1
|
Lu J, Lu Q, Hu Q, Qiu B. Recovery of organic matters by activated sludge from municipal wastewater: Performance and characterization. ENVIRONMENTAL RESEARCH 2024; 252:118829. [PMID: 38582424 DOI: 10.1016/j.envres.2024.118829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Municipal wastewater treatment processes consume a significant amount of energy and generate substantial carbon emissions. However, organic matters existing in municipal wastewater hold the potential as a valuable carbon source. Activated sludge has the potential to capture and recover the organic matters, thereby enriching carbon sources and facilitating subsequent sludge anaerobic digestion as well as in line with the concept of sustainable development. Based on above, this study investigated the enrichment and recovery characteristics and mechanisms of activated sludge adsorption on carbon sources in municipal wastewater, while optimizing the recovery conditions. The results indicated that insoluble organic matters, as well as a fraction of dissolved organic matters, can be effective recovered within approximately 40 min. Specifically, 74.1% of insoluble organic matters and 25.8% of soluble organic matters were successfully captured by the activated sludge, resulting in a 5.0% increase in sludge organic matter content. Moreover, activated sludge demonstrated remarkable recovery of particulate organic matters across various particle sizes, particularly larger particles (>5 μm) with high protein content. Notably, the dissolved biodegradable organics such as tryptophan and tyrosine protein-like substances according to 3D-EEM and lipids, proteins/amino sugars, and carbohydrates according to FT-ICR MS can be effectively recovered. Finally, the study revealed that the recovery of organic matters from the wastewater by activated sludge followed the pseudo-second-order kinetics model, with surface binding, hydrogen bonding and interparticle diffusion in sludge flocs as the primary adsorption mechanisms. This approach had abroad application prospects for improving the profitability of wastewater treatment plants.
Collapse
Affiliation(s)
- Junyan Lu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qiaoling Lu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qian Hu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Men Y, Li Z, Zhu L, Wang X, Cheng S, Lyu Y. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161775. [PMID: 36706998 DOI: 10.1016/j.scitotenv.2023.161775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Direct membrane filtration (DMF) technology achieves energy self-sufficiency through carbon recovery and utilization from municipal wastewater. To control its severe membrane fouling and improve DMF technology, targeted research on fouling behaviour and mechanisms is essential. In this study, a DMF reactor equipped with a flat-sheet ceramic membrane was conducted under three scenarios: without control, with intermittent aeration, and with periodic backwash. This system achieved efficient carbon concentration with chemical oxygen demand below 50 mg/L in permeate. Membrane fouling was dominated by intermediate blocking and cake filtration. And reversible external resistance accounted for over 85 % of total resistance. Predominant membrane foulants were free proteins, whose deposition underlies the attachment of cells and biopolymers. Backwash decreased the fouling rate and increased fouling layer porosity by indiscriminately detaching foulants from the membrane surface. While aeration enhanced the back transport of large particles and microbial activity, causing a relatively thin and dense fouling layer containing more microorganisms and β-d-glucopyranose polysaccharides, which implies a higher biofouling potential during long-term operation. In addition, aeration combined with backwash enhanced fouling control fivefold over either one alone. Therefore, simultaneous operation of backwash and other mechanical methods that can provide shear without stimulating aerobic microbial activity is a preferred strategy for minimizing membrane fouling during DMF of municipal wastewater.
Collapse
Affiliation(s)
- Yu Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China; Nanjing Yanjiang Academy of Resources and Ecology Science, Nanjing 210047, PR China.
| | - Lixin Zhu
- Nanjing Yanjiang Academy of Resources and Ecology Science, Nanjing 210047, PR China
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Lyu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
3
|
Jiao C, Hu Y, Zhang X, Jing R, Zeng T, Chen R, Li YY. Process characteristics and energy self-sufficient operation of a low-fouling anaerobic dynamic membrane bioreactor for up-concentrated municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156992. [PMID: 35772537 DOI: 10.1016/j.scitotenv.2022.156992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
Up-concentration of municipal wastewater using physico-chemical methods can effectively enrich organic matter, facilitating subsequent anaerobic digestion of up-concentrated wastewater for enhanced methanogenesis at reduced energy consumption. An anaerobic dynamic membrane bioreactor (AnDMBR) assisted with biogas-sparging was developed to treat up-concentrated municipal wastewater, focusing on the effects of operating temperature and hydraulic retention time (HRT) as well as COD mass balance and energy balance. The COD removal stabilized at about 98 % over the experimental period, while gaseous and dissolved methane contributed 43-49 % and 2-3 % to the influent COD reducing greenhouse gas emissions. The formed dynamic membrane exists mainly as a heterogeneous cake layer with a uneven distribution feature, ensuring the stable effluent quality. Without adopting any physico-chemical cleaning, the transmembrane pressure (TMP) maintained at a low range (2.7 to 14.67 kPa) with the average TMP increasing rate of 0.089 kPa/d showing a long-term low-fouling operation. Increasing the concentration ratio, the methane production rate decreased from 0.18 to 0.15 L CH4/gCOD likely due to the accumulation of particulate organics. Microbial community analysis indicated the predominant methanogenic pathway shifted from hydrogenotrophic to acetoclastic methanogenesis in response to the temperature change. Net energy balance (0.003-0.600 kWh/m3) can be achieved only under room temperature (25 °C) rather than mesophilic conditions (36 °C).
Collapse
Affiliation(s)
- Chengfan Jiao
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China.
| | - Xiaoling Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruosong Jing
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ting Zeng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
4
|
Tang J, Pu Y, Zeng T, Hu Y, Huang J, Pan S, Wang XC, Li Y, Abomohra AEF. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties. BIORESOURCE TECHNOLOGY 2022; 345:126470. [PMID: 34863846 DOI: 10.1016/j.biortech.2021.126470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The present study introduced a new method for enhanced biomethane production and pollution control of swine wastewater (SW) using anaerobic membrane bioreactor (AnMBR). Results confirmed 35 °C as the optimum temperature for enhanced anaerobic digestion which resulted in relatively higher methane production rate and potential. In AnMBR system, robust pollutants removal and conversion rate were achieved under various hydraulic retention time (HRT) ranging from 20 to 10 days, while the highest methane yield (0.24 L/g-CODremoved) and microbial activity (6.65 mg-COD/g-VSS·h) were recorded at HRT of 15 days. Reduction of HRT to 10 days resulted in serious membrane fouling due to accumulation of extracellularpolymericsubstances(EPS) and cake layer on the membrane. However, cake layer as the dominant membrane foulant could be effectively removed through periodic physical backwash to recover the membrane permeability. Overall, the suggested AnMBR is a promising technology to enhance SW treatment and energy recovery.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610225, Sichuan, China
| | - Ting Zeng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Shengwang Pan
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Abd El-Fatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
5
|
Hnatush SO, Maslovska OD, Komplikevych SY, Kovbasa IV. Influence of cobalt chloride and ferric citrate on purple non-sulfur bacteria Rhodopseudomonas yavorovii. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Heavy metals that enter the environment due to natural processes or industrial activities, when accumulated, have a negative impact on organisms, including microorganisms. Microorganisms have developed various adaptations to heavy metal compounds. The aim of our work was to investigate the influence of ferric citrate and cobalt (II) chloride on biomass accumulation, indicators of free radical damage and activity of enzymes of the antioxidant defense system of bacteria Rhodopseudomonas yavorovii IMV B-7620, that were isolated from the water of Yavorivske Lake (Ukraine, Lviv region), which was formed as a result of flooding of a sulfur quarry. We used cultural, photometric methods, and statistical processing of the results was performed using two-way ANOVA and factor analysis. It was found that ferric citrate at a concentration of 1–12 mM causes inhibition of the accumulation of biomass of bacteria Rh. yavorovii IMV B-7620 up to 44.7%, and cobalt (II) chloride at a concentration of 1–15 mM – up to 70.4%, compared with the control. The studied concentrations of ferric citrate and cobalt (II) chloride cause free radical damage to lipids and proteins of Rh. yavorovii IMV B-7620. As a result of two-way ANOVA we found that under the influence of ferric citrate statistically significant changes in biomass accumulation, lipid hydroperoxides and thiobarbiturate reactive species content, superoxide dismutase activity were predetermined by increasing the concentration of metal salts as well as increasing the duration of cultivation of bacteria, while the content of diene conjugates and catalase activity changed with increasing duration of cultivation. Under the influence of cobalt (II) chloride, statistically significant changes in all studied indicators were found both due to the increase in the concentration of metal salts and with increasing duration of bacterial cultivation. The studied parameters of Rh. yavorovii IMV B-7620 cells under the influence of ferric citrate and cobalt (II) chloride are combined into two factors, that explain 95.4% and 99.2% of the total data variance, respectively. Under the influence of ferric citrate, the first latent factor included diene conjugates, thiobarbiturate reactive species, carbonyl groups in proteins, which are closely linked by a direct bond and inversely related to the content of lipid hydroperoxides and catalase activity. The second latent factor included duration of cultivation of bacteria, biomass accumulation, and superoxide dismutase activity, which are inversely related to lipid hydroperoxide content and catalase activity. Under the influence of cobalt (II) chloride, the first latent factor included the content of lipid hydroperoxides, carbonyl groups in proteins, as well as catalase and superoxide dismutase activities, which are inversely related to bacterial biomass.
Collapse
|
6
|
Boonnorat J, Honda R, Panichnumsin P, Boonapatcharoen N, Yenjam N, Krasaesueb C, Wachirawat M, Seemuang-On S, Jutakanoke R, Teeka J, Angthong S, Prachanurak P. Treatment efficiency and greenhouse gas emissions of non-floating and floating bed activated sludge system with acclimatized sludge treating landfill leachate. BIORESOURCE TECHNOLOGY 2021; 330:124952. [PMID: 33744739 DOI: 10.1016/j.biortech.2021.124952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
This research investigates the treatment efficiency and greenhouse gas (GHG) emissions of non-floating and floating bed AS systems with acclimatized sludge treating landfill leachate. The GHGs under study included carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The non-floating and floating bed AS systems were operated in parallel with identical landfill leachate influent under different hydraulic retention time (HRT) conditions (24, 18, and 12 h). The experimental results showed that the treatment efficiency of organic compounds under 24 h HRT of both systems (90 - 98%) were insignificantly different, while the nutrient removal efficiency of both systems were between 54 and 98 %. The treatment efficiency of the floating bed AS system, despite shorter HRT, remained relatively unchanged due to an abundance of effective bacteria residing in the floating media. The CO2 emissions were insignificantly different between both AS systems under all HRT conditions (22 - 26.3 μmol/cm2.min). The CO2 emissions were positively correlated with organic loading but inversely correlated with HRT. The CH4 emissions were positively correlated with HRT (26.3 μmol/cm2.min under 24 h HRT of the floating bed AS system). The N2O emissions were positively correlated with nitrogen loading, and the N2O emissions from the floating bed AS system were lower due to an abundance of N2O-reducing bacteria. The floating media enhanced the biological treatment efficiency while maintaining the bacterial community in the system. However, the floating media promoted CH4 production under anoxic conditions. The originality of this research lies in the use of floating media in the biological treatment system to mitigate GHG emissions, unlike existing research which focused primarily on enhancement of the treatment efficiency.
Collapse
Affiliation(s)
- Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand.
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu 520-0811, Japan
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok 10150, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok 10150, Thailand
| | - Nawamin Yenjam
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Chananya Krasaesueb
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Manyapron Wachirawat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Sestapong Seemuang-On
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Mueang, Phitsanulok 65000, Thailand
| | - Jantima Teeka
- Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Sivakorn Angthong
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Pradthana Prachanurak
- Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| |
Collapse
|