang X, Zhang P. Efficient chain elongation synthesis of n-caproate from shunting fermentation of food waste. BIORESOURCE TECHNOLOGY 2023; 370:128569. [PMID: 36592865 DOI: 10.1016/j.biortech.2022.128569] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Food waste was used to produce ethanol by yeast fermentation and volatile fatty acids (VFAs) by hydrolytic acidogenesis for chain elongation. Effectiveness of mole ratio of ethanol in yeast fermentation effluent (YFE) to VFAs in hydrolytic acidification effluent (HAE) on chain elongation was examined. The ideal YFE to HAE ratio for chain elongation was 2:1, the highest n-caproate production was 169.76 mg COD/g vS and the food waste utilization was 65.43 %. Electron transfer and carbon distribution did not completely correspond to n-caproate production, suggesting timely product extraction. The abundance of Romboutsia and Clostridium_sensu_stricto_12 increased as chain elongation progressed, which was critical for the chain elongation to n-caproate. The food waste shunting ratio of yeast fermentation to hydrolytic acidogenesis was 6:5, and 572.6 CNY can be created through chain elongation from shunting fermentation of 1 t food waste. This study proposed a new approach for efficient producing n-caproate from food waste.
Collapse
Affiliation(s)
- Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hao Fu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yan Wu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chuan Fu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Yajing Cai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lihui Zhong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiwei Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinyi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China.
| |
Collapse
|
20
|
Fu B, Lu Y, Liu H, Zhang X, Ozgun H, Ersahin ME, Liu H. One-stage anaerobic fermentation of excess sludge for caproate production by supplementing chain elongation enrichments with ethanol as electron donor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116723. [PMID: 36403461 DOI: 10.1016/j.jenvman.2022.116723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Medium chain fatty acids (MCFAs) production from excess sludge have recently received great research interest due to higher energy densities, easy-separation capability and high economic benefits. Here, the addition of chain elongation (CE) enrichments with ethanol as electron donor was used to enhance caproate production from one-stage sludge fermentation. Compared with 0.20 g/L of controls, caproate production reached 9.00 g/L by supplementing CE enrichments with ethanol/acetate ratio of 3:1 after 7 days of acidification of organic matter in pretreated sludge fermentation. Clostridium_sensu_stricto_12, that refers to CE, was enriched in the first and second transfer of the sludge microbial consortium. Maintaining the stability of the microbial consortium would be the key that enables stable and efficient caproate production from sludge fermentation by supplementing CE enrichments.
Collapse
Affiliation(s)
- Bo Fu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Yujie Lu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China
| | - Hongbo Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Xuedong Zhang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - He Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China.
| |
Collapse
|
21
|
Castro-Ramos JJ, Solís-Oba A, Solís-Oba M, Calderón-Vázquez CL, Higuera-Rubio JM, Castro-Rivera R. Effect of the initial pH on the anaerobic digestion process of dairy cattle manure. AMB Express 2022; 12:162. [PMID: 36576594 PMCID: PMC9797631 DOI: 10.1186/s13568-022-01486-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 12/29/2022] Open
Abstract
Anaerobic digestion (AD) has recently been studied to obtain products of greater interest than biogas, such as volatile fatty acids (VFAs) and phytoregulators. The effect of the initial pH of cow manure and the fermentation time of the AD on the microbial composition, VFAs, indole-3-acetic acid (IAA) and gibberellic acid (GA3) production was evaluated. The cow manure (7% solids) was adjusted to initial pH values of 5.5, 6.5, 7.5, and 8.5, and the AD products were analyzed every four days until day 20. The initial pH and the fermentation time had an important effect on the production of metabolites. During AD, only the hydrolytic and acidogenic stages were identified, and the bacteria found were from the phyla Firmicutes, Bacteroidetes, Actinobacteria, and Spirochaetes. The most abundant genera produced in the four AD were Caproiciproducens, Clostridium sensu stricto 1, Romboutsia, Paeniclostridium, Turicibacter, Peptostreptococcaceae, Ruminococcaceae and Fonticella. The highest amount of VFAs was obtained at pH 8.5, and the production of the acids was butyric > acetic > propionic. The maximum production of GA3 and IAA was at an initial pH of 6.5 on day 20 and a pH of 5.5 on day 4, respectively. There was a strong correlation (> 0.8) between the most abundant microorganisms and the production of VFAs and GA3. The anaerobic digestion of cow manure is a good alternative for the production of VFAs, GA3 and IAA.
Collapse
Affiliation(s)
- Job Jonathan Castro-Ramos
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| | - Aida Solís-Oba
- grid.7220.70000 0001 2157 0393Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico, Mexico
| | - Myrna Solís-Oba
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| | - Carlos Ligne Calderón-Vázquez
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81100 Guasave, Sinaloa Mexico
| | - Jesús Mireya Higuera-Rubio
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, 81100 Guasave, Sinaloa Mexico
| | - Rigoberto Castro-Rivera
- grid.418275.d0000 0001 2165 8782Instituto Politécnico Nacional, Centro de Investigación en Biotecnologia Aplicada, 90700 Tepetitla de Lardizábal, Tlaxcala Mexico
| |
Collapse
|
22
|
Luo H, Li T, Zheng J, Zhang K, Qiao Z, Luo H, Zou W. Isolation, Identification, and Fermentation Medium Optimization of a Caproic Acid‑Producing Enterococcus casseliflavus Strain from Pit Mud of Chinese Strong Flavor Baijiu Ecosystem. Pol J Microbiol 2022; 71:563-575. [PMID: 36537057 PMCID: PMC9944964 DOI: 10.33073/pjm-2022-052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Caproic acid is the precursor material of ethyl hexanoate, a representative flavor substance in strong flavor baijiu (SFB). Increasing the content of caproic acid in SFB helps to improve its quality. In the present study, caproic acid-producing bacteria from the pit mud of an SFB ecosystem were isolated, purified, and characterized. Strain BF-1 with the highest caproic acid yield (0.88 g/l) was selected. The morphological and molecular identification analysis showed that strain BF-1 was Enterococcus casseliflavus. The genome of E. casseliflavus BF-1 was sequenced and was found to be 2,968,377 bp in length with 3,270 open reading frames (ORFs). The caproic acid biosynthesis pathway in E. casseliflavus BF-1 was predicted based on the KAAS annotation. The virulence factors in the genome of strain BF-1 were annotated, which showed that E. casseliflavus BF-1 is safe at the genetic level. After adding essential nutrients based on the KAAS annotation, the optimum medium conditions for acid production by strain BF-1 were obtained by performing orthogonal experiments. The caproic acid yield of strain BF-1 reached 3.03 g/l, which was 3.44-fold higher than the initial yield. The optimized fer- mentation of caproic acid production by BF-1 was reported for the first time. The strain could be further used to regulate the ecosystem in baijiu production to improve its quality.
Collapse
Affiliation(s)
- Hao Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Tao Li
- Sichuan Vocational College of Chemical Technology, Luzhou, China
| | - Jia Zheng
- Wuliangye Yibin Co. Ltd., Yibin, China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | | | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China, Wei Zou, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
23
|
Sun Q, Zhao C, Qiu Q, Guo S, Zhang Y, Mu H. Oyster shell waste as potential co-substrate for enhancing methanogenesis of starch wastewater at low inoculation ratio. BIORESOURCE TECHNOLOGY 2022; 361:127689. [PMID: 35901863 DOI: 10.1016/j.biortech.2022.127689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the effect of oyster shells on the methanogenesis of starch wastewater subjected to over-acidification (pH < 4.5) at low inoculum/substrate ratios, and revealed that oyster shells could be used as co-substrates for methane production. The methane yield was improved by approximate 86-folds with optimal dose when compared with that in control. Oyster shells conditioning synchronously improved the acidogenesis and hydrogenotrophic methanogenesis steps, resulting in high methane production. These improvements were attributed to the fact that the oyster shells served as the neutralizing reagent and buffered the sharp pH drop. Carbon dioxide was also released during this process, which was subsequently converted into methane and contributed 17% of the total methane yield. Furthermore, some spheroid and rod microcolonies were observed on the surfaces of the oyster shells. Along with the remarkable enrichment of acetotrophic and methylotrophic methanogens, these microbes benefitted the successful methanogenesis of starch wastewater.
Collapse
Affiliation(s)
- Qingyu Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Chunhui Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Shouxing Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yongfang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hui Mu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
24
|
Ren W, Wu Q, Deng L, Hu Y, Guo W, Ren N. Simultaneous medium chain fatty acids production and process carbon emissions reduction in a continuous-flow reactor: Re-understanding of carbon flow distribution. ENVIRONMENTAL RESEARCH 2022; 212:113294. [PMID: 35460635 DOI: 10.1016/j.envres.2022.113294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Due to its wide application and high value, the production of medium chain fatty acids (MCFAs) from waste biomass has become one of the worldwide research hotspots. Increasing the carbon element participation from short-chain fatty acids to the form of MCFAs is also conductive to reduce the release of biogas from biological treatment process, because carbon is in the form of MCFAs instead of biogas which directly contribute to process carbon emissions reduction. However, many barriers limiting MCFAs production and application remain to be resolved. Aiming continuous MCFAs production from lactate-rich waste biomass, this study optimized the operation conditions and clarified the main limiting factors and possible mechanisms. The maximum caproic acid concentration of 2.757 g/L were obtained at the Upflow Velocity (ULV) of 1.15 m/h and pH 4.9-5.1. Caproiciproducens, Pseudoramibacter, norank_f_Eubacteriaceae, and Oscillibacter were identified to be the dominant microbial genus responsible for MCFAs production from lactate. The reduction of carbon emissions calculation was also studied in the present processes.
Collapse
Affiliation(s)
- Weitong Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lin Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yanbiao Hu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
Rovira-Alsina L, Romans-Casas M, Balaguer MD, Puig S. Thermodynamic approach to foresee experimental CO 2 reduction to organic compounds. BIORESOURCE TECHNOLOGY 2022; 354:127181. [PMID: 35447329 DOI: 10.1016/j.biortech.2022.127181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic gas fermentation is a promising approach to transform carbon dioxide (CO2) into chemical building blocks. However, the main operational conditions to enhance the process and its selectivity are still unknown. The main objective of this study was to trigger chain elongation from a joint perspective of thermodynamic and experimental assessment. Thermodynamics revealed that acetic acid formation was the most spontaneous reaction, followed by n-caproic and n-butyric acids, while the doorway for alcohols production was bounded by the selected conditions. Best parameters combinations were applied in three 0.12 L fermenters. Experimentally, n-caproic acid formation was boosted at pH 7, 37 °C, Acetate:Ethanol mass ratio of 1:3 and low H2 partial pressure. Though these conditions did not match with those required to produce their main substrates, the unification of both perspectives yielded the highest n-caproic acid concentration (>11 g L-1) so far from simple substrates, accounting for 77 % of the total products.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Meritxell Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
26
|
Saavedra Del Oso M, Regueira A, Hospido A, Mauricio-Iglesias M. Fostering the valorization of organic wastes into carboxylates by a computer-aided design tool. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:101-110. [PMID: 35183896 DOI: 10.1016/j.wasman.2022.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The carboxylate platform has the potential to constitute an outstanding opportunity for converting organic wastes into chemicals and other value-added products within a circular economy framework. However, its development is still hampered by technological and financial constraints due to difficulties at forecasting the carboxylates yields by different wastes. This work provides a framework that can be the key to foster circular economy and bridge the development risks, allowing early-stage evaluation of process performance. This framework, which is implemented as a computer-aided design tool, is comprised by: (i) a library of substrates including their characterization and appropriate kinetic parameter selection, (ii) an integral kinetic and stoichiometric model which solves both identified gaps regarding the disintegration mechanisms and the acidogenic stoichiometry variability in the anaerobic mono and cofermentation of complex organic wastes, and (iii) a set of indicators to interpret simulation results and assist the decision making; and presents a showcase of applications supported by two case studies. These case studies show that the optimal conditions to steer VFA spectrum towards odd-chain VFA in MCF of regrind pasta are neutral pH (6.5-7) and a relatively low HRT (3-4 days), while cofermentation of tuna canning wastewater and regrind pasta follows interactive mechanisms that cannot be captured by a "naïve approach", i.e. by adding up the individual contributions. Finally, it is discussed how value chain actors with different interests can benefit from the proposed tool: identifying technical, economic, and environmental bottlenecks, and proposing innovative solutions prior to costly lab research and piloting.
Collapse
Affiliation(s)
- Mateo Saavedra Del Oso
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberte Regueira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, Ghent 9000, Belgium
| | - Almudena Hospido
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Mauricio-Iglesias
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
27
|
Naresh Kumar A, Sarkar O, Chandrasekhar K, Raj T, Narisetty V, Mohan SV, Pandey A, Varjani S, Kumar S, Sharma P, Jeon BH, Jang M, Kim SH. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150312. [PMID: 34844320 DOI: 10.1016/j.scitotenv.2021.150312] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The single bioprocess approach has certain limitations in terms of process efficiency, product synthesis, and effective resource utilization. Integrated or combined bioprocessing maximizes resource recovery and creates a novel platform to establish sustainable biorefineries. Anaerobic fermentation (AF) is a well-established process for the transformation of organic waste into biogas; conversely, biogas CO2 separation is a challenging and expensive process. Biological fixation of CO2 for succinic acid (SA) mitigates CO2 separation issues and produces commercially important renewable chemicals. Additionally, utilizing digestate rich in volatile fatty acid (VFA) to produce medium-chain fatty acids (MCFAs) creates a novel integrated platform by utilizing residual organic metabolites. The present review encapsulates the advantages and limitations of AF along with biogas CO2 fixation for SA and digestate rich in VFA utilization for MCFA in a closed-loop approach. Biomethane and biohydrogen processes CO2 utilization for SA production is cohesively deliberated along with the role of biohydrogen as an alternative reducing agent to augment SA yields. Similarly, MCFA production using VFA as a substrate and functional role of electron donors namely ethanol, lactate, and hydrogen are comprehensively discussed. A road map to establish the fermentative biorefinery approach in the framework of AF integrated sustainable bioprocess development is deliberated along with limitations and factors influencing for techno-economic analysis. The discussed integrated approach significantly contributes to promote the circular bioeconomy by establishing carbon-neutral processes in accord with sustainable development goals.
Collapse
Affiliation(s)
- A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vivek Narisetty
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
28
|
Li BY, Xia ZY, Gou M, Sun ZY, Huang YL, Jiao SB, Dai WY, Tang YQ. Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics. BIORESOURCE TECHNOLOGY 2022; 346:126648. [PMID: 34974105 DOI: 10.1016/j.biortech.2021.126648] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 05/23/2023]
Abstract
This study examined the performance and microbial community dynamics of an anaerobic volatile fatty acid (VFA) production reactor for treating fruit waste by stepwise increasing organic loading rates (OLRs) from 8 to 24 g volatile total solids (VTS)/(L·d). Results showed that higher VFA concentrations of 52.25-61.90 g chemical oxygen demand (COD)/L can be maintained at each OLR, thereby resulting to a production of 0.70-0.76 g chemical oxygen demand (COD)VFA/g VTS. Notably, an increase in OLR from 8 to 14 g VTS/(L·d) was beneficial for achieving higher VFA concentrations and yields. Moreover, an increase in OLR affected the VFA distribution significantly; acetate and butyrate became dominant in the fermentation liquid at OLRs ≥ 14 g VTS/(L·d). Microbial community dynamics analysis revealed that phyla Firmicutes and Actinobacteriota were predominant at each OLR, and the genera Lactobacillus, Clostridium_sensu_stricto_12, and Caproiciproducens were closely related to anaerobic VFA production.
Collapse
Affiliation(s)
- Ben-Yan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Yu-Lian Huang
- Chengdu Environment Group, Chengdu 610041, Sichuan, China
| | - Shuo-Bo Jiao
- Chengdu Environmental Innovation Technology Co. LTD, Chengdu 610065, Sichuan, China
| | - Wen-Ying Dai
- Chengdu Environmental Innovation Technology Co. LTD, Chengdu 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
29
|
Wang G, Yang Y, Kong Y, Ma R, Yuan J, Li G. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126809. [PMID: 34388932 DOI: 10.1016/j.jhazmat.2021.126809] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The germination index (GI) was widely applied to evaluate the phytotoxicity of compost. This study investigated the key phytotoxicity factors affecting seed germination in compost by using aqueous extracts in seed germination tests. The relationship between water-soluble substances in compost and seed germination, and their association with the microbial community were identified. In this study, sheep manure (SM) composted along or with three carbon additives (mushroom substrate, MS; cornstalks, CS; garden substrate, GS) for 49 days and, during this time, changes in multiple physical-chemical parameters, carbon and nitrogen matters, germination indexes (GI) and the compost microbiome were monitored. The results showed that all additives decreased water-soluble total nitrogen (TN), ammonium nitrogen (NH4+-N) and low molecular weight organic acids, and significantly improved the seed germination indexes (seed germination rate, radical length and GI). The GI was correlated with water-soluble carbon degradation products (TOC, butyric acid, humic acid) and certain bacteria (Planifilum, Oceanobacillus, Ruminococcaceae_UCG_005 and Saccharomonospora). A structural equation model revealed that the main factors affecting seed germination were TOC (SM compost), acetic acid (SM+MS compost), humic acid (SM+CS compost), and pH (SM+GS compost). Low TOC and low molecular weight organic acids contents and higher humic acid content promoted GI. The research results could provide theoretical basis and measures for directional regulation of compost maturity.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Kim H, Kang S, Sang BI. Metabolic cascade of complex organic wastes to medium-chain carboxylic acids: A review on the state-of-the-art multi-omics analysis for anaerobic chain elongation pathways. BIORESOURCE TECHNOLOGY 2022; 344:126211. [PMID: 34710599 DOI: 10.1016/j.biortech.2021.126211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Medium-chain carboxylic acid (MCCA) production from organic wastes has attracted much attention because of their higher energy contents and diverse applications. Anaerobic reactor microbiomes are stable and resilient and have resulted in efficient performance during many years of operation for thousands of full-scale anaerobic digesters worldwide. The method underlying how the relevant microbial pathways contribute to elongate carbon chains in reactor microbiomes is important. In particular, the reverse β-oxidation pathway genes are critical to upgrading short-chain fermentation products to MCCAs via a chain elongation (CE) process. Diverse genomics and metagenomics studies have been conducted in various fields, ranging from intracellular metabolic pathways to metabolic cascades between different strains. This review covers taxonomic approach to culture processes depending on types of organic wastes and the deeper understanding of genome and metagenome-scale CE pathway construction, and the co-culture and multi-omics technology that should be addressed in future research.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seongcheol Kang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
31
|
Wang J, Yin Y. Biological production of medium-chain carboxylates through chain elongation: An overview. Biotechnol Adv 2021; 55:107882. [PMID: 34871718 DOI: 10.1016/j.biotechadv.2021.107882] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022]
Abstract
Medium chain carboxylates (MCCs) have wide applications in various industries, but the traditional MCCs production methods are costly and unsustainable. Anaerobic fermentation offers a more scalable, economical and eco-friendly platform for producing MCCs through chain elongation which converts short chain carboxylates and electron donor into more valuable MCCs. However, the underlying microbial pathways are not well understood. In this review, biological production of MCCs through chain elongation is introduced elaborately, including the metabolic pathways, electron donor and substrates, microorganisms and influencing factors. Then, the strategies for enhancing MCCs production are extensively analyzed and summarized, along with the technologies for MCCs separation from the fermentation broth. Finally, challenges and perspectives concerning the large-scale MCCs production are proposed, providing suggestions for the future research. Extensive review demonstrated that anaerobic fermentation has great potential in achieving economical and sustainable MCCs production from complex organic substrates, including organic waste streams, which would significantly broaden the application of MCCs, especially in the renewable energy field. An interdisciplinary approach with knowledge from microbiology and biochemistry to chemical separations and environmental engineering is required to use this promising technology as a valorization method for converting organic biomass or organic wastes into valuable MCCs.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
32
|
Xie S, Ma J, Li L, He Q, Xu P, Ke S, Shi Z. Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode. BIORESOURCE TECHNOLOGY 2021; 329:124893. [PMID: 33690059 DOI: 10.1016/j.biortech.2021.124893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to understand how lactate-to-butyrate ratio and substrates concentrations affect the caproate production and product structure. The results showed that a higher butyrate-to-lactate ratio is beneficial to caproate production at low initial lactate concentration. Low pH (5.0) and low substrate concentration (20 mM and 40 mM) effectively decreased propionate production via restrained acrylate pathway, resulting in higher electron efficiency of caproate. With the optimum mole ratio of lactate to butyrate (1:4) and 80 mM initial butyrate concentration, the electron efficiency of caproate reached the maximum (43.10%). Moreover, high butyrate concentration suppressed the production of odd-carbon-number carboxylates while promoting the production of caproate. Compared with the batch operation, the caproate production in semi-continuous operation was enhanced by 3.45 times to 30.91 ± 1.07 mM as the acrylate pathway was successfully inhibited in semi-continuous experiments due to low pH and low lactate concentration.
Collapse
Affiliation(s)
- Shanbiao Xie
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Jingwei Ma
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China.
| | - Lu Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Peng Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Shuizhou Ke
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China
| |
Collapse
|
33
|
Zhang Z, Ping Q, Gao D, Vanrolleghem PA, Li Y. Effects of ferric-phosphate forms on phosphorus release and the performance of anaerobic fermentation of waste activated sludge. BIORESOURCE TECHNOLOGY 2021; 323:124622. [PMID: 33421830 DOI: 10.1016/j.biortech.2020.124622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Five ferric-phosphate (Fe(III)Ps) with amorphous or crystalline structures were added to waste activated sludge (WAS) for anaerobic fermentation, aiming to investigate effects of Fe(III)Ps forms on phosphorus (P) release and the performance of WAS fermentation. The results revealed that the Fe(III) reduction rate of hexagonal-FePO4 was faster than that of monoclinic-FePO4·2H2O, thanks to its lower crystal field stabilization energy. FePO4·nH2O was reduced to vivianite and part of the phosphate was released as orthophosphate (PO4-P). Giniite (Fe5(PO4)4(OH)3·2H2O) as an iron hydroxyphosphate was transformed to βFe(III)Fe(II)(PO4)O-like compounds without PO4-P release. In addition, Fe(III)Ps had an adverse effect on the anaerobic fermentation of WAS. The specific hydrolysis rate constant and volatile fatty acids (VFAs) yield decreased by 38.4% and 41.9%, respectively, for the sludge sample with amorphous-FePO4·3H2O, which dropped the most. This study provides new insights into various forms of Fe(III)Ps performance during anaerobic fermentation and is beneficial to enhancing P recovery efficiency.
Collapse
Affiliation(s)
- Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peter A Vanrolleghem
- Modeleau, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
34
|
Fermentation of organic wastes and CO2 + H2 off-gas by microbiotas provides short-chain fatty acids and ethanol for n-caproate production. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|