1
|
Yang J, Qian M, Wu S, Liao H, Yu F, Zou J, Li J. Insight into the role of chitosan in rapid recovery and re-stabilization of disintegrated aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120613. [PMID: 38547824 DOI: 10.1016/j.jenvman.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 μm to 485.9 μm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 μm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.
Collapse
Affiliation(s)
- Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengjie Qian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuyun Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanglei Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengfan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, China.
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Yu C, Wang K, Zhang K, Liu R, Zheng P. Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge: Implementing microaerobic-aerobic configuration with internal separators. WATER RESEARCH 2024; 248:120870. [PMID: 38007885 DOI: 10.1016/j.watres.2023.120870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/28/2023]
Abstract
Aerobic granular sludge (AGS) has been successfully used in sequencing batch reactors. However, their application to existing continuous-flow systems remains challenging. In this study, a novel microaerobic-aerobic configuration with internal separators was implemented in a full-scale municipal wastewater treatment facility with a nominal capacity of 2.5 × 104 m3 d-1. Sludge characteristics, pollutant removal and associated pathways, shifts in the microbial community, and underlying granulation mechanisms were investigated. Following a two-month operation period, the transition from flocculent-activated sludge to well-defined AGS with distinct boundaries and compact structures was successfully achieved. The average size of sludge increased from 31.9 to 138.5 μm, with granules larger than 200 μm constituting 28.9 % of the total sludge and SVI30 averaging 51.4 ± 8.2 mL g-1. The 95th percentile effluent COD, NH4+-N, and TN concentrations were 35.0, 1.2, and 13.3 mg L-1, respectively. The primary pathways for pollutant removal were identified as simultaneous nitrification, denitrification, and phosphorus removal within the microaerobic tanks. The enrichment of denitrifying phosphorus-accumulating organisms, including Hydrogenophaga, Accumulibacter, Azospira, Dechloromonas, and Pseudomonas, provides an essential microbial foundation. Furthermore, computational fluid dynamics modeling revealed that the incorporation of internal separators in aerobic tanks induced shifts in the flow pattern, transitioning from a single-circulation cell to multiple vortical cells. This alteration amplified the local velocity gradients, generating the required shear forces to drive granulation. Moreover, mass balance analysis revealed that the microaerobic and aerobic tanks operated under feast and famine conditions, respectively, creating a microbial selection pressure that favored granulation. This process eliminates the need for external clarifiers, resulting in a footprint reduction of 38.2 % and one-third energy savings for sludge reflux. This study offers valuable insights into the application of continuous-flow AGS to upgrade existing activated sludge systems with limited retrofitting requirements.
Collapse
Affiliation(s)
- Cheng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Kaiyuan Zhang
- Beijing Huayide Environmental Technology Co. Ltd., Beijing 100084, PR China
| | - Ruiyang Liu
- Beijing Huayide Environmental Technology Co. Ltd., Beijing 100084, PR China
| | - Pingping Zheng
- Beijing Huayide Environmental Technology Co. Ltd., Beijing 100084, PR China
| |
Collapse
|
3
|
Sanchez-Sanchez C, Moreno-Rodríguez E, Ortiz-Cruz JA, Moeller-Chávez GE. Development of aerobic granular sludge for real industrial/municipal wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2328-2344. [PMID: 37186634 PMCID: wst_2023_121 DOI: 10.2166/wst.2023.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The formation and evolution of aerobic granular sludge (AGS) developed in a sequential batch reactor (SBR) were evaluated to understand the effect of influential operating parameters on its morphology, stability, and removal performance while treating industrial/municipal wastewater. After 18 days of operation (stage I), mature granules were identified in the reactor, and in 25 days, the AGS system reached a stable operation. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) were affected by the applied operating variations (from stages II to VII). Until day 48 (stage III), the aerobic granules did not show relevant changes in shape and stability. During this stage, the AGS system achieved high removal efficiencies of COD (97.7%) and TKN (86.2%) and a sludge volume index (SVI) of 65 ± 6.7 mL/g-total suspended solids. From stage IV until the end of the reactor operation, partial disintegration and rupture occurred in the system, but granules did not completely disintegrate. Specifically, a volumetric exchange ratio (VER) of >67% and an aeration rate (AR) of <2.5 L/min promoted the compactness and the structural integrity of AGS. The principal component analysis corroborated that the rise in the VER is an effective strategy for improving AGS stability and organic pollutant removal.
Collapse
Affiliation(s)
- Celina Sanchez-Sanchez
- Department of Environmental Engineering and Biotechnology, Engineering School, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, México
| | - Ernestina Moreno-Rodríguez
- Department of Chemical Food and Engineering, Engineering School, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, México
| | - J Alejandro Ortiz-Cruz
- APC/GDOT Professional Services, Aspen Tech de Mexico, Juarez, Cuauhtémoc 06600, CDMX, México
| | - Gabriela Eleonora Moeller-Chávez
- Department of Environmental Engineering, Universidad Politécnica del Estado de Morelos, Boulevard Cuahnáhuac 566, El Texcal, Jiutepec, Morelos 62550, México E-mail:
| |
Collapse
|
4
|
Sun Z, Zhang J, Wang J, Zhu H, Xiong J, Nong G, Luo M, Wang J. Direct start-up of aerobic granular sludge system with dewatered sludge granular particles as inoculant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116540. [PMID: 36427360 DOI: 10.1016/j.jenvman.2022.116540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aerobic granular sludge (AGS) is a promising technology for engineering applications in the biological treatment of sewage. New objective is to skip the conventional granulation step to integrate it into a continuous-flow reactor directly. This study proposed a method for integrating spherical pelletizing granular sludge (SPGS) into a new patented aerobic granular sludge bed (AGSB), a continuous up-flow reactor. AGSB system could be startup directly, and after 120 days of operation, the SPGS maintained a relatively intact spherical structure and stability. With an initial high chemical oxygen demand (COD) volume loading of over 2.0 kg/(m3·d), this system achieved the desired effect as the same as a mature AGS system. The final mixed liquid suspended solids, and the ratio of 30 min-5 min sludge volume index (SVI30/SVI5) were 20,000 mg/L, and 0.84, respectively. Although hydraulic elution and filamentous bacteria (FBs) had a slightly negative impact on initial phase pollutant removal, the final removal rates for COD, total nitrogen (TN), ammonia nitrogen (NH4+-H), and total phosphorus (TP) were 90%, 70%, 95%, and 85%, respectively. The presence of specific functional microorganisms promoted the secretion of extracellular polymeric substances (EPS), from 90.65 to 209.78 mg/gVSS. The maturation process of SPGS altered the microbial community structures and reduced the species abundance of microbes in sludge.
Collapse
Affiliation(s)
- Zhuo Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China; Branch Graduate School of Guangxi Bossco Environmental Protection Technology Co., Ltd, Guangxi University, Nanning, 530007, People's Republic of China
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jin Wang
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoyou Nong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mengqi Luo
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, People's Republic of China
| | - Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, People's Republic of China
| |
Collapse
|
5
|
Lan Y, Wang C, Zhang C, Li P, Zhang J, Ji H, Yu H. Dietary sea buckthorn polysaccharide reduced lipid accumulation, alleviated inflammation and oxidative stress, and normalized imbalance of intestinal microbiota that was induced by high-fat diet in zebrafish Danio rerio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1717-1735. [PMID: 35879492 DOI: 10.1007/s10695-022-01105-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/19/2022] [Indexed: 05/13/2023]
Abstract
The purpose of this study was to explore the beneficial effects of sea buckthorn polysaccharide (SP) on lipid metabolism, liver, and intestinal health in zebrafish fed with high-fat diet (HFD). The zebrafish were fed with regular diet (RD), HFD, and HFD supplemented with 2 g/kg (HFD_2SP) and 4 g/kg (HFD_4SP) of SP, respectively. Growth, serum biochemistry, histopathology, expression of genes involved in lipid metabolism, inflammation, oxidative stress and tight junction, and changes in intestinal microbiota were detected. Results showed that adding 2 and 4 g/kg of SP in the HFD significantly improved the survival rate of zebrafish; reduced the levels of serum triglyceride (TG), total cholesterol (TC), aspartate aminotransferase (AST), and alanine transaminase (ALT); and alleviated the lipid accumulation in the liver of zebrafish. Furthermore, SP significantly enhanced the antioxidant capacity of liver and intestine by up-regulating the expression of Nrf2 and Cu/Zn-SOD and alleviated liver and intestinal inflammation induced by HFD through up-regulating the expression of TGF-β1 and suppressing the expression of P38MAPK, IL-8, and IL-1β. Especially, dietary SP normalized intestinal microbiota imbalance caused by HFD and inhibited the proliferation of harmful bacteria, i.e., Mycobacterium, but promoted the proliferation of intestinal beneficial bacteria, i.e., Cetobacterium. In summary, 2 and 4 g/kg of dietary SP significantly reduced lipid accumulation, alleviated inflammation and oxidative stress, and normalized the imbalance of intestinal microbiota induced by HFD and consequently improved the survival rate of zebrafish.
Collapse
Affiliation(s)
- Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jinding Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Wang Q, Yang Y, Shen Q, Chen X, Li F, Wang J, Zhang Z, Lei Z, Yuan T, Shimizu K. Energy saving and rapid establishment of granular microalgae system from tiny microalgae cells: Effect of decrease in upflow air velocity under intermittent aeration condition. BIORESOURCE TECHNOLOGY 2022; 363:127860. [PMID: 36041681 DOI: 10.1016/j.biortech.2022.127860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The novel type of microalgae granules (MGs) derived from tiny microalgae cells has received extensive attention due to its great potential for nutrient remediation and resource recovery in wastewater treatment whereas the long start-up time with increased labor expenses remains a bottleneck. In this study, an operation strategy at reduced upflow air velocity (UAV = 0.49 cm/s in RA) under intermittent aeration mode was proposed and compared with RB at a higher UAV (0.98 cm/s) in terms of MGs formation, maintenance, and energy consumption. Although the formation of MGs in RA was delayed for 12 days compared to RB, 40.78 % increase in chlorophyll-a content was detected in MGs in RA along with more cost-effective carbon, nitrogen, and phosphorus removals due to efficient microalgae assimilation and energy reduction. Results from this study provide new insight into minimizing energy input for rapid establishment and stable operation of MG systems towards environmentally sustainable wastewater management.
Collapse
Affiliation(s)
- Qian Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuyi Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qingyue Shen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xingyu Chen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jixiang Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Oura-gun Itakura, Gunma 374-0193, Japan
| |
Collapse
|
7
|
Alves OIM, Araújo JM, Silva PMJ, Magnus BS, Gavazza S, Florencio L, Kato MT. Formation and stability of aerobic granular sludge in a sequential batch reactor for the simultaneous removal of organic matter and nutrients from low-strength domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156988. [PMID: 35772566 DOI: 10.1016/j.scitotenv.2022.156988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous removal of organic matter, nitrogen, and phosphorus, via simultaneous nitrification and denitrification (SND) and enhanced biological phosphorus removal processes, was evaluated in a pilot-scale sequential batch reactor. The focus was on granule's morphology, stability, microbiological composition, and reactor performance while treating diluted domestic wastewater with total chemical oxygen demand (CODt) of ≈ 200 mg.L-1. The applied organic loading rate was 0.9 ± 0.3 kg CODt.m-3.d-1 in the experiment. Aerobic granular sludge developed gradually. After 87-day operation, granules (diameter ≥ 0.2 mm) were ≥ 50 % of the biomass, and after 168 days, complete granulation was obtained (≥ 80 % of biomass). In the third period (days 168-247, complete granulation), mixed liquor biomass reached a volatile suspended solids (VSS) concentration of 1.2 ± 0.3 g VSS.L-1, with the granules remaining stable until the experimental end. In this period, low effluent concentrations of COD, nitrogen (NH4+-N, NO2--N and NO3--N) and phosphate (PO43-P) were obtained (mg.L-1): 36 ± 11; 4 ± 5; 3 ± 3, 4 ± 5; and 0.9 ± 0.4, respectively. COD, NH4+-N, and PO43--P removal efficiencies (%) were 80 ± 11; 83 ± 20; and 55 ± 24, respectively. Heterotrophic nitrification and SND were observed, resulting in a process efficiency of 31 % even with dissolved oxygen applied to saturation. The phosphate removal was mainly attributed to denitrifying phosphorus accumulating organisms. Pseudomonas, the dominant genus found, acted in nitrogen and phosphorus removal. Pseudoxanthomonas also assisted in phosphorus removal. Bacterial communities in the flocs (≈ 20 % of biomass) during the last period were similar to those in the granules; therefore, they constituted the basis for granule formation, directly contributed to the simultaneous good removal of organic matter and nutrients.
Collapse
Affiliation(s)
- Oucilane I M Alves
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Julliana M Araújo
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Federal Institute of Education, Science and Technology of Sertão Pernambucano, Campus Ouricuri, Estrada do Tamboril s/n, Zona Rural, Ouricuri, Pernambuco, Brazil
| | - Poliana M J Silva
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna S Magnus
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Sávia Gavazza
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Lourdinha Florencio
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Mario T Kato
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
8
|
Cao L, Li Y, Li P, Zhang X, Ni L, Qi L, Wen H, Zhang X, Zhang Y. Application of moving bed biofilm reactor - nanofiltration - membrane bioreactor with loose nanofiltration hollow fiber membranes for synthetic roxithromycin-containing wastewater treatment: Long-term performance, membrane fouling and microbial community. BIORESOURCE TECHNOLOGY 2022; 360:127527. [PMID: 35764280 DOI: 10.1016/j.biortech.2022.127527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study operated the novel moving bed biofilm reactor-nanofiltration-membrane bioreactor (MBBR-NF-MBR) with loose polyamide NF membranes for the first time to treat roxithromycin (ROX) wastewater. Results showed that both MBBR-NF-MBRs achieved superior COD removal of 98.4% and 97.2% and excellent removal of ROX at 74.1% and 65.5%, respectively. The main membrane fouling mechanism was reversible fouling caused by the combination of abundant polysaccharides, proteins and Ca-P precipitates, which could be effectively removed by acidic cleaning. Sorption and biodegradation were the main removal routes of ROX in MBBR. Partial retention of loose NF membrane contributed to microbial metabolism and increased microbial diversity, especially the genera Hyphomicrobium in attached biofilm, which was reasonable for ROX removal. The cleavage of cladinose, demethylation, phosphorylation and β-oxidation in macrolactone ring were the main biotransformation reactions of ROX. This study provides novel insights for micropollutants wastewater treatment by using loose NF membrane in MBR.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanling Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peining Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xueting Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Lei Ni
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Qi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Haitao Wen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Yufeng Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China.
| |
Collapse
|
9
|
Araújo JM, Berzio S, Gehring T, Nettmann E, Florêncio L, Wichern M. Influence of temperature on aerobic granular sludge formation and stability treating municipal wastewater with high nitrogen loadings. ENVIRONMENTAL RESEARCH 2022; 212:113578. [PMID: 35649490 DOI: 10.1016/j.envres.2022.113578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the influence of temperature (20 and 30 °C) on the formation and stability of aerobic granules in sequential batch reactors (SBR). Therefore, two lab-scale SBRs operated at 20 and 30 °C (SBR20 and SBR30) were used. The reactors were fed with municipal wastewater (CODt:TN:TP 100:15:1.7), leading to mean organic loading rates (OLR) of 1.3 ± 0.4 kgCODt m-3 day-1. Both reactors had the same height/diameter ratio of 4.2 and were inoculated with activated sludge from a municipal wastewater treatment plant. The operational conditions were also the same for both temperatures and lasted in stable process parameters for over 100 days. By optimizing the aeration and oxygen concentration, a high removal efficiency of NH4-N (∼99%) and COD (∼90%) was achieved in both reactors, despite the poor C:N:P ratio at the influent. Furthermore, a relatively low oxygen concentration of 2 mg L-1 was defined as the set point for the control strategy. Nevertheless, granulation at 30 °C was significantly faster, resulting in more stable sludge volume index (SVI) values (SVI10/SVI30 < 1.1). The granules formed at 30 °C were also larger, more compact, and considerably more stable against system disturbances. However, at higher temperatures, larger granules might be required for nitrate removal because of the increased oxygen diffusion rates. Finally, microbiological 16S rRNA gene amplicon analysis for both systems indicated major differences relatively to the inoculum sludge only for nitrogen-degrading organisms.
Collapse
Affiliation(s)
- Julliana M Araújo
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Acadêmico Hélio Ramos s/n, Recife, 50740-530, Brazil; Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Stephan Berzio
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Tito Gehring
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Edith Nettmann
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Lourdinha Florêncio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Acadêmico Hélio Ramos s/n, Recife, 50740-530, Brazil.
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| |
Collapse
|
10
|
He J, Zhang Q, Tan B, Guo N, Peng H, Feng J, Su J, Zhang Y. Understanding the effect of residual aluminum salt coagulant on activated sludge in sequencing batch reactor: Performance response, activity restoration and microbial community evolution. ENVIRONMENTAL RESEARCH 2022; 212:113449. [PMID: 35561832 DOI: 10.1016/j.envres.2022.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/07/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To investigate the effect of residual coagulant after coagulation pretreatment on activated sludge system of wastewater treatment plants (WWTPs), comparative evaluation of lab-scale sequencing batch reactors under different poly-aluminum chloride (PAC) concentrations (20 and 55 mg/L), presenting the performance differences of reactors. Results showed that the PAC concentration of 20 mg/L slightly enhanced the average removal efficiencies of chemical oxygen demand (COD) and total nitrogen (TN), up to 93.43% and 72.52%. Whereas, an inhibition effect was exerted at the PAC concentration of 55 mg/L, the average removal efficiencies decreased to 88.56% and 57.80% respectively. Similarly, the residual aluminum salts showed a concentration effect of low promotion and high inhibition on sludge activity index. The content of specific oxygen utilization rate (SOUR) and dehydrogenase (DHA) sharply decreased by 30.17% and 53.56% under the high PAC concentration of 55 mg/L. Activity recovery phase showed that the suppression of aluminum salt coagulant on biological system was reversible. High-throughput sequencing presented that the relative abundance of microbes showed obvious variations at different PAC concentrations, and certain bacteria in Chloroflexi and Bacteroidota exhibited better adaptability to the high PAC concentration environment. Nevertheless, the antagonism action between denitrifying genera and other genera as well as the downregulation of functional enzymes regarding nitrogen metabolism gave rise to the deterioration of denitrification under the high PAC concentration of 55 mg/L. This study revealed the influence mechanism of residual aluminum salt coagulant on activated sludge system, providing strategies for efficient decontamination and long-term stable operation of biological system in wastewater treatment plant under the condition of adding PAC.
Collapse
Affiliation(s)
- Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Bin Tan
- Wuhan Branch, Chengdu JiZhun FangZhong Architectural Design, Wuhan, 40061, PR China
| | - Nuowei Guo
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
11
|
Li P, Wang C, Liu G, Luo X, Rauan A, Zhang C, Li T, Yu H, Dong S, Gao Q. A hydroponic plants and biofilm combined treatment system efficiently purified wastewater from cold flowing water aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153534. [PMID: 35101486 DOI: 10.1016/j.scitotenv.2022.153534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Recently, more and more cold flowing water aquaculture has been adopted, but its wastewater treatment is always ignored, which causes great pressure on the environment. In this study, a compound in-situ treatment system that applied hydroponic plants and biofilm was constructed to treat the wastewater produced by cold flowing water culture of sturgeon. The removal efficiency of the nutrients from culture and the microbial composition in water and biofilm were tested, the correlation between the water quality indexes and bacterium was analyzed, and the abundance of nitrogen and phosphorus cycling genes was quantified. The results show that the system respectively achieved 90%, 100%, 100%, 100% and 48% removal efficiency of NH4+-N, NO3--N, TN, TP and COD which were produced by experimental sturgeon culture. Chinese cabbage (Brassica rapa var. chinensis) and water dropwort (Oenanthe javanica) showed obvious growth in the four plants, which contributed to the removal of nutrients from wastewater. Besides, in the biofilm, Proteobacteria, Bacteroidetes and Verrucomicrobia became the top three dominant flora at the phylum level, and Flavobacterium, Rhodoferax, Sphaerotilus and Chitinimonas became the top four dominant flora at the genus level, which promoted the removal of nitrogen in the wastewater. The FAPROTAX analysis result shows that the highest functions within the carbon and nitrogen metabolisms were significantly identified in the biofilm, such as chemoheterotrophy, aerobic chemoheterotrophy and nitrate reduction. Further, the abundance of denitrifying genes (narG and napA) was higher than the nitrifying related genes (nxrB and amoA), indicating the more active denitrifying process. In summary, the compound in-situ treatment system efficiently removed nutrients from cold flowing water aquaculture. And the combined purification of hydroponic plants and biofilm which is rich in denitrifying bacterium plays an essential role in this process.
Collapse
Affiliation(s)
- Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guohao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Abdessan Rauan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| |
Collapse
|
12
|
Deng Y, Debognies A, Zhang Q, Zhang Z, Zhou Z, Zhang J, Sun L, Lu T, Qian H. Effects of ofloxacin on the structure and function of freshwater microbial communities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106084. [PMID: 35078055 DOI: 10.1016/j.aquatox.2022.106084] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Ofloxacin (OFL) is a broad-spectrum fluoroquinolone antibiotic frequently used in clinic for treating bacterial infections. The discharged OFL would inevitably enter into aquatic ecosystems, affecting the growth of non-target microorganisms, which may result in micro-ecosystem imbalance. To the best of our knowledge, researches in this area are rather sparse. The present study evaluated the response of photosynthetic microorganisms (cyanobacteria, eukaryotic algae) and aquatic microbial community to OFL in a microcosm. Results showed that ofloxacin presented an inhibitory effect on the growth Microcystis aeruginosa. Although 0.1 mg/L OFL has no significant impact on alpha diversity of the microbial communities, it obviously altered the structure and decreased the species interaction of prokaryotic community by reducing the capacities of nitrogen fixation, photosynthetic and metabolic capacity of the microbial community. This study pointed out that the residual OFL in water would disturb the balance of the aquatic micro-ecology, suggesting that more attentions should be given to the negative effects of antibiotics and other bioactive pollutants on aquatic environments.
Collapse
Affiliation(s)
- Yu Deng
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Andries Debognies
- Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Qi Zhang
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Liwei Sun
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| | - Tao Lu
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of technology, Hangzhou 310032, P.R. China
| |
Collapse
|
13
|
Guo D, Jiang X, Guo M, Zeng M, Wu N, Hao L, Wang C. Role of hydrocyclone separator on the formation and separation of aerobic granular sludge: Evaluating granulation efficiency and simulating hydrodynamic behavior. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Shi S, Lin Z, Zhou J, Fan X, Huang Y, Zhou J. Enhanced thermophilic denitrification performance and potential microbial mechanism in denitrifying granular sludge system. BIORESOURCE TECHNOLOGY 2022; 344:126190. [PMID: 34710607 DOI: 10.1016/j.biortech.2021.126190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Thermophilic biological nitrogen removal will provide low-cost strategies for the treatment of high-temperature nitrogenous wastewater (greater than 45 ℃). In this study, a thermophilic denitrifying granular sludge system was established at 50 ℃ and compared with mesophilic systems (30 ℃ and 40 ℃). The results showed a significant increase in COD and nitrate removal rate with the elevating temperature. Besides, the microbial community analysis indicated an obvious succession of key functional bacteria at different temperatures. Enriched thermophiles including Truepera, Azoarcus, and Elioraea were the dominant denitrifiers in the thermophilic denitrifying granular sludge system, which ensured the high nitrate removal at 50 ℃. Moreover, the functional gene prediction also denoted an enrichment of nitrate reduction genes and carbon metabolism pathways at 50 ℃, which could explain the enhancement of thermophilic denitrification. These findings could provide new insight into the application of denitrifying granular sludge in thermophilic wastewater treatment.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
15
|
Wang H, Lyu W, Song Q, Zhou D, Hu X, Wang B, Chen R. Role of weak magnetic strength in the operation of aerobic granular reactor for wastewater treatment containing ammonia nitrogen concentration gradient. BIORESOURCE TECHNOLOGY 2021; 322:124570. [PMID: 33384203 DOI: 10.1016/j.biortech.2020.124570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Weak magnetic field (WMF) and aerobic granular sludge (AGS) technology were both robust technologies in wastewater treatments. In this study, the AGS characteristics and nutrient removal performances were all estimated at the load of 20 to 40 mg/L ammonia nitrogen (NH4+-N) and 0 to 40mT magnetic field. Results showed that 10mT was beneficial for keeping stable structure of granules when increasing NH4+-N load, accompanied with increasing protein (PN) secretion in EPS. Besides, all the total nitrogen (TN) removal rate under 10mT reached above 90%, while they were all less than 80% under other WMF strength when loading with 40 mg/L NH4+-N. Moreover, the simultaneous nitrification and denitrification (SND) efficiency could be enhanced by WMF of 10mT. Illumina MiSeq sequencing showed that NH4+-N load changed the bacterial richness and diversity when the magnetic strength was 10mT. And Candidatus_Competibacter was identified as the main functional genes for effective operation in this system.
Collapse
Affiliation(s)
- Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Qun Song
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan 430010, China
| | - Dao Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|