1
|
Wang Y, Gu M, Zhang M, Mao J, Han Y, Liu Q. Innovative strategy for full-scale polar components explicition and ultrasonic-assisted optimization of Astragalus membranaceus flower. ULTRASONICS SONOCHEMISTRY 2025; 114:107238. [PMID: 39884109 PMCID: PMC11814668 DOI: 10.1016/j.ultsonch.2025.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Traditional extraction under merely one specific solvent was confronted with incomplete phytochemical unscramble problem. In view of this, in order to obtain the overall chemical understanding, we attempted to use Astragalus membranaceus flower, an abundant exploitable resource, to screen a novel extraction mixing scheme via gradient solvents based on the ions' quantity detected in UHPLC-Q-TOF-MS/MS approach. Samples were firstly extracted by different concentration ethanol, and then, six mixing schemes were investigated and one scheme with maximum detected ions was screened out. After identification procedures based on an comprehensive reference database, 136 components covered 54 flavonoids were accurately identified, indicating that flavonoids may played a critical role in Astragalus membranaceus flower. Through the Box-Behnken Design optimization, 29.79 mg/g of flavonoids were extracted under ethanol concentration of 35 %, solid-liquid ratio of 1:50, extraction time of 50 min. The experiments showed that the established mixing scheme could obtain more comprehensive ingredients compared to orthodox extraction, further guide the optimization of significative ingredients scientifically. The present paper could promote the development of Astragalus membranaceus flower.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006 China
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006 China; School of Pharmacy, Qiqihar Medical University, Qiqihar 161006 China
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006 China; School of Pharmacy, Qiqihar Medical University, Qiqihar 161006 China
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006 China; School of Pharmacy, Qiqihar Medical University, Qiqihar 161006 China
| | - Yujian Han
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006 China; School of Pharmacy, Qiqihar Medical University, Qiqihar 161006 China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006 China; The Institute of Astragalus Industry Research, Qiqihar Medical University, Qiqihar 161006 China.
| |
Collapse
|
2
|
Belli TJ, Dalbosco V, Bassin JP, Lunelli K, Costa RED, Lapolli FR. Treatment of azo dye-containing wastewater in a combined UASB-EMBR system: Performance evaluation and membrane fouling study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121701. [PMID: 38968882 DOI: 10.1016/j.jenvman.2024.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
This work investigated the treatment of azo dye-containing wastewater in an upflow anaerobic sludge blanket (UASB) reactor combined with an electro-membrane bioreactor (EMBR). Current densities of 20 A m-2 and electric current exposure mode of 6'ON/30'OFF were applied to compare the performance of the EMBR to a conventional membrane bioreactor (MBR). The results showed that dye (Drimaren Red CL-7B) removal occurred predominantly in the UASB reactor, which accounted for 57% of the total dye removal achieved by the combined system. When the MBR was assisted by electrocoagulation, the overall azo dye removal efficiency increased from 60.5 to 67.1%. Electrocoagulation batch tests revealed that higher decolorization rates could be obtained with a current density of 50 A m-2. Over the entire experimental period, the combined UASB-EMBR system exhibited excellent performance in terms of chemical oxygen demand (COD) and NH4+-N removal, with average efficiencies above 97%, while PO43--P was only consistently removed when the electrocoagulation was used. Likewise, a consistent reduction in the absorption spectrum of aromatic amines was observed when the MBR was electrochemically assisted. In addition to improving the pollutants removal, the use of electrocoagulation reduced the membrane fouling rate by 68% (0.25-0.08 kPa d-1), while requiring additional energy consumption and operational costs of 1.12 kWh m-3 and 0.32 USD m-3, respectively. Based on the results, it can be concluded that the combined UASB-EMBR system emerges as a promising technological approach for textile wastewater treatment.
Collapse
Affiliation(s)
- Tiago José Belli
- Civil Engineering Department, Santa Catarina State University, ZIP 89140-000, Ibirama, SC, Brazil.
| | - Vlade Dalbosco
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, RJ, Brazil
| | - Karina Lunelli
- Civil Engineering Department, Santa Catarina State University, ZIP 89140-000, Ibirama, SC, Brazil
| | - Rayra Emanuelly da Costa
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
3
|
Jasińska A, Walaszczyk A, Paraszkiewicz K. Omics-Based Approaches in Research on Textile Dye Microbial Decolorization. Molecules 2024; 29:2771. [PMID: 38930836 PMCID: PMC11206425 DOI: 10.3390/molecules29122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The development of the textile industry has negative effects on the natural environment. Cotton cultivation, dyeing fabrics, washing, and finishing require a lot of water and energy and use many chemicals. One of the most dangerous pollutants generated by the textile industry is dyes. Most of them are characterized by a complex chemical structure and an unfavorable impact on the environment. Especially azo dyes, whose decomposition by bacteria may lead to the formation of carcinogenic aromatic amines and raise a lot of concern. Using the metabolic potential of microorganisms that biodegrade dyes seems to be a promising solution for their elimination from contaminated environments. The development of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has allowed for a comprehensive approach to the processes occurring in cells. Especially multi-omics, which combines data from different biomolecular levels, providing an integrative understanding of the whole biodegradation process. Thanks to this, it is possible to elucidate the molecular basis of the mechanisms of dye biodegradation and to develop effective methods of bioremediation of dye-contaminated environments.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland;
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
4
|
Liu J, Fan L, Yin W, Zhang S, Su X, Lin H, Yu H, Jiang Z, Sun F. Anaerobic biodegradation of azo dye reactive black 5 by a novel strain Shewanella sp. SR1: Pathway and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119073. [PMID: 37776795 DOI: 10.1016/j.jenvman.2023.119073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
The efficiency of microbial populations in degrading refractory pollutants and the impact of adverse environmental factors often presents challenges for the biological treatment of azo dyes. In this study, the genome analysis and azo dye Reactive Black 5 (RB5) degrading capability of a newly isolated strain, Shewanella sp. SR1, were investigated. By analyzing the genome, functional genes involved in dye degradation and mechanisms for adaptation to low-temperature and high-salinity conditions were identified in SR1. The addition of co-substrates, such as glucose and yeast extract, significantly enhanced RB5 decolorization efficiency, reaching up to 87.6%. Notably, SR1 demonstrated remarkable robustness towards a wide range of NaCl concentrations (1-30 g/L) and temperatures (10-30 °C), maintaining efficient decolorization and high biomass concentration. The metabolic pathways of RB5 degradation were deduced based on the metabolites and genes detected in the genome, in which the azo bond was first cleaved by FMN-dependent NADH-azoreductase and NAD(P)H-flavin reductase, followed by deamination, desulfonation, and hydroxylation mediated by various oxidoreductases. Importantly, the degradation metabolites exhibited reduced toxicity, as revealed by toxicity analysis. These findings highlighted the great potential of Shewanella sp. SR1 for bioremediation of wastewaters contaminated with azo dyes.
Collapse
Affiliation(s)
- Jiale Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Fan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wenjun Yin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenghai Jiang
- Zhejiang Haihe Environmental Technology Co. Ltd, Jinhua 321017, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Xie X, Zheng H, Zhang Q, Fan J, Liu N, Song X. Co-metabolic biodegradation of structurally discrepant dyestuffs by Klebsiella sp. KL-1: A molecular mechanism with regards to the differential responsiveness. CHEMOSPHERE 2022; 303:135028. [PMID: 35605735 DOI: 10.1016/j.chemosphere.2022.135028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, an attempt was made to decipher the underlying differential response mechanism of Klebsiella sp. KL-1 induced by exposure to disparate categories of dyestuffs in xylose (Xyl) co-metabolic system. Here, representative reactive black 5 (RB5), remazol brilliant blue R (RBBR) and malachite green (MG) belonging to the azo, anthraquinone and triphenylmethane categories were employed as three model dyestuffs. Klebsiella sp. KL-1 enabled nearly 98%, 80% or 97% removal of contaminants in assays Xyl + RB5, Xyl + RBBR or Xyl + MG after 48 h, which was respectively 16%, 11% or 22% higher than those in the assays devoid of xylose. LC-QTOF-MS revealed an increased formation of smaller molecular weight intermediates in assay Xyl + RB5, whereas more metabolic pathways were deduced in assay Xyl + RBBR. Metaproteomics analysis displayed remarkable proteome alteration with regards to the structural difference effect of dyestuffs by Klebsiella sp. KL-1. Significant (p-value<0.05) activation of pivotal candidate NADH-quinone oxidoreductase occurred after 48 h of disparate dyestuff exposure but with varying abundance. Dominant FMN-dependent NADH-azoreductase, Cytochrome d terminal oxidase or Thiol peroxidase were likewise deemed to be responsible for the catalytic cleavage of RB5, RBBR or MG, respectively. Further, the differential response mechanism towards the structurally discrepant dyestuffs was put forward. Elevated reducing force associated with the corresponding functional proteins/enzymes was transferred to the exterior of the cell to differentially decompose the target contaminants. Overall, this study was dedicated to provide in-depth insights into the molecular response mechanism of co-metabolic degradation of refractory and structurally discrepant dyestuffs by an indigenous isolated Klebsiella strain.
Collapse
Affiliation(s)
- Xuehui Xie
- College of Environmental Science and Engineering, Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Hangmi Zheng
- College of Environmental Science and Engineering, Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University, Shanghai, 201620, China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China.
| | - Jiao Fan
- College of Environmental Science and Engineering, Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University, Shanghai, 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
6
|
Cong J, Xie X, Liu Y, Qin Y, Fan J, Fang Y, Liu N, Zhang Q, Song X, Sand W. Biochemical characterization of a novel azo reductase named BVU5 from the bacterial flora DDMZ1: application for decolorization of azo dyes. RSC Adv 2022; 12:1968-1981. [PMID: 35425265 PMCID: PMC8979046 DOI: 10.1039/d1ra08090c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/07/2022] Open
Abstract
One of the main mechanisms of bacterial decolorization and degradation of azo dyes is the use of biological enzymes to catalyze the breaking of azo bonds. This paper shows the expression and properties of a novel azo reductase (hybrid-cluster NAD(P)-dependent oxidoreductase, accession no. A0A1S1BVU5, named BVU5) from the bacterial flora DDMZ1 for degradation of azo dyes. The molecular weight of BVU5 is about 40.1 kDa, and it contains the prosthetic group flavin mononucleotide (FMN). It has the decolorization ability of 80.1 ± 2.5% within 3 min for a dye concentration of 20 mg L−1, and 53.5 ± 1.8% even for a dye concentration of 200 mg L−1 after 30 min. The optimum temperature of enzyme BVU5 is 30 °C and the optimum pH is 6. It is insensitive to salt concentration up to a salinity level of 10%. Furthermore, enzyme BVU5 has good tolerance toward some metal ions (2 mM) such as Mn2+, Ca2+, Mg2+ and Cu2+ and some organic solvents (20%) such as DMSO, methanol, isopentyl, ethylene glycol and N-hexane. However, the enzyme BVU5 has a low tolerance to high concentrations of denaturants. In particular, it is sensitive to the denaturants guanidine hydrochloride (GdmCl) (2 M) and urea (2 M). Analysis of the dye substrate specificity shows that enzyme BVU5 decolorizes most azo dyes, which is indicating that the enzyme is not strictly substrate specific, it is a functional enzyme for breaking the azo structure. Liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS) revealed after the action of enzyme BVU5 that some intermediate products with relatively large molecular weights were produced; this illustrates a symmetric or an asymmetric rapid cleavage of the azo bonds by this enzyme. The potential degradation pathways and the enzyme-catalyzed degradation mechanism are deduced in the end of this paper. The results give insight into the potential of a rapid bio-pretreatment by enzyme BVU5 for processing azo dye wastewater. The combination of BVU5 enzyme and coenzyme NADH can quickly degrade the azo dye RB5.![]()
Collapse
Affiliation(s)
- Junhao Cong
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Xuehui Xie
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China.,Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Yan Qin
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Jiao Fan
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Yingrong Fang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University Suzhou Anhui 234000 China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China.,Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Wolfgang Sand
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Key Laboratory of Pollution Control and Emission Reduction Technology for Textile Industry, Donghua University Shanghai 201620 China.,Institute of Biosciences, Freiberg University of Mining and Technology Freiberg 09599 Germany
| |
Collapse
|
7
|
Jeevanandam V, Osborne J. Understanding the fundamentals of microbial remediation with emphasize on metabolomics. Prep Biochem Biotechnol 2021; 52:351-363. [PMID: 34338137 DOI: 10.1080/10826068.2021.1946694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The post-genomic tool metabolomics is a great advancement in science and technology which acquires novel strategies and pathways to analyze various biological compounds. Metabolomics aids in retrieving the qualitative and quantitative data from the various biological system. The current review is focused on the application of metabolomics in bioremediation and helps to focus on the xenobiotic compounds which are discharged into the environment and have long term impact. The microbial based biodegradation can be effectively used along with the combination of metabolomic approach for a better understanding of the breakdown of certain recalcitrant. Additionally, this review also discusses the candidate gene approach which helps to comprehend the functional analysis of microbial genes in response to different contaminants. Therefore, this review intends to discuss the metabolomics in bioremediation by studying the complete set of metabolites involved during the process of degradation and their interaction with the environment.
Collapse
Affiliation(s)
- Vaishnavi Jeevanandam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Jabez Osborne
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
8
|
Wang B, Ndayisenga F, Zhang G, Yu Z. Deciphering the initial products of coal during methanogenic bioconversion: Based on an untargeted metabolomics approach. GCB BIOENERGY 2021; 13:967-978. [DOI: 10.1111/gcbb.12824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/28/2021] [Indexed: 01/22/2025]
Abstract
AbstractAlthough the process of microbial degradation of coal to produce biomethane has got much attention from many research works, the products profiles of coal at the initial stage of methanogenic bioconversion are not clear yet. In this study, five coal‐degrading bacterial strains (CD1, CD10, CD20, CD24, and CD25) from a methanogenic community were isolated and identified. Among them, CD1 and CD24 belong to Paenibacillus sp., CD10 and CD20 belong to Bacillus sp., and CD25 belongs to Stenotrophomonas sp. After biotreatment of lignite and bituminous coal, the kinds of newly produced compounds were 33 and 45, respectively. Metabolomics analysis showed that a large number of alkane compounds and heterocyclic aromatic compounds were produced after degradation of bituminous coal and lignite by isolated bacteria, and most of the compounds had been produced in a hydroxylated or acylated manner, indicating that the initial microbial treatment enhanced the bioavailability of coal. Some alkaloids and biosurfactants were also detected in the aforementioned products, such as glycerophosphocholine, proveratrol A, proveratrol B, surfactin, etc. These microbial metabolites may play an important role in solubilization during the degradation of coal. This study added to the understanding of the complicated metabolic process of methanogenic coal bioconversion and enabled effective production of biomethane with appropriate metabolic strategies.
Collapse
Affiliation(s)
- Bobo Wang
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Fabrice Ndayisenga
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Guilong Zhang
- Agro‐Environmental Protection Institute Ministry of Agriculture and Rural Affairs China
| | - Zhisheng Yu
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
Yuan T, Zhang S, Chen Y, Zhang R, Chen L, Ruan X, Zhang S, Zhang F. Enhanced Reactive Blue 4 Biodegradation Performance of Newly Isolated white rot fungus Antrodia P5 by the Synergistic Effect of Herbal Extraction Residue. Front Microbiol 2021; 12:644679. [PMID: 33868203 PMCID: PMC8044803 DOI: 10.3389/fmicb.2021.644679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a white rot fungus Antrodia was newly isolated and named P5. Then its dye biodegradation ability was investigated. Our results showed that P5 could effectively degrade 1,000 mg/L Reactive Blue 4 (RB4) in 24 h with 95% decolorization under shaking conditions. It could tolerate a high dye concentration of 2,500 mg/L as well as 10% salt concentration and a wide range of pH values (4-9). Herbal extraction residues (HER) were screened as additional medium elements for P5 biodegradation. Following the addition of Fructus Gardeniae (FG) extraction residue, the biodegradation performance of P5 was significantly enhanced, achieving 92% decolorization in 12 h. Transcriptome analysis showed that the expression of multiple peroxidase genes was simultaneously increased: Lignin Peroxidase, Manganese Peroxidase, Laccase, and Dye Decolorization Peroxidase. The maximum increase in Lignin Peroxidase reached 10.22-fold in the presence of FG. The results of UV scanning and LC-HRMS showed that with the synergistic effect of FG, P5 could remarkably accelerate the biodegradation process of RB4 intermediates. Moreover, the fungal treatment with FG also promoted the abatement of RB4 toxicity. In sum, white rot fungus and herbal extraction residue were combined and used in the treatment of anthraquinone dye. This could be applied in practical contexts to realize an efficient and eco-friendly strategy for industrial dye wastewater treatment.
Collapse
Affiliation(s)
- Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifei Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Letian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoshu Ruan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medical Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Cheng H, Yuan M, Zeng Q, Zhou H, Zhan W, Chen H, Mao Z, Wang Y. Efficient reduction of reactive black 5 and Cr(Ⅵ) by a newly isolated bacterium of Ochrobactrum anthropi. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124641. [PMID: 33321321 DOI: 10.1016/j.jhazmat.2020.124641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
It is important to obtain bacteria with the ability for reduction of dyes and Cr(Ⅵ) since dyes and Cr(Ⅵ) are often co-exist in textile wastewater. In this study, a new strain belonging to Ochrobactrum anthropi was isolated from textile wastewater, and could efficiently reduce Reactive Black 5 (RB 5) and Cr(Ⅵ). The results showed the degradation efficiency of RB 5 could achieve 100% and reduction efficiency of Cr(Ⅵ) was up to 80% within 3 days at initial RB 5 and Cr(Ⅵ) concentration of 400 mg/L and 20 mg/L. Mn2+ and Cu2+ could enhance the removal of RB 5 and Cr(Ⅵ), respectively. Glycerin, as electron donor, improved reduction efficiencies of RB 5 and Cr(Ⅵ). In addition, reduction mechanisms were further investigated. The results demonstrated that decreasing of RB 5 and Cr(Ⅵ) concentration were mainly through extracellular bioreduction rather than by adsorption. The FTIR and XPS analyses revealed that the O‒H, C‒C and C‒H groups on the cell surface might be involved in the reduction of RB 5 and Cr(Ⅵ). The information gives useful insights into understanding of how the bacterium reduce RB 5 and Cr(Ⅵ). The results indicated that the strain had excellent application prospect for treating industrial wastewater.
Collapse
Affiliation(s)
- Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China
| | - Mingzhu Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Hui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Zhenhua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China.
| |
Collapse
|
11
|
Alam R, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Watanabe T, Kim S. Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124176. [PMID: 33131941 DOI: 10.1016/j.jhazmat.2020.124176] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Biodegradation and metabolic pathways of three anthraquinone dyes, Reactive Blue 4 (RB4), Remazol Brilliant Blue - R (RBBR), and Acid Blue 129 (AB129) by Trametes hirsuta D7 fungus immobilized in light expanded clay aggregate (LECA) were investigated. Morphological characteristics observed with scanning electron microscope (SEM) showed successful immobilization of the fungus in LECA. Based on UV absorbance measurement, immobilized T. hirsuta D7 effectively degraded 90%, 95%, and 96% of RB4, RBBR and AB129, respectively. Metabolites were identified with high-resolution mass spectrometry (HRMS) and degradation pathway of the dyes by T. hirsuta D7 was proposed. Toxicity assay on human dermal fibroblast (HDF) showed that anthraquinone dyes exhibits significant toxicity of 35%, 40%, and 34% reduction of cell viability by RB4, RBBR, and AB129, respectively. Fungal treatment resulted in an abatement of the toxicity and cell viability was increased up to 94%. The data clearly showed the effectiveness of immobilized T. hirsuta D7 in LECA on detoxification of anthraquinone dyes. This study provides potential and fundamental understanding of wastewater treatment using the newly isolated fungus T. hirsuta D7.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia.
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu 41566, Republic of Korea.
| |
Collapse
|