1
|
Hosny S, Elshobary ME, El-Sheekh MM. Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35885-8. [PMID: 39920498 DOI: 10.1007/s11356-025-35885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
This study explores the remarkable potential of algae in addressing global sustainability challenges. Microalgae, in particular, emerge as sustainability champions. Their applications span an impressive array of industries and processes, including food and feed production, biofuels, cosmetics, pharmaceuticals, and environmental remediation. This versatility positions algae as key players in achieving over 50% of UN Sustainable Development Goals (SDGs) simultaneously, addressing issues such as climate action, clean water and sanitation, affordable and clean energy, and zero hunger. From sequestering carbon, purifying wastewater, and producing clean energy to combating malnutrition, algae demonstrates unparalleled potential. Their ability to flourish in extreme conditions and their rapid growth rates further enhance their appeal for large-scale cultivation. As research advances, innovative applications continue to emerge, such as algae-based bioplastics and dye-sensitized solar cells, promising novel solutions to pressing global issues. This study illuminates how harnessing the power of algae can drive us towards a more resilient, sustainable world. By leveraging algae's multifaceted capabilities, we can tackle climate change, resource scarcity, and economic development concurrently. The research highlights the critical role of algae in promoting circular economy principles and achieving a harmonious balance between human needs and environmental preservation, paving the way for a greener, more sustainable future.
Collapse
Affiliation(s)
- Shimaa Hosny
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, Bremerhaven, 27570, Germany.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Lin R, Li W, Li H, Liu X, He J, Wang X. Numerical Study of the Combustion Characteristics of an 800-1200 kW High-Power Porous Media Combustor at Atmospheric Pressure. ACS OMEGA 2024; 9:31384-31392. [PMID: 39072131 PMCID: PMC11270578 DOI: 10.1021/acsomega.3c10444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/14/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Porous media combustion has the advantages of high combustion efficiency and low pollutant emissions. However, there are few studies on the combustion characteristics and pollutant emissions of high-power porous media combustion chambers and fire tubes. Based on the computational fluid dynamics method, the stable combustion characteristics and pollutant emission rules of methane-air were explored in a high-power porous media combustion chamber of 800-1200 kW. The results show that the combustion of the porous media combustor is stabilized at an inlet velocity of 0.8-1.6 m/s with an equivalence ratio of Φ = 0.5-0.9. The high-power porous medium combustor has the highest limiting temperature at Φ = 0.7. Temperature increases gradually with increasing porosity within the -2.5 to 1 m axial center interval. The outlet radial temperature distribution tends to be uniform with the increase of porosity, and the outlet temperature is highest for porous media with a thickness of 400 mm. NO emission was lowest at an inlet velocity of 1.2 m/s. A significant reduction in NO emissions was observed with increasing equivalence ratio. NO generation increases with increasing porosity at porosities between 0.75 and 0.85. NO generation increases with the thickness of the porous media and increases sharply at 600 mm. The results above can provide guidelines for the design of a high-efficiency high-power porous combustor.
Collapse
Affiliation(s)
- Riyi Lin
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, P. R. China
| | - Wei Li
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, P. R. China
- Shengli
Oilfield Technical Inspection Center, SlNOPEC, Dongying 257000, P. R. China
| | - Huanan Li
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, P. R. China
| | - Xinxin Liu
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, P. R. China
| | - Jitao He
- PetroChina
(Xinjiang) Petroleum Engineering Co., Ltd., Karamay 834000, P. R. China
| | - Xinwei Wang
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, P. R. China
| |
Collapse
|
3
|
Raza S, Ghasali E, Raza M, Chen C, Li B, Orooji Y, Lin H, Karaman C, Karimi Maleh H, Erk N. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. ENVIRONMENTAL RESEARCH 2023; 220:115135. [PMID: 36566962 DOI: 10.1016/j.envres.2022.115135] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The greatest environmental issue of the twenty-first century is climate change. Human-caused greenhouse gas emissions are increasing the frequency of extreme weather. Carbon dioxide (CO2) accounts for 80% of human greenhouse gas emissions. However, CO2 emissions and global temperature have risen steadily from pre-industrial times. Emissions data are crucial for most carbon emission policymaking and goal-setting. Sustainable and carbon-neutral sources must be used to create green energy and fossil-based alternatives to reduce our reliance on fossil fuels. Near-real-time monitoring of carbon emissions is a critical national concern and cutting-edge science. This review article provides an overview of the many carbon accounting systems that are now in use and are based on an annual time frame. The primary emphasis of the study is on the recently created carbon emission and eliminating sources and technology, as well as the current application trends for carbon neutrality. We also propose a framework for the most advanced naturally available carbon neutral accounting sources capable of being implemented on a large scale. Forming relevant data and procedures will help the "carbon neutrality" plan decision-making process. The formation of pertinent data and methodologies will give robust database support to the decision-making process for the "carbon neutrality" plan for the globe. In conclusion, this article offers some opinions, opportunities, challenges and future perspectives related to carbon neutrality and carbon emission monitoring and eliminating resources and technologies.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Muslim Raza
- Department of Chemistry Bacha Khan University, Charsada, Khyber Pakhtunkhwa, Pakistan; Department of Chemistry, University of Massachusetts Boston, MA, 02125, USA
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, AkdenizUniversity, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Hassan Karimi Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
4
|
Zhang H, Wen H, Yin H, Qin W, Liu X, Wang Y, Liu Y. A novel approach for harvesting the microalgae Chlorella vulgaris with sodium alginate microspheres using buoy-bead flotation method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158418. [PMID: 36055496 DOI: 10.1016/j.scitotenv.2022.158418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
In order to reduce the residue of buoy-beads and solve the problem of pollution caused by high flocculant consumption, SAMs1(sodium alginate microspheres) with sodium alginate were used as the raw material to harvest microalgae for the first time. In addition, during the manufacturing of SAMs, the re-frying oil was used as the dispersion system, which not only reduced the cost, but also provided new ideas for the treatment of re-frying oil. Response surface methodology was used to explore the influence of different factors and the interaction of variables, and the harvesting process was optimized using the multi-objective optimization. Based upon the calculation of XDLVO (extended Derjaguin-Laudau-Verwey-Overbeek) theory and the characterization of Fourier Transform Infrared Spectroscopy, the harvesting mechanism of buoy-bead flotation method was clarified. The results showed that the combination of SAMs and a small amount of aluminum sulfate could replace air flotation and traditional buoy-bead flotation with solid particles as buoy-beads to harvest C. vulgaris (Chlorella vulgaris). For the multi-objective optimization with harvesting efficiency as the priority, the predicted pH, the concentrations of aluminum sulfate and buoy-beads and the dilution factor had values of 8.25, 56.09 mg/L, 17.46 mL/L, and 2.15, respectively. In the validation experiment, the harvesting efficiency and the enrichment ratio of C. vulgaris could reach the values of 97.51 % and 1.97 %, respectively. For the validation experiment of reverse optimization with focusing on enrichment ratio, the harvesting efficiency and the enrichment ratio of C. vulgaris had the values of 93.78 % and 2.65 %, respectively. The essence of improving the harvesting mechanism was the combination of carboxyl and hydroxyl groups between C. vulgaris and SAMs and the adsorption of positive ions by specific proteins on the surface of C. vulgaris to reduce electrostatic repulsion.
Collapse
Affiliation(s)
- Haowen Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Hao Wen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.
| | - Hongwei Yin
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Qin
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xu Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yue Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Ying Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
5
|
Jang ES, Ryu DY, Kim D. Hydrothermal carbonization improves the quality of biochar derived from livestock manure by removing inorganic matter. CHEMOSPHERE 2022; 305:135391. [PMID: 35732205 DOI: 10.1016/j.chemosphere.2022.135391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The application of hydrothermal carbonization to improve biomass-derived energy sources is crucial because of insufficient supplies of fossil fuels and concerns associated with the impact of fossil fuels on the environment. Hydrothermal carbonization technology has been developed to circumvent the energy-intensive drying step required for the thermal conversion of high-moisture organic feedstocks into fuel. In this study, the quality of livestock manure was upgraded, and its energy density was increased through hydrothermal carbonization at various temperatures. The evolution of waste biomass under hydrothermal carbonization was chemically analyzed. The increased carbon content of the resulting biochar upgraded its fuel properties, leading to energy savings in the treatment process. After hydrothermal carbonization, the H/C and O/C ratios were lower owing to chemical conversion. The optimal temperature for hydrothermal carbonization was approximately 220 °C. The inorganic content resulted in a lowered degree of agglomeration and reduced the likelihood of fouling during combustion. The thermogravimatric analysis also provided the changing combustion characteristics due to the increased fixed carbon content. Fourier transform infrared spectra revealed that hydrothermal carbonization reaction reduced the numbers of C-O and C-H functional groups and increased the number of aromatic C-H functional groups. The equilibrium moisture content decreased rapidly when hydrothermal carbonization was conducted at temperatures higher than 200 °C, and the initial moisture content was reduced by 75% after hydrothermal carbonization at 300 °C.
Collapse
Affiliation(s)
- Eun-Suk Jang
- Plant Process Development Center, Institute for Advanced Engineering, Gyeonggi, 17180, South Korea
| | - Do-Yoon Ryu
- Department of Environmental and Chemical Convergence Engineering, Daegu University, Gyeongbuk, 38453, South Korea
| | - Daegi Kim
- Department of Environmental and Chemical Convergence Engineering, Daegu University, Gyeongbuk, 38453, South Korea; Department of Environmental Technology Engineering, Daegu University, Gyeongbuk, 38453, South Korea.
| |
Collapse
|
6
|
Ma C, Zhang F, Liu H, Wang H, Hu J. Thermogravimetric pyrolysis kinetics study of tobacco stem via multicomponent kinetic modeling, Asym2sig deconvolution and combined kinetics. BIORESOURCE TECHNOLOGY 2022; 360:127539. [PMID: 35777640 DOI: 10.1016/j.biortech.2022.127539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Tobacco stems (TS) are tobacco residues produced, whereby the assessment of the pyrolysis kinetics of TS is critical to realize high-value utilization of agricultural residues. Firstly, a thermogravimetric analyzer was employed to perform the non-isothermal pyrolysis of TS at various heating rates. Then, the deconvolution function by Asym2sig showed that the pyrolysis of TS can be accurately modeled for three parallel decomposition fractions. Furthermore, the pyrolysis product was analyzed using fourier transform infrared spectrometer (FTIR). The results showed that the average activation energy evaluated by the isoconversion methods exhibited the highest average activation energy of 191.762 kJ·mol-1 for lignin (LG), followed by 189.268 kJ·mol-1 for cellulose (CL) and then 176.357 kJ·mol-1 for hemicellulose (HC). Based on the experimental results, the pre-exponential factors and reaction models for HC, CL and LG were also calculated and developed separately. From thermodynamic standpoint, raw materials for bioenergy generation can be derived from TS.
Collapse
Affiliation(s)
- Chaowei Ma
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Fengxia Zhang
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; Kunming Metallurgy College, 650033 Kunming, PR China
| | - Huili Liu
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Hua Wang
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Jianhang Hu
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China.
| |
Collapse
|
7
|
Wang H, Ma J, Chen Z, Yuan Y, Zhou B, Li W. Promoted photocarrier separation by dipole engineering in two-dimensional perovskite/C 2N van der Waals heterostructures. Phys Chem Chem Phys 2022; 24:17348-17360. [PMID: 35819077 DOI: 10.1039/d2cp01555b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the aggravation of environmental pollution and the energy crisis, it is urgent to develop and design environment-friendly and efficient photocatalysts for water splitting. van der Waals heterostructures composed of different two-dimensional materials offer an easily accessible way to combine properties of individual materials for applications. Herein, a novel Cs3Bi2I9/C2N heterostructure is proposed through first-principles calculations. The structural, electronic, and optical properties, as well as the charge transfer mechanism at the interface of Cs3Bi2I9/C2N are systematically investigated. Due to the difference between the work functions of Cs3Bi2I9 and C2N monolayers, when they are constructed into heterostructures, redistribution of charge occurs in the whole structure, and some of the charge transfer occurs at the interface due to the formation of an internal electric field. The band structure of Cs3Bi2I9/C2N has type-II band alignment, and the band edge position as well as the band-gap value of the heterostructure are suitable for visible light water splitting. The in-plane biaxial strain, interfacial spacing, and external electric field can effectively modulate the electronic structure and photocatalytic performance of the heterostructure. Under certain conditions, the heterostructure can be changed from type-II to type-I band alignment, accompanied by the transition from an indirect band-gap semiconductor to a direct band-gap semiconductor. Moreover, the intrinsic anion defect (I vacancy) at different positions, as donor defects, can introduce defect levels near the conduction band edge, which affects the transition of photogenerated carriers in these systems. Our findings provide a theoretical design for strategies to improve the performance of two-dimensional perovskites/C2N in photocatalytic and optoelectronic applications.
Collapse
Affiliation(s)
- Hui Wang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jun Ma
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yujie Yuan
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wei Li
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
8
|
Speciation and transformation of nitrogen for swine manure thermochemical liquefaction. Sci Rep 2022; 12:12056. [PMID: 35835911 PMCID: PMC9283412 DOI: 10.1038/s41598-022-16101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.
Collapse
|
9
|
Liu R, Li S, Tu Y, Hao X, Qiu F. Recovery of value-added products by mining microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114512. [PMID: 35066198 DOI: 10.1016/j.jenvman.2022.114512] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Microalgae blooms are always blamed for the interruption of the aquatic environment and pose a risk to the source of drinking water. Meanwhile, microalgae as primary producers are a kind of resource pool and could benefit the environment and contribute to building a circular economy. The lipid and polyhydroxybutyrate (PHB) in the cells of microalgae could be alternatives to fossil fuels and plastics, respectively, which are the culprits of global warming and plastic pollution. Besides, some microalgae are rich in nutrients, such as proteins and astaxanthin, which make themselves suitable for feed additives. As wastewater is rich in nutrients necessary for microalgae, thus, value-added product recovery via microalgae could be an approach to valorizing wastewater. However, a one-size-fits-all approach deploying various wastewater for the above products cannot be summarized. On the contrary, specific technical protocols should be tailored regarding each product in microalgae biomass with various wastewater. Thus, this review is to summarize the research effort by far on wastewater-cultivated microalgae for value-added products. Wastewater type, regulation methods, and targeted product yields are compiled and discussed and are expected to guide future extrapolation into a commercial scale.
Collapse
Affiliation(s)
- Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Siqi Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Yingfan Tu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China.
| | - Fuguo Qiu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China.
| |
Collapse
|
10
|
Chen F, Zhang F, Yang S, Liu H, Wang H, Hu J. Investigation of non-isothermal pyrolysis kinetics of waste industrial hemp stem by three-parallel-reaction model. BIORESOURCE TECHNOLOGY 2022; 347:126402. [PMID: 34826563 DOI: 10.1016/j.biortech.2021.126402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of pyrolysis kinetics for waste industrial hemp stem (IHS) is essential to achieve the high-value utilization of agricultural waste. In present study, firstly, non-isothermal pyrolysis experiments of IHS were performed at different heating rates using a thermogravimetric analyzer. Then, the kinetic triplets (apparent activation energy, pre-exponential factor, and reaction mechanism) of the three pseudo components for IHS (hemicellulose, cellulose, and lignin) were determined by a three-parallel-reaction model. Moreover, the pyrolysis products were also characterized via FTIR and SEM. The results showed that the apparent activation energies of hemicellulose, cellulose and lignin were 86.523, 113.257 and 197.961 kJ/mol, respectively; the pre-exponential factors were 6.887 × 107, 8.179 × 109 and 1.801 × 1015 s-1, respectively; and the reaction mechanism functions were f(α) = α1.35629(1-α)0.34832[-ln(1-α)]-1.20128, f(α) = α3.42900(1-α)0.01288[-ln(1-α)]-2.84445, f(α) = α0.68738(1-α)3.09313[-ln(1-α)]-1.58522, respectively. The release temperature for volatile products of IHS pyrolysis was mainly between 440 and 840 K. IHS as an agricultural waste is a suitable feedstock to produce renewable energy.
Collapse
Affiliation(s)
- Fangjun Chen
- Engineering Research of Metallurgy Energy Conservation & Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Fengxia Zhang
- Engineering Research of Metallurgy Energy Conservation & Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; Kunming Metallurgy College, 650033 Kunming, PR China
| | - Shiliang Yang
- Engineering Research of Metallurgy Energy Conservation & Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Huili Liu
- Engineering Research of Metallurgy Energy Conservation & Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Hua Wang
- Engineering Research of Metallurgy Energy Conservation & Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Jianhang Hu
- Engineering Research of Metallurgy Energy Conservation & Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China.
| |
Collapse
|
11
|
Jiao A, Gao J, He Z, Li F, Kong L. Constructing High‐Performance Li‐ion Capacitors via Cobalt Fluoride with Excellent Cyclic Stability as Anode and Coconut Shell Biomass‐Derived Carbon as Cathode Materials. ChemistrySelect 2021. [DOI: 10.1002/slct.202102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ai‐Jun Jiao
- School of Materials Science and Engineering Lanzhou University of Technology Lanzhou 730050 P. R. China
| | - Jian‐Fei Gao
- School of Materials Science and Engineering Lanzhou University of Technology Lanzhou 730050 P. R. China
| | - Zheng‐Hua He
- School of Materials Science and Engineering Lanzhou University of Technology Lanzhou 730050 P. R. China
| | - Feng‐Feng Li
- School of Materials Science and Engineering Lanzhou University of Technology Lanzhou 730050 P. R. China
| | - Ling‐Bin Kong
- School of Materials Science and Engineering Lanzhou University of Technology Lanzhou 730050 P. R. China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Lanzhou University of Technology Lanzhou 730050 P. R. China
| |
Collapse
|
12
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
Gan J, Li F, Tang Q. Vacancies-Engineered M 2CO 2 MXene as an Efficient Hydrogen Evolution Reaction Electrocatalyst. J Phys Chem Lett 2021; 12:4805-4813. [PMID: 33999629 DOI: 10.1021/acs.jpclett.1c00917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vacancy engineering is proposed to effectively modulate the hydrogen evolution reaction (HER) activity of M2CO2 MXene. A single C vacancy slightly weakens the H adsorption, while the introduction of a M vacancy or coupled M+C vacancies can greatly enhance the H binding. For a MXene with intrinsic too-strong H adsorption, double C vacancies are effective in weakening the binding and promoting the activity. The activity tuning is closely correlated to the electronic structures of the defected MXene, where the highest occupied peak position of the surface O electronic states shows an apparent linear trend with ΔGH and can be used to qualitatively predict the activity. The weakened or strengthened H adsorption by a C or M vacancy is attributed to the upshifted or downshifted Fermi level of surface O, respectively. Our results indicate the potential of defect chemistry to tune the catalytic activity of MXene and provide new possibilities to enhance the applications of MXene.
Collapse
Affiliation(s)
- Jinyu Gan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Fuhua Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
14
|
One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation. J Colloid Interface Sci 2021; 601:42-49. [PMID: 34052725 DOI: 10.1016/j.jcis.2021.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, intensive attention has been attracted to the two-dimensional metal nanosheets, owing to their excellent electrocatalytic performance for direct alcohol fuel cells (DAFCs). Herein, PdRu nanosheets have been synthesized successfully by a facile one-pot method. The rugged nanosheet structure provided plentiful surface active sites to enhance the electrocatalytic activity. Moreover, benefiting from the synergistic effect and improved electronic structure, PdRu NSs exhibited splendid electrocatalytic performance in ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). Specifically, the mass activity of PdRu NSs was 1.72 and 3.69 times over those of Pd NSs and Pd/C catalysts in EGOR. Moreover, PdRu NSs displayed the largest mass activity in GOR, 1.48 and 2.47 times as large as Pd NSs and Pd/C catalysts. The results of stability tests demonstrated that the durability of PdRu NSs was the highest among the obtained catalysts. This work plays a directive role on the in-depth engineering on Pd-based catalysts with nanosheet architectures.
Collapse
|
15
|
The Future of Russian Arctic Oil and Gas Projects: Problems of Assessing the Prospects. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of Arctic marine resources is currently the focus of the world’s largest oil and gas companies, which is due to the presence of significant hydrocarbon reserves. However, the decision-making process for implementing offshore oil and gas projects in the Arctic is highly uncertain and requires consideration of many factors. This study presents a comprehensive approach to evaluating the prospects of oil production on the Russian Arctic shelf. It is based on a specific methodology which involves expert forecasting methods. We analyze the current conditions and key factors and indicators, focusing on oil prices and quality of technologies that could influence the decision-making in the oil and gas company concerning Arctic offshore fields’ development. We use general scientific methods—analysis, synthesis, classification and systematization—and propose a method for assessing the prospects of Arctic projects which is based on a three-step algorithm. Together with practical tools presented in the article, it will support decision-making on the project initiation and the development of a particular field.
Collapse
|
16
|
Liu Q, Wang X, Tan B, Jin S. Transition-metal-free radical homocoupling polymerization to synthesize conjugated poly(phenylene butadiynylene) polymers. Polym Chem 2021. [DOI: 10.1039/d1py00266j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A transition-metal-free radical polymerization method to synthesize conjugated poly(phenylene butadiynylene) polymers with high surface areas and high gas uptake abilities.
Collapse
Affiliation(s)
- Qingmin Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|
17
|
Geem KR, Song Y, Hwang I, Bae HJ, Lee DW. Production of Gloeophyllum trabeum Endoglucanase Cel12A in Nicotiana benthamiana for Cellulose Degradation. FRONTIERS IN PLANT SCIENCE 2021; 12:696199. [PMID: 34262588 PMCID: PMC8273430 DOI: 10.3389/fpls.2021.696199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/02/2021] [Indexed: 05/06/2023]
Abstract
Lignocellulosic biomass from plants has been used as a biofuel source and the potent acidic endoglucanase GtCel12A has been isolated from Gloeophyllum trabeum, a filamentous fungus. In this study, we established a plant-based platform for the production of active GtCel12A fused to family 3 cellulose-binding module (CBM3). We used the signal sequence of binding immunoglobulin protein (BiP) and the endoplasmic reticulum (ER) retention signal for the accumulation of the produced GtCel12A in the ER. To achieve enhanced enzyme expression, we incorporated the M-domain of the human receptor-type tyrosine-protein phosphatase C into the construct. In addition, to enable the removal of N-terminal domains that are not necessary after protein expression, we further incorporated the cleavage site of Brachypodium distachyon small ubiquitin-like modifier. The GtCel12A-CBM3 fusion protein produced in the leaves of Nicotiana benthamiana exhibited not only high solubility but also efficient endoglucanase activity on the carboxymethyl cellulose substrate as determined by 3,5-dinitrosalicylic acid assay. The endoglucanase activity of GtCel12A-CBM3 was maintained even when immobilized on microcrystalline cellulose beads. Taken together, these results indicate that GtCel12A endoglucanase produced in plants might be used to provide monomeric sugars from lignocellulosic biomass for bioethanol production.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju, South Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Dong Wook Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- *Correspondence: Dong Wook Lee
| |
Collapse
|
18
|
Rao Y, Zhang F, Zhu B, Li H, Zheng K, Zou Y, Feng X, Guo H, Qiu J, Chen X, Yu J. A C 2N/ZnSe heterostructure with type-II band alignment and excellent photocatalytic water splitting performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj02366g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A type-II C2N/ZnSe heterostructure with strong light-absorption ability, high carrier mobility and low exciton binding energy, exhibits excellent photocatalytic water splitting performance
Collapse
|
19
|
Abstract
Transmembrane proteins involved in metabolic redox reactions and photosynthesis catalyse a plethora of key energy-conversion processes and are thus of great interest for bioelectrocatalysis-based applications. The development of membrane protein modified electrodes has made it possible to efficiently exchange electrons between proteins and electrodes, allowing mechanistic studies and potentially applications in biofuels generation and energy conversion. Here, we summarise the most common electrode modification and their characterisation techniques for membrane proteins involved in biofuels conversion and semi-artificial photosynthesis. We discuss the challenges of applications of membrane protein modified electrodes for bioelectrocatalysis and comment on emerging methods and future directions, including recent advances in membrane protein reconstitution strategies and the development of microbial electrosynthesis and whole-cell semi-artificial photosynthesis.
Collapse
|
20
|
Investigation of Waste Biogas Flame Stability Under Oxygen or Hydrogen-Enriched Conditions. ENERGIES 2020. [DOI: 10.3390/en13184760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing production rates of the biomethane lead to increased generation of waste biogases. These gases should be utilized on-site to avoid pollutant emissions to the atmosphere. This study presents a flexible swirl burner (~100 kW) with an adiabatic chamber capable of burning unstable composition waste biogases. The main combustion parameters and chemiluminescence emission spectrums were examined by burning waste biogases containing from 5 to 30 vol% of CH4 in CO2 under air, O2-enriched atmosphere, or with the addition of hydrogen. The tested burner ensured stable combustion of waste biogases with CH4 content not less than 20 vol%. The addition of up to 5 vol% of H2 expanded flammability limits, and stable combustion of the mixtures with CH4 content of 15 vol% was achieved. The burner flexibility to work under O2-enriched air conditions showed more promising results, and the flammability limit was expanded up to 5 vol% of CH4 in CO2. However, the combustion under O2-enriched conditions led to increased NOx emissions (up to 1100 ppm). Besides, based on chemiluminescence emission spectrums, a linear correlation between the spectral intensity ratio of OH* and CH* (IOH*/ICH*) and CH4 content in CO2 was presented, which predicts blow-off limits burning waste biogases under different H2 or O2 enrichments.
Collapse
|