1
|
Xu T, Mitra R, Tan D, Li Z, Zhou C, Chen T, Xie Z, Han J. Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnol Adv 2024; 70:108302. [PMID: 38101552 DOI: 10.1016/j.biotechadv.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Halophiles are salt-loving microorganisms known to have their natural resistance against media contamination even when cultivated in nonsterile and continuous bioprocess system, thus acting as promising cell factories for Next Generation of Industrial Biotechnology (NGIB). NGIB - a successor to the traditional industrial biotechnology, is a more sustainable and efficient bioprocess technology while saving energy and water in a more convenient way as well as reducing the investment cost and skilled workforce requirement. Numerous studies have achieved intriguing outcomes during synthesis of different metabolite using halophiles such as polyhydroxyalkanoates (PHA), ectoine, biosurfactants, and carotenoids. Present-day development in genetic maneuverings have shown optimistic effects on the industrial applications of halophiles. However, viable and competent genetic manipulation system and gene editing tools are critical to accelerate the process of halophile engineering. With the aid of such powerful gene manipulation systems, exclusive microbial chassis are being crafted with desirable features to breed another innovative area of research such as synthetic biology. This review provides an aerial perspective on how the expansion of adaptable gene manipulation toolkits in halophiles are contributing towards biotechnological advancement, and also focusses on their subsequent application for production improvement. This current methodical and comprehensive review will definitely help the scientific fraternity to bridge the gap between challenges and opportunities in halophile engineering.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhengjun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
2
|
Fan K, Xu X, Xu F, Shi J, Sun K, Fedorova I, Ren N, Lee DJ, Chen C. A novel intra- and extracellular distribution pattern of elemental sulfur in Pseudomonas sp. C27-driven denitrifying sulfide removal process. ENVIRONMENTAL RESEARCH 2022; 213:113674. [PMID: 35700768 DOI: 10.1016/j.envres.2022.113674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. C27 can achieve the conversion of toxic sulfide to economical elemental sulfur (S0) with various electron acceptors. In this study the distribution pattern of S0 produced by C27 in denitrifying sulfide removal (DSR) process was explored. The SEM observation identified that the particle size of the biogenic S0 was at micron level. Strikingly, a novel distribution pattern of S0 was revealed that the produced S0 was not directly secreted extracellularly, but be stored temporarily in the cell interior. Pyrolysis at 65 °C for 20 min were recommended prior to S0 recovery, which could maximize the separation of extracellular polymeric substances (EPS) from C27. Furthermore, the effects of N/S molar ratio, initial sulfide concentration, and micro-oxygen condition were investigated to improve the production of S0 by C27. The highest S0 production was obtained at S/N of 3 and anaerobic condition seemed to favor the S0 production by C27. This study would provide a theoretical support for highly efficient sulfide removal as well as S0 recovery in sulfide-laden wastewater treatment.
Collapse
Affiliation(s)
- Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fan Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Jia Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Irina Fedorova
- Department of Geoecology and Natural Resource Management, Saint Petersburg State University, Institute of Earth Science, Russia
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
3
|
Liu Z, Yang M, Mu T, Liu J, Chen L, Miao D, Xing J. Organic layer characteristics and microbial utilization of the biosulfur globules produced by haloalkaliphilic Thioalkalivibrio versutus D301 during biological desulfurization. Extremophiles 2022; 26:27. [PMID: 35962820 DOI: 10.1007/s00792-022-01274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
The haloalkaliphilic genus Thioalkalivibrio, widely used in bio-desulfurization, can oxidize H2S to So, which is excreted outside cells in the form of biosulfur globules. As by-product of bio-desulfurization, information on biosulfur globules is still very scant, which limits its high-value utilization. In this paper, the characteristics of biosulfur globules produced by Thioalkalivibrio versutus D301 and the possibility of cultivating sulfur-oxidizing bacteria as a high biological-activity sulfur source were studied. The sulfur element in the biosulfur globules existed in the form α-S8, which was similar to chemical sulfur. The biosulfur globule was wrapped with an organic layer composed of polysaccharides and proteins. The composition of this organic layer could change. In the formation stage of biosulfur globules, the organic layer was dominated by polysaccharides, and in later stage, proteins became the main component. We speculated that the organic layer was mainly formed by the passive adsorption of organic matter secreted by cells. The existence of organic layer endowed biosulfur with better bioavailability. Compared with those found using chemical sulfur, the growth rates of Acidithiobacillus thiooxidans ATCC 19377T, Thiomicrospira microaerophila BDL05 and Thioalkalibacter halophilus BDH06 using biosulfur increased several folds to an order of magnitude, indicating that biosulfur was a good sulfur source for cultivating sulfur-oxidizing bacteria.
Collapse
Affiliation(s)
- Zhixia Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Biology and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinlong Liu
- School of Biology and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Delu Miao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
4
|
Li X, Yang M, Mu T, Miao D, Liu J, Xing J. Composition and key-influencing factors of bacterial communities active in sulfur cycling of soda lake sediments. Arch Microbiol 2022; 204:317. [PMID: 35567694 DOI: 10.1007/s00203-022-02925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
Bacteria are important participants in sulfur cycle of the extremely haloalkaline environment, e.g. soda lake. The effects of physicochemical factors on the composition of sulfide-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in soda lake have remained elusive. Here, we surveyed the community structure of total bacteria, SOB and SRB based on 16S rRNA, soxB and dsrB gene sequencing, respectively, in five soda lakes with different physicochemical factors. The results showed that the dominant bacteria belonged to the phyla Proteobacteria, Bacteroidetes, Halanaerobiaeota, Firmicutes and Actinobacteria. SOB and SRB were widely distributed in lakes with different physicochemical characteristics, and the community composition were different. In general, salinity and inorganic nitrogen sources (NH4+-N, NO3--N) were the most significant factors. Specifically, the communities of SOB, mainly including Thioalkalivibrio, Burkholderia, Paracoccus, Bradyrhizobium, and Hydrogenophaga genera, were remarkably influenced by the levels of NH4+-N and salinity. Yet, for SRB communities, including Desulfurivibrio, Candidatus Electrothrix, Desulfonatronospira, Desulfonatronum, Desulfonatronovibrio, Desulfonatronobacter and so on, the most significant determinants were salinity and NO3--N. Besides, Rhodoplanes played a significant role in the interaction between SOB and SRB. From our results, the knowledge regarding the community structures of SOB and SRB in extremely haloalkaline environment was extended.
Collapse
Affiliation(s)
- Xiangyuan Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Delu Miao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinlong Liu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Peh S, Mu T, Zhong W, Yang M, Chen Z, Yang G, Zhao X, Sharshar MM, Samak NA, Xing J. Enhanced Biodesulfurization with a Microbubble Strategy in an Airlift Bioreactor with Haloalkaliphilic Bacterium Thioalkalivibrio versutus D306. ACS OMEGA 2022; 7:15518-15528. [PMID: 35571827 PMCID: PMC9096976 DOI: 10.1021/acsomega.2c00258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 05/05/2023]
Abstract
Biodesulfurization under haloalkaline conditions requires limiting oxygen and additional energy in the system to deliver high mixing quality control. This study considers biodesulfurization in an airlift bioreactor with uniform microbubbles generated by a fluidic oscillation aeration system to enhance the biological desulfurization process and its hydrodynamics. Fluidic oscillation aeration in an airlift bioreactor requires minimal energy input for microbubble generation. This aeration system produced 81.87% smaller average microbubble size than the direct aeration system in a bubble column bioreactor. The biodesulfurization phase achieved a yield of 94.94% biological sulfur, 84.91% biological sulfur selectivity, and 5.06% sulfur oxidation performance in the airlift bioreactor with the microbubble strategy. The biodesulfurization conditions of thiosulfate via Thioalkalivibrio versutus D306 are revealed in this study. The biodesulfurization conditions in the airlift bioreactor with the fluidic oscillation aeration system resulted in the complete conversion of thiosulfate with 27.64% less sulfate production and 10.34% more biological sulfur production than in the bubble column bioreactor. Therefore, pleasant hydrodynamics via an airlift bioreactor mechanism with microbubbles is favored for biodesulfurization under haloalkaline conditions.
Collapse
Affiliation(s)
- Sumit Peh
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
| | - Tingzhen Mu
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Zhong
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
| | - Maohua Yang
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Zheng Chen
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
| | - Gama Yang
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
| | - Xuhao Zhao
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
| | - Moustafa Mohamed Sharshar
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
| | - Nadia A. Samak
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
- Processes
Design and Development Department, Egyptian
Petroleum Research Institute, Nasr
City 11727, Cairo, Egypt
| | - Jianmin Xing
- CAS
Key Laboratory of Green Process and Engineering, State Key Laboratory
of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, P.R. China
- Chemistry
and Chemical Engineering Guangdong Laboratory, Shantou 515031, P.R. China
| |
Collapse
|
6
|
Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S, Xiang H. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol 2022; 24:2239-2258. [PMID: 35048500 DOI: 10.1111/1462-2920.15899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Manqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Chen Z, Yang G, Mu T, Yang M, Samak NA, Peh S, Jia Y, Hao X, Zhao X, Xing J. Rate-based model for predicting and evaluating H2S absorption in the haloalkaliphilic biological desulfurization process. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhang M, Xue Q, Zhang S, Zhou H, Xu T, Zhou J, Zheng Y, Li M, Kumar S, Zhao D, Xiang H. Development of whole-cell catalyst system for sulfide biotreatment based on the engineered haloalkaliphilic bacterium. AMB Express 2021; 11:142. [PMID: 34693461 PMCID: PMC8542531 DOI: 10.1186/s13568-021-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Microorganisms play an essential role in sulfide removal. Alkaline absorption solution facilitates the sulfide’s dissolution and oxidative degradation, so haloalkaliphile is a prospective source for environmental-friendly and cost-effective biodesulfurization. In this research, 484 sulfide oxidation genes were identified from the metagenomes of the soda-saline lakes and a haloalkaliphilic heterotrophic bacterium Halomonas salifodinae IM328 (=CGMCC 22183) was isolated from the same habitat as the host for expression of a representative sequence. The genetic manipulation was successfully achieved through the conjugation transformation method, and sulfide: quinone oxidoreductase gene (sqr) was expressed via pBBR1MCS derivative plasmid. Furthermore, a whole-cell catalyst system was developed by using the engineered strain that exhibited a higher rate of sulfide oxidation under the optimal alkaline pH of 9.0. The whole-cell catalyst could be recycled six times to maintain the sulfide oxidation rates from 41.451 to 80.216 µmol·min−1·g−1 dry cell mass. To summarize, a whole-cell catalyst system based on the engineered haloalkaliphilic bacterium is potentiated to be applied in the sulfide treatment at a reduced cost.
Collapse
|
9
|
Hao X, Mu T, Mohammed Sharshar M, Yang M, Zhong W, Jia Y, Chen Z, Yang G, Xing J. Revealing sulfate role in empowering the sulfur-oxidizing capacity of Thioalkalivibrio versutus D301 for an enhanced desulfurization process. BIORESOURCE TECHNOLOGY 2021; 337:125367. [PMID: 34139561 DOI: 10.1016/j.biortech.2021.125367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Haloalkaliphilic Thioalkalivibrio, a dominant genus for sulfide removal, has attracted growing interest. However, the bacterial biological response to this process's final product, sulfate, has not been well-studied. Here, thiosulfate oxidation and sulfur formation by T. versutus D301 were being enhanced with increasing sulfate supply. With the addition of 0.73 M sulfate, the thiosulfate utilization rate and sulfur production were improved by 68.1% and 120.1% compared with carbonate-grown control at the same salinity (1.8 M). For sulfate-grown cells, based on metabolic analysis, the downregulation of central carbon metabolism indicated that sulfate triggered a decrease in energy conservation efficiency. Additionally, the gene expression analysis further revealed that sulfate induced the inhibition of sulfur to sulfate oxidation, causing the upregulation of thiosulfate to sulfur oxidation for providing cells with additional energy. This study enhances researchers' understanding regarding the sulfate effect on the bio-desulfurization process and presents a new perspective of optimizing the biotechniques.
Collapse
Affiliation(s)
- Xuemi Hao
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | - Maohua Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Zhong
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, CAS, Shenzhen 518055, China
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zheng Chen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gama Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, PR China.
| |
Collapse
|
10
|
Chen Z, Yang G, Hao X, Samak NA, Jia Y, Peh S, Mu T, Yang M, Xing J. Recent advances in microbial capture of hydrogen sulfide from sour gas via sulfur-oxidizing bacteria. Eng Life Sci 2021; 21:693-708. [PMID: 34690639 PMCID: PMC8518563 DOI: 10.1002/elsc.202100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
Biological desulfurization offers several remarkably environmental advantages of operation at ambient temperature and atmospheric pressure, no demand of toxic chemicals as well as the formation of biologically re-usable sulfur (S0), which has attracted increasing attention compared to conventionally physicochemical approaches in removing hydrogen sulfide from sour gas. However, the low biomass of SOB, the acidification of process solution, the recovery of SOB, and the selectivity of bio-S0 limit its industrial application. Therefore, more efforts should be made in the improvement of the BDS process for its industrial application via different research perspectives. This review summarized the recent research advances in the microbial capture of hydrogen sulfide from sour gas based on strain modification, absorption enhancement, and bioreactor modification. Several efficient solutions to limitations for the BDS process were proposed, which paved the way for the future development of BDS industrialization.
Collapse
Affiliation(s)
- Zheng Chen
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Gama Yang
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Xuemi Hao
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Nadia A. Samak
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
- Processes Design and Development DepartmentEgyptian Petroleum Research InstituteCairoEgypt
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Sumit Peh
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|