1
|
Liao H, Feng B, Song X, Zhang J, Zhang Z. Unlocking full potential of bamboo waster: Efficient co-production of xylooligosaccharides, lignin, and glucose through low-dosage mandelic acid hydrolysis with alkaline processing. Int J Biol Macromol 2024; 282:137165. [PMID: 39488322 DOI: 10.1016/j.ijbiomac.2024.137165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Mandelic acid (MA), a natural and environmentally friendly organic acid, demonstrates high selectivity and efficiency in hydrolyzing hemicellulose, making it an excellent candidate for xylooligosaccharides (XOS) production at low acid dosages. Despite its potential, the application of MA for XOS production has not been evaluated. The study first investigated the effectiveness of MA in hydrolyzing hemicellulose in bamboo into XOS. Under optimized conditions (50 mM MA, 180 °C, 45 min), a high XOS yield of 65.9 % was achieved, with a total xylobiose and xylotriose yield of 43.5 %. Subsequent alkaline pretreatment enabled 92.1 % lignin removal from MA-pretreated bamboo. The recovered lignin exhibited a high purity of 95.2 % and retained fundamental structure and functional groups of native lignin. The resulting residue displayed enhanced crystallinity and accessibility, with reduced hydrophobicity and surface area lignin compared to untreated bamboo. At high substrate concentration of 20 %, cellulase hydrolysis resulted in a glucose conversion efficiency of 83.9 %. Overall, this integrated strategy offered an efficient approach for the co-production of valuable XOS, lignin, and glucose from bamboo. The efficient energy utilization and economic viability further highlighted the potential of this method for large-scale industrial applications, making it an attractive option for biomass valorization.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Baojun Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
2
|
Lima Lopes Junior J, Rodrigues Brabo D, Leandro Santos Amaral E, Wilson da Cruz Reis A, Bastos do Amarante C, Gilda Barroso Tavares Dias C. Characterization of the natural fibers extracted from the aninga's stem and development of a unidirectional polymeric sheet. Sci Rep 2024; 14:24780. [PMID: 39433548 PMCID: PMC11494068 DOI: 10.1038/s41598-024-72781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
A unidirectional sheet was made with oriented fibers in an epoxy matrix. Natural fibers were extracted from the stem of Montrichardia linifera (Arruda) Schott., traditionally known as aninga, characterized and used to produce a unidirectional polymeric sheet. FTIR, XRD, SEM, TG, and DTG analyses were performed to characterize these cellulose fibers. Peaks observed at 1024 cm- 1, 1600 cm- 1, and 3328 cm- 1 revealed the stretching vibration of the O-H bond, the stretching of the carbonyl in hemicellulose, and the vibration of aromatic rings, respectively. XRD analysis demonstrated a crystallinity index of 62.21%. Morphological analysis revealed the microstructural quality of the fiber surface, with grooves for mechanical anchoring, as well as its interior, which is composed of microfibrils. EDS analysis confirmed the presence of the main elements composing natural fibers, with carbon being the major component (70%). The thermal stability of aninga fibers was up to 450 ºC for the degradation of 50% of their initial mass. The mechanical properties of untreated aninga fibers showed a tensile strength of 332 MPa and an elastic modulus of 13.000 MPa. The unidirectional sheet had a tensile strength of 4.5 MPa and an elasticity modulus of 332.9 MPa. These outcomes ensured that aninga fiber is considered high-performance (> 200 MPa) and can be used for internal automobile components.
Collapse
Affiliation(s)
- Jucelio Lima Lopes Junior
- Postgraduate Program in Mechanical Engineering , Federal University of Pará, Belém, Pará, Brazil.
- Coordination of Earth Sciences and Ecology, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil.
| | - David Rodrigues Brabo
- Postgraduate Program in Mechanical Engineering , Federal University of Pará, Belém, Pará, Brazil
- Coordination of Earth Sciences and Ecology, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - Everton Leandro Santos Amaral
- Faculty of Mechanical Engineering, Institute of Higher Studies of the Amazon, Belém, Pará, Brazil
- Coordination of Earth Sciences and Ecology, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - André Wilson da Cruz Reis
- Postgraduate Program in Amazon Natural Resources Engineering, Federal University of Pará , Belém, Pará, Brazil
| | | | | |
Collapse
|
3
|
Sonyeam J, Chaipanya R, Suksomboon S, Khan MJ, Amatariyakul K, Wibowo A, Posoknistakul P, Charnnok B, Liu CG, Laosiripojana N, Sakdaronnarong C. Process design for acidic and alcohol based deep eutectic solvent pretreatment and high pressure homogenization of palm bunches for nanocellulose production. Sci Rep 2024; 14:7550. [PMID: 38555319 PMCID: PMC10981746 DOI: 10.1038/s41598-024-57631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
This research aimed to study on nanocellulose production from palm bunch using process design and cost analysis. Choline chloride based deep eutectic solvent pretreatment was selected for high-purity cellulose separation at mild condition, followed by nano-fibrillation using mechanical treatment. Three types of choline chloride-based deep eutectic solvents employing different hydrogen-bond donors (HBDs) namely lactic acid, 1,3-butanediol and oxalic acid were studied. The optimal cellulose extraction condition was choline chloride/lactic acid (ChLa80C) pretreatment of palm empty bunch at 80 °C followed by bleaching yielding 94.96%w/w cellulose content in product. Size reduction using ultrasonication and high-pressure homogenization produced nanocellulose at 67.12%w/w based on cellulose in raw material. Different morphologies of nanocellulose were tunable in the forms of nanocrystals, nano-rods and nanofibers by using dissimilar deep eutectic solvents. This work offered a sustainable and environmentally friendly process as well as provided analysis of DES pretreatment and overview operating cost for nanocellulose production. Application of nanocellulose for the fabrication of highly functional and biodegradable material for nanomedicine, electronic, optical, and micromechanical devices is achievable in the near future.
Collapse
Affiliation(s)
- Janejira Sonyeam
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Ratanaporn Chaipanya
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Sudarat Suksomboon
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Krongkarn Amatariyakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Boonya Charnnok
- Department of Specialized Engineering, Energy Technology Program, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla, 90110, Thailand
| | - Chen Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok, 10140, Thailand
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Li J, Yang F, Liu D, Han S, Li J, Sui G. Graphene composite paper synergized with micro/nanocellulose-fiber and silk fibroin for flexible strain sensor. Int J Biol Macromol 2023; 240:124439. [PMID: 37062378 DOI: 10.1016/j.ijbiomac.2023.124439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
The fabrication of uniform and strong graphene-based conductive paper is challenging due to easy aggregation and poor film formability of graphene. Herein, on the basis of good dispersing effect of nanocellulose, high content graphene (50 wt%) composite paper with micro/nanocellulose fibers and silk fibroin (SF) was manufactured via simple casting method. The synergistic effects of cellulose microfibers (CMFs), cellulose nanofibers (CNFs) and SF result in the paper with ideal combination of flexibility, electrical conductivity and mechanical strength, where CNFs, CMFs and SF act as dispersing and film forming for GNPs, dimensional stability, and interfacial binding agents, respectively. Extraordinarily, by adding SF, graphene nanosheets are tightly coated on the surface of CMFs. The composite paper shows a tensile strength of 49.29 MPa, surface resistance of 39.0-42.1 Ω and good joints bend sensing performance. Additionally, it is found that CMFs can hinder the micro-cracks from propagating during the cyclic elbow bending test. The graphene-based conductive paper is helpful for the development of smart clothing wearable biosensing devices.
Collapse
Affiliation(s)
- Jun Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Fei Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Dongyan Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Sensen Han
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Junsheng Li
- Engineering Center of National New Raw Material Base Construction of Liaoning Province, Shenyang 110031, China
| | - Guoxin Sui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
5
|
Puițel AC, Suditu GD, Drăgoi EN, Danu M, Ailiesei GL, Balan CD, Chicet DL, Nechita MT. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze-Thaw Cycles. Polymers (Basel) 2023; 15:polym15041038. [PMID: 36850320 PMCID: PMC9963123 DOI: 10.3390/polym15041038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The alkaline extraction of hemicelluloses from a mixture of three varieties of wheat straw (containing 40.1% cellulose, 20.23% xylan, and 26.2% hemicellulose) was analyzed considering the following complementary pre-treatments: freeze-thaw cycles, microwaves, and ultrasounds. The two cycles freeze-thaw approach was selected based on simplicity and energy savings for further analysis and optimization. Experiments planned with Design Expert were performed. The regression model determined through the response surface methodology based on the severity factor (defined as a function of time and temperature) and alkali concentration as variables was then used to optimize the process in a multi-objective case considering the possibility of further use for pulping. To show the properties and chemical structure of the separated hemicelluloses, several analytical methods were used: high-performance chromatography (HPLC), Fourier-transformed infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), thermogravimetry and derivative thermogravimetry analysis (TG, DTG), and scanning electron microscopy (SEM). The verified experimental optimization result indicated the possibility of obtaining hemicelluloses material containing 3.40% glucan, 85.51% xylan, and 7.89% arabinan. The association of hot alkaline extraction with two freeze-thaw cycles allows the partial preservation of the hemicellulose polymeric structure.
Collapse
Affiliation(s)
- Adrian Cătălin Puițel
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Gabriel Dan Suditu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Elena Niculina Drăgoi
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Maricel Danu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Cătălin Dumitrel Balan
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Daniela-Lucia Chicet
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 41, 700050 Iaşi, Romania
| | - Mircea Teodor Nechita
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- Correspondence:
| |
Collapse
|
6
|
Yuan L, Tan L, Shen Z, Zhou Y, He X, Chen X. Enhanced denitrification of dispersed swine wastewater using Ca(OH) 2-pretreated rice straw as a solid carbon source. CHEMOSPHERE 2022; 305:135316. [PMID: 35709845 DOI: 10.1016/j.chemosphere.2022.135316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In a pilot-scale packed bed reactor, the denitrification performance and microbial community structure of the dispersed swine wastewater treatment using calcium hydroxide (Ca(OH)2) pretreated rice straw as a carbon source were investigated. In a Ca(OH)2-pretreated rice straw supported denitrification system (Ca(OH)2-RS), the removal efficiency of NO3--N was 96.39% at an influent NO3--N load of 0.04 kg/(m3•d). Meanwhile, there was no obvious accumulation of NO2--N or chemical oxygen demand (COD) in the effluent of Ca(OH)2-RS. The contents of soluble microbial byproduct-like substances and tryptophan-like substances in the effluent of Ca(OH)2-RS were reduced by 46.2% and 43.4%, respectively, compared with the influent. Overall, the Ca(OH)2-pretreated rice straw system had a strong resistance to fluctuations in water quality conditions, such as influent NO3--N and COD concentrations. According to the microbial assay results, the Ca(OH)2 pretreatment enriched more denitrifying bacteria. Among them, Proteobacteria (42.33%) and Bacteroidetes (35.28%) were the dominant bacteria. Moreover, the main denitrifying functional bacteria, generanorank_f_Saprospiraceae (13.32%), norank_f_Porphyromonadaceae (4.22%), and Flavobacterium (3.25%), were enriched in Ca(OH)2-RS. This suggested that using Ca(OH)2-pretreated rice straw as a carbon source was a stable and efficient technology to enhance the denitrification performance of dispersed swine wastewater.
Collapse
Affiliation(s)
- Lianhua Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Leilei Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xuemin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| |
Collapse
|
7
|
Yan M, Wu T, Ma J, Lu H, Zhou X. Characteristic comparison of lignocellulose nanofibrils from wheat straw having different mechanical pretreatments. J Appl Polym Sci 2022. [DOI: 10.1002/app.53054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Yan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Jiangsu Province Key Lab of Biomass Energy and Materials Nanjing Jiangsu Province People's Republic of China
| | - Jinxia Ma
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| | - Hailong Lu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Jiangsu Province Key Lab of Biomass Energy and Materials Nanjing Jiangsu Province People's Republic of China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Xiaofan Zhou
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| |
Collapse
|
8
|
Gao C, Yang J, Han L. Systematic comparison for effects of different scale mechanical-NaOH coupling treatments on lignocellulosic components, micromorphology and cellulose crystal structure of wheat straw. BIORESOURCE TECHNOLOGY 2021; 326:124786. [PMID: 33548818 DOI: 10.1016/j.biortech.2021.124786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 05/10/2023]
Abstract
In order to compare the effect of different mechanical-chemical coupling treatment on wheat straw and provide guidance for the subsequent preparation of cellulose nanomaterials, this paper systematically explored the impact of different scale mechanical fragmentation coupling various NaOH concentration treatment on the lignocellulosic components, micromorphology and cellulose crystal structure of wheat straw. The results showed that the relationship between hemicellulose and lignin removal with NaOH concentration can be expressed as exponential function Y = ai(1-exp(-biX)), and micro-nano-scale ball-milling coupling NaOH treatment can facilitate the removal of hemicellulose and lignin. Micromorphology analysis found that wet ball milling coupling NaOH one-step treatment can disintegrate cellulose fiber into crosslinked network structure of cellulose microfibrils. XRD results indicated that wet ball milling with NaOH solution was contributed to retaining cellulose crystal structure and conducive to cellulose crystalline transformation. In conclusion, wet ball milling coupling NaOH simultaneous treatment can be a promising pretreatment for cellulose nanomaterials preparation.
Collapse
Affiliation(s)
- Chongfeng Gao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Jie Yang
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|