1
|
Chen M, Jin L, Liu X, Li R, Xian H, Guo C. Immobilization of ammonia-oxidizing bacteria using mycelial pellets: Preparation, characteristics, and application for nitritation. BIORESOURCE TECHNOLOGY 2025; 419:132083. [PMID: 39824321 DOI: 10.1016/j.biortech.2025.132083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH4+-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites. Robust microbial colonization and aggregation in mycelial pellet porous matrix were facilitated by a higher level of extracellular polymeric substances (EPS) compared to conventional AGS. Static tests showed a maximum NH4+-N oxidation rate of 17.7 mg/(gMLVSS·h), higher than free AOB (8.5 mg/(gMLVSS·h)). In multi-recycling tests, the composites maintained 96.6 % NH4+-N oxidation, demonstrating superior repeatability and stability. The results highlight advantages of mycelial pellets as biocompatible carriers in immobilizing AOB sourced from the same system, offering insights into improved nitritation performance and durability, making them promising for practical wastewater treatment.
Collapse
Affiliation(s)
- Ming Chen
- School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Lei Jin
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoying Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Renjie Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Huiling Xian
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chao Guo
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
2
|
Liu S, Liu Y, Ye L, Xiao E, Xu D, Chao H, Dai J, Qiu D. Comparative analyses on nitrogen removal microbes and functional genes within anaerobic-anoxic-oxic and deoxidation ditch sewage-treating processes in Wuhan and Xi'an cities, China. Front Microbiol 2024; 15:1498681. [PMID: 39539698 PMCID: PMC11557530 DOI: 10.3389/fmicb.2024.1498681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Anaerobic-anoxic-oxic (A2/O) and deoxidation ditch (DOD) processes are being increasingly preferred owing to their effectiveness in treating various wastes in wastewater treatment plants (WWTPs). Considering seasonal variations is crucial in optimizing treatment processes, ensuring compliance with regulations, and maintaining the overall efficiency and effectiveness of WWTPs. This study aimed to determine the influence of seasonality on nitrogen removing microbes and functional genes within A2/O and DOD processes in the humid Wuhan and semi-arid Xi'an cities, China. Methods The physicochemical parameters of water quality were determined, and molecular and bioinformatic analyses of the bacterial community and nitrogen metabolism functional genes in the two different treatment processes of two WWTPs were performed over four seasons. Results and discussion Our analyses revealed a significant difference in all physicochemical parameters across all experimental groups (p < 0.05). At the genus level, the abundance of Dokdonella, one unidentified genus of Nitrospiraceae, Terrimonas, and one unidentified genus of Chloroflexi was the highest in all groups. Generally, warmer seasons exhibited higher biodiversity indices. The A2/O system exhibited higher values in terms of most nitrogen metabolism functional genes than those of the DOD sewage treatment system. In both WWTPs, the abundance of most genes in spring and summer were higher than that of autumn and winter seasons. Taken together, changes in temperature, caused by seasonal changes, may contribute to changes in abundance of nitrogen metabolic functional genes.
Collapse
Affiliation(s)
- Shuangyuan Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, China
| | - Yaqi Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Linyan Ye
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Enrong Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dong Xu
- Ecological Environment Science and Technology Center, Wuhan, China
| | - Hongjun Chao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Dongru Qiu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Liu Q, Chen J, Zhou Q, Hou Y, Li Z, Li W, Lv S, Ren N, Wang AJ, Huang C. Multi-omics analysis of nitrifying sludge under carbon disulfide stress: Nitrification performance and molecular mechanisms. WATER RESEARCH 2024; 258:121780. [PMID: 38761598 DOI: 10.1016/j.watres.2024.121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Carbon disulfide (CS2) is a widely used enzyme inhibitor with cytotoxic properties, commonly employed in viscose fibers and cellophane production due to its non-polar characteristics. In industry, CS2 is often removed by aeration, however, residual CS2 may enter the wastewater treatment plants, impacting the performance of nitrifying sludge. Currently, there is a notable dearth of research on the response of nitrifying sludge to CS2-induced stress. This study delves into the alterations in the performance of nitrifying sludge under short-term and long-term CS2 stress, scrutinizes the toxic effects of CS2 on microbial cells, elucidates the succession of microbial community structure, and delineates changes in microbial metabolic products. The findings from short-term CS2 stress revealed that low concentrations of CS2 induced oxidative stress damage, which was subsequently repaired in cells. However, at concentrations of 100-200 mg/L, CS2 inhibited reactive oxygen species, superoxide dismutase, and catalase, which are associated with metabolic and antioxidant activities. The inhibition of nitrite oxidoreductase activity by high concentrations of CS2 was attributed to its impact on the enzyme's conformation. Prolonged CS2 stress resulted in an increase in the secretion of soluble extracellular polymeric substances in sludge, while CS2 was assimilated into sulfate. The analysis of sludge microbial community structure revealed a decline in the relative abundance of Rhodanobacter, which is associated with nitrification, and an increase in Sinomonas, involved in sulfur oxidation. Metabolite analysis results demonstrated that high concentrations of CS2 affect pantothenate and CoA biosynthesis, purine metabolism, and glutathione metabolism. This study elucidated the microbial response mechanism of nitrifying sludge under short-term and long-term CS2 stress. It also clarified the composition and function of microbial ecosystems, and identified key bacterial species and metabolites. It provides a basis for future research to reduce CS2 inhibition through approaches such as the addition of metal ions, the selection of efficient CS2-degrading strains, and the modification of strain metabolic pathways.
Collapse
Affiliation(s)
- Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jie Chen
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Qi Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanan Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Nanqi Ren
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Cong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
4
|
Guo K, Li D, Hao T, Teng L, Li S, Zeng H, Zhang J. Potential directions for future development of mainstream partial nitrification-anammox processes: Ammonia-oxidizing archaea as novel functional microorganisms providing nitrite. BIORESOURCE TECHNOLOGY 2024; 399:130605. [PMID: 38499200 DOI: 10.1016/j.biortech.2024.130605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The application of ammonia-oxidizing archaea (AOA)-based partial nitrification-anammox (PN-A) for mainstream wastewater treatment has attracted research interest because AOA can maintain higher activity in low-temperature environments and they have higher affinity for oxygen and ammonia-nitrogen compared with ammonia-oxidizing bacteria (AOB), thus facilitating stabilized nitrite production, deep removal of low-ammonia, and nitrite-oxidizing bacteria suppression. Moreover, the low affinity of AOA for ammonia makes them more tolerant to N-shock loading and more efficiently integrated with anaerobic ammonium oxidation (anammox). Based on the limitations of the AOB-based PN-A process, this review comprehensively summarizes the potential and significance of AOA for nitrite supply, then gives strategies and influencing factors for replacing AOB with AOA. Additionally, the methods and key influences on the coupling of AOA and anammox are explored. Finally, this review proposes four AOA-based oxygen- or ammonia-limited autotrophic nitritation/denitrification processes to address the low effluent quality and instability of mainstream PN-A processes.
Collapse
Affiliation(s)
- Kehuan Guo
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Luyao Teng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Fu K, Zhang X, Fan Y, Bian Y, Qiu F, Cao X. The enrichment characterisation of Nitrospira under high DO conditions. ENVIRONMENTAL TECHNOLOGY 2024; 45:2156-2170. [PMID: 36601901 DOI: 10.1080/09593330.2023.2165457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Nitrite-oxidizing bacteria (NOB) are crucial to nitrification and nitrogen elimination in wastewater treatment. Mass reports exist on the links between NOB and other microorganisms, for instance, ammonia-oxidizing bacteria (AOB). However, a few studies exist on the enrichment characterisation of NOB under high dissolved oxygen (DO) conditions. In this study, NOB was designed to be enriched individually under high DO conditions in a continuous aeration sequencing batch reactor (SBR), and the kinetic characterisation of NOB was evaluated. The analysis revealed that the average NO2--N removal rate was steady above 98%, with DO and NO2--N being 3-5 mg L-1 and 50-450 mg L-1, respectively. The NO2--N removal efficiency of the system was significantly enhanced and better than in other studies. The high-throughput sequencing suggested that Parcubacteria_ genera_incertae_sedis was the first dominant genus (21.99%), which often appeared in the NOB biological community with Nitrospira. However, the dominant genus NOB was Nitrospira rather than Nitrobacter (8.49%). This result suggested that Nitrospira was capable of higher NO2--N removal. But lower relative abundance indicated that excessive NO2--N had an adverse effect on the enrichment and activity of Nitrospira. In addition, the nitrite half-saturation constant (KNO2) and the oxygen half-saturation constant (KO) were 1.71 ± 0.19 mg L-1 and 0.95 ± 0.10 mg L-1, respectively. These results showed that the enriched Nitrospira bacteria had different characteristics at the strain level, which can be used as a theoretical basis for wastewater treatment plant design and optimisation.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xuemeng Zhang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yang Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yihao Bian
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Fuguo Qiu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xiuqin Cao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
6
|
Xie Y, Zhang Q, Wu Q, Zhang J, Dzakpasu M, Wang XC. Nitrogen removal efficiency and mechanisms of an improved anaerobic-anoxic-oxic system for decentralized sewage treatment. BIORESOURCE TECHNOLOGY 2024; 393:129976. [PMID: 37972901 DOI: 10.1016/j.biortech.2023.129976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The unstable operation and poor effluent quality often associated with decentralized sewage treatment systems due to fluctuating water flows have garnered significant attention. In this study, a novel integrated process combining anoxic denitrification and simultaneous nitrification and denitrification was developed to address these challenges. The improved anaerobic-anoxic-aerobic system achieved average effluent concentrations of 20.83 mg/L and 4.63 mg/L for chemical oxygen demand and NH4+-N, with average removal rates of 91 % and 68 %, respectively. Moreover, the aerobic zone demonstrated an impressive efficiency of 40.8 % for simultaneous nitrification and denitrification. The key bacteria groups driving the system's performance were heterotrophic and aerobic nitrifying bacteria, which dominated the microbial populations. Overall, the system optimizes the traditional anaerobic-anoxic-aerobic process, providing an effective solution for fluctuating wastewater flows. It establishes a successful coexistence model for multiple microbial populations, highlighting its applicability for superior nitrogen removal performance, and reference for optimizing rural sewage treatment. TAKE HOME MESSAGE SENTENCE: The improved anaerobic-anoxic-aerobic system for fluctuating wastewater treatment has superior nitrogen removal performance depending on multiple microbial populations.
Collapse
Affiliation(s)
- Yadong Xie
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Qi Wu
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiyu Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
7
|
Karmann C, Mágrová A, Jeníček P, Bartáček J, Kouba V. Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives. BIORESOURCE TECHNOLOGY 2024; 391:129888. [PMID: 37914052 DOI: 10.1016/j.biortech.2023.129888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
This review critically assesses nitrogen removal technologies applied in the reject water treatment, across different stages of technological development, with a focus on their economic and environmental impacts. The prevalent use of biological processes raises concerns due to potential environmental impacts caused by N2O emissions. However, partial nitritation-anaerobic ammonium oxidation demonstrated economic benefits and the potential for positive environmental outcomes when properly operated and controlled. Furthermore, reject water, in many cases, provides sufficient nitrogen concentrations for nitrogen recovery processes, such as ammonia stripping, substituting production of industrial fertilizers and contributing to a circular economy. Nonetheless, their financial competitiveness is subject to various conditions, including the nitrogen concentration or reject water flow. As the environmental benefits of bioprocesses and economic benefits of nitrogen recovery processes may vary, it is crucial to further optimize both and investigate novel promising technologies such as electrochemical systems, denitrifying anaerobic methane oxidation or direct ammonia oxidation.
Collapse
Affiliation(s)
- Christina Karmann
- University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Anna Mágrová
- University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Pavel Jeníček
- University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Jan Bartáček
- University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Vojtěch Kouba
- University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| |
Collapse
|
8
|
Zhou L, Liu Z, Liu F, Peng J, Zhou T. Nonlinear canonical correspondence analysis and its application. Sci Rep 2023; 13:7518. [PMID: 37161037 PMCID: PMC10170120 DOI: 10.1038/s41598-023-34515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
The canonical correspondence analysis (CCA) is a multivariate direct gradient analysis method performing well in many fields, however, when it comes to approximating the unimodal response of species to an environmental gradient, which still assumes that the relationship between the environment and the weighted species score is linear. In this work, we propose a nonlinear canonical correspondence analysis method (NCCA), which first determines the most appropriate nonlinear explanatory factor through two screenings by correlation and LASSO regression, and successively uses the linear regression method and the improved heuristic optimal quadratic approximation method to fit the chi-square transformation values of the response variables. Thus, our method effectively reflects the nonlinear relationship between the species and the environment factors, and a biplot is employed to visualize the effects of the later on the distribution of species. The results from applying this method over a real dataset show that the NCCA method not only maintains the advantages of the polynomial canonical correspondence analysis (PCCA) proposed by Makarenkov (2002), but also outperforms Makarenkov's method in explaining the variance of response variables.
Collapse
Affiliation(s)
- Leru Zhou
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhili Liu
- College of Information and Intelligence Science, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Liu
- College of Information and Intelligence Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Peng
- College of Information and Intelligence Science, Hunan Agricultural University, Changsha, 410128, China
| | - Tiejun Zhou
- College of Information and Intelligence Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
Li W, Zhou Z, Li H, Wang S, Ren L, Hu J, Liu Q, Wu C, Tang C, Hu F, Zeng L, Zhao R, Tao M, Zhang C, Qin Q, Liu S. Successional Changes of Microbial Communities and Host-Microbiota Interactions Contribute to Dietary Adaptation in Allodiploid Hybrid Fish. MICROBIAL ECOLOGY 2023; 85:1190-1201. [PMID: 35366074 DOI: 10.1007/s00248-022-01993-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
Host-microbiota interactions play critical roles in host development, immunity, metabolism, and behavior. However, information regarding host-microbiota interactions is limited in fishes due to their complex living environment. In the present study, an allodiploid hybrid fish derived from herbivorous Megalobrama amblycephala (♀) × carnivorous Culter alburnus (♂) was used to investigate the successional changes of the microbial communities and host-microbiota interactions during herbivorous and carnivorous dietary adaptations. The growth level was not significantly different in any developmental stage between the two diet groups of fish. The diversity and composition of the dominant microbial communities showed similar successional patterns in the early developmental stages, but significantly changed during the two dietary adaptations. A large number of bacterial communities coexisted in all developmental stages, whereas the abundance of some genera associated with metabolism, including Acinetobacter, Gemmobacter, Microbacterium, Vibrio, and Aeromonas, was higher in either diet groups of fish. Moreover, the abundance of phylum Firmicutes, Actinobacteria, and Chloroflexi was positively correlated with the host growth level. In addition, Spearman's correlation analysis revealed that the differentially expressed homologous genes in the intestine associated with cell growth, immunity, and metabolism were related to the dominant gut microbiota. Our results present evidence that host genetics-gut microbiota interactions contribute to dietary adaptation in hybrid fish, which also provides basic data for understanding the diversity of dietary adaptations and evolution in fish.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zexun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hongqing Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lei Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Rulong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Kadam R, Khanthong K, Park B, Jun H, Park J. Realizable wastewater treatment process for carbon neutrality and energy sustainability: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116927. [PMID: 36473349 DOI: 10.1016/j.jenvman.2022.116927] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Despite a quick shift of global goals toward carbon-neutral infrastructure, activated sludge based conventional systems inhibit the Green New Deal. Here, a municipal wastewater treatment plant (MWWTP) for carbon neutrality and energy sustainability is suggested and discussed based on realizable technical aspects. Organics have been recovered using variously enhanced primary treatment techniques, thereby reducing oxygen demand for the oxidation of organics and maximizing biogas production in biological processes. Meanwhile, ammonium in organic-separated wastewater is bio-electrochemically oxidized to N2 and reduced to H2 under completely anaerobic conditions, resulting in the minimization of energy requirements and waste sludge production, which are the main problems in activated sludge based conventional processes. The anaerobic digestion process converts concentrated primary sludge to biomethane, and H2 gas recovered from nitrogen upgrades the biomethane quality by reducing carbon dioxide in biogas. Based on these results, MWWTPs can be simplified and improved with high process and energy efficiencies.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Byeongchang Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
11
|
Zhang Z, Zhong M, Sun Y, Liang Y, Liu M, Li J, Cui H, Meng F, Huang Z, Cui L. Efficient treatment of digested piggery wastewater via an improved anoxic/aerobic process with Myriophyllum spicatum and bionic aquatic weed. BIORESOURCE TECHNOLOGY 2021; 341:125825. [PMID: 34481299 DOI: 10.1016/j.biortech.2021.125825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The traditional anoxic/aerobic process (A/O) process is widely used for treating digested piggery wastewater, but the lack of carbon sources leads to poor efficiency. Therefore, the process needs optimization to achieve high-efficiency and low-cost operation mode. In this study, an improved A/O system with bionic aquatic weed and Myriophyllum sp. was established to decontaminate digested piggery wastewater. The average removal efficiencies of chemical oxygen demand (COD), NH4+-N, and total nitrogen (TN) by the improved A/O system was satisfactory. The average removal efficiencies of COD, NH4+-N, and TN were 62.1%, 87.5%, and 61.9%, respectively. High-throughput sequencing identified a number of dominant microorganisms. The relative abundance of Nitrosomonas (ammonia-oxidizing bacteria) and Nitrospira (nitrite-oxidizing bacteria) was 0.07%-3.52% and 0.32%-1.30%, respectively. Combining bionic aquatic weed and Myriophyllum sp. altered the microbial community structure and metabolic pathways. The results demonstrate a cost-effective method for treating digested piggery wastewater.
Collapse
Affiliation(s)
- Ze Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingjun Zhong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaping Sun
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mengxue Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhujian Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Lihua Cui
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| |
Collapse
|
12
|
Vijayan A, Vattiringal Jayadradhan RK, Pillai D, Prasannan Geetha P, Joseph V, Isaac Sarojini BS. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J Basic Microbiol 2021; 61:88-109. [PMID: 33448079 DOI: 10.1002/jobm.202000485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.
Collapse
Affiliation(s)
- Ardhra Vijayan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar Vattiringal Jayadradhan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.,Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preena Prasannan Geetha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Bright Singh Isaac Sarojini
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|