1
|
Shen H, Zhang Q, Li M, Tan X, Dong X, Wang H. Research on intensive nitrogen removal of municipal sewage by mainstream anaerobic ammonia oxidation process. CHEMOSPHERE 2024; 367:143622. [PMID: 39461438 DOI: 10.1016/j.chemosphere.2024.143622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO3--N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.
Collapse
Affiliation(s)
- Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xibei Tan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoqian Dong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Tan Z, Chen W, Guo Z, Xu X, Xie J, Dai J, Lin Y, Sheng B, Preis S, Wei C, Zhu S. Seasonal dynamics of bacterial composition and functions in biological treatment of coking wastewater. Appl Microbiol Biotechnol 2024; 108:490. [PMID: 39422711 PMCID: PMC11489252 DOI: 10.1007/s00253-024-13274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
Seasonal dynamics of bacterial composition and functions were demonstrated for the biological fluidized-bed bioreactors combined in the anoxic/aerobic1/aerobic2 (AOO) coking wastewater (CWW) treatment sequences. The bacterial composition and functions in the CWW activated sludge samples were revealed by 16S rRNA genes amplicon sequencing. Thiobacillus, Cloacibacterium, Alkaliphilus and Pseudomonas were determined as core genera with seasonal changes. Mutable microbial community composition fluctuated in different seasons in same bioreactor. Distributions of predicted KEGG pathways along four seasons consistently demonstrated enrichment in biodegradation of carbon- and nitrogen-containing compounds. The major contaminants were removed from CWW by biochemical pathway of xenobiotics biodegradation and metabolism. This Level 2 pathway mainly owned the Level 3 pathways of benzoate degradation, drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and aminobenzoate degradation. The RDA results showed that dissolved oxygen with seasonal fluctuation was the main parameter shaping the microbial community. The observed dynamics within the microbial community composition, coupled with the maintained stability of CWW treatment efficiencies and a consistent profile of microbial functional pathways, underscore the presence of functional redundancy in the AOO bioreactors. The study underscored stable and effective operational performances of bioreactors in the AOO sequences, contributing the knowledge of microbiological basics to the advancement of CWW biological treatment. KEY POINTS: • Seasonal fluctuations of bacterial composition described for the AOO system. • Seasonal distributions of metabolic functions focused on carbon and nitrogen removal. • Functional redundancy was revealed in the AOO microbial community.
Collapse
Affiliation(s)
- Zhijie Tan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenli Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ziyu Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xingyuan Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuexia Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binbin Sheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Zhi J, Ma G, Shi X, Dong G, Yu D, Zhang J, Zhang Y, Li J, Zhao X, Xia H, Chen X, Tian Z, Miao Y. Synergy between Nitrogen Removal and Fermentation Bacteria Ensured Efficient Nitrogen Removal of a Mainstream Anammox System at Low Temperatures. TOXICS 2024; 12:629. [PMID: 39330557 PMCID: PMC11436091 DOI: 10.3390/toxics12090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Simultaneous partial nitrification, anammox, denitrification, and fermentation (SNADF) is a novel process achieving simultaneous advanced sludge reduction and nitrogen removal. The influence of low temperatures on the SNADF reactor was explored to facilitate the application of mainstream anammox. When temperature decreased from 32 to 16 °C, efficient nitrogen removal was achieved, with a nitrogen removal efficiency of 81.9-94.9%. Microbial community structure analysis indicated that the abundance of Candidatus Brocadia (dominant anaerobic ammonia oxidizing bacteria (AnAOB) in the system) increased from 0.03% to 0.18%. The abundances of Nitrospira and Nitrosomonas increased from 1.6% and 0.16% to 2.5% and 1.63%, respectively, resulting in an increase in the ammonia-oxidizing bacteria (AOB) to nitrite-oxidizing bacteria (NOB) abundance ratio from 0.1 to 0.64. This ensured sufficient nitrite for AnAOB, promoting nitrogen removal. In addition, Candidatus Competibacter, which plays a role in partial denitrification, was the dominant denitrification bacteria (DNB) and provided more nitrite for AnAOB, facilitating AnAOB enrichment. Based on the findings from microbial correlation network analysis, Nitrosomonas (AOB), Thauera, and Haliangium (DNB), and A4b and Saprospiraceae (fermentation bacteria), were center nodes in the networks and therefore essential for the stability of the SNADF system. Moreover, fermentation bacteria, DNB, and AOB had close connections in substrate cooperation and resistance to adverse environments; therefore, they also played important roles in maintaining stable nitrogen removal at low temperatures. This study provided new suggestions for mainstream anammox application.
Collapse
Affiliation(s)
- Jiaru Zhi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Guoqing Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Haizheng Xia
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Xinyu Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Zhuoya Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Yuanyuan Miao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| |
Collapse
|
4
|
Yue W, Chen Y, Sui Q, Zheng L, Ritigala T, Wei Y. The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment. MEMBRANES 2024; 14:142. [PMID: 38921509 PMCID: PMC11206136 DOI: 10.3390/membranes14060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications.
Collapse
Affiliation(s)
- Wenhui Yue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Qin Y, Wei Q, Chen R, Jiang Z, Qiu Y, Jiang Y, Li L. Roles of red mud-based biochar carriers in the recovery of anammox activity: characteristics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20488-20498. [PMID: 38376779 DOI: 10.1007/s11356-024-32263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Anaerobic ammonium oxidation (anammox) sludge is easily deactivated in the process of treating ammonia-laden wastewater. To investigate an effective recovery method, red mud-based biochar carriers (RMBC) were prepared and added to a deactivated anammox reactor; the operation of this reactor had been interrupted for 6 months with starvation and low temperature. The deactivated sludge with added RMBC was recovered rapidly after 31 days, with the specific anammox activity rapidly increasing to 0.84 g N/(g VSS∙day), and the recovery efficiency of nitrogen removal rate increased by four times compared to the unadded control. The granulation degree and extracellular polymeric substances secretion of the anammox sludge with the added RMBC were significantly higher than that of the control group. In addition, a large number of spherical anammox bacteria were observed moored at the porous channels of RMBC, and the copy numbers of functional genes of anammox bacteria were approximately twice that of the control group. Hence, RMBC is a potential sludge activator, and it can provide a "house" to protect anammox bacteria, enhance the metabolic activity and the agglomerative growth of anammox bacteria, and synergistically achieve rapid recovery of deactivated anammox sludge.
Collapse
Affiliation(s)
- Yongli Qin
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Qiaoyan Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Ruihong Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zhicheng Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuchen Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongrong Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Li Li
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
6
|
Lin X, Li B, Tian M, Li X, Wang J. Denitrification effect and strengthening mechanism of SAD/A system at low temperature by gel-immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165599. [PMID: 37516176 DOI: 10.1016/j.scitotenv.2023.165599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Sulfur autotrophic denitrification coupled anaerobic ammonia oxidation (SAD/A) has several advantages over other denitrification processes; for example, it does not consume the organic carbon source, has low operation costs, and produces less excess sludge; however, it has certain disadvantages as well, such as a long start-up time, easy loss of bacteria, and low microbial activity at low temperature. The use of microbial immobilization technology to embed functional bacteria provides a feasible method of resolving the above problems. In this study polyvinyl alcohol‑sodium alginate was used to prepare a composite carrier for fixing anaerobic ammonia oxidizing bacteria (AAOB) and sulfur oxidizing bacteria (SOB), and the structure and morphology of the encapsulated bodies were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Subsequently, the nitrogen removal performance of the immobilized microbial carriers in the gradient cooling process (30 °C to 10 °C) was determined, and the corresponding mechanism was discussed. The results showed that the nitrate-removal efficiencies observed with granular sludge and gel embedding were at 10 °C 21.44 % and 14.31 % lower, than those at 30 °C, respectively, whereas the ammonia-removal efficiency decreased by up to approximately three-fold. The main mechanism was the 'insulation' provided by the external gel composed of PVA and SA for the internal sludge and subsequent improvement of its low temperature resistance, while protecting AAOB and SOB from oxygen inhibition, which is conducive to enriching denitrifying bacteria. In addition, the gel does not change the internal sludge species, it can shift the dominance of specific microorganisms and improve the removal efficiency of nitrogen. In summary, the immobilization of AAOB and SOB by the gel can achieve effectively mitigate nitrogen pollution in low temperature environments, thus indicating that the SAD/A process has broad engineering application prospects.
Collapse
Affiliation(s)
- Xiangyu Lin
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Mengyuan Tian
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiang Li
- Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Jun Wang
- Wuhan University of Technology, Wuhan, Hubei 430070, China; Wuhan Airport Economic and Technological Development Zone Service Industry Development Investment Group Co., Ltd., Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Masood JAIS, Chakravarthy NSK, Abd-Elkader OH, Ahamed A, Mohaideen AMK, Sugumaran V. A microbiological identification and recovery actions of critical symptoms of anammox image bacteria. Prev Med 2023; 174:107620. [PMID: 37451554 DOI: 10.1016/j.ypmed.2023.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Currently, the risks posed by bacteria are becoming increasingly important. It now appears that the cell wall of Anammox image bacteria is very different from what has been generally considered for many years. Not every textbook contains the peptidoglycan on the cell wall of Anammox image bacteria - the sugar-protein chain that strengthens the cells of most bacteria. Most researchers in this Anammox image bacteria diseased identification wanted to find out what gave the Anammox image cell its stability. It used powerful cryo-electron microscopes to examine the bacterial cell wall and find the exact structure of the peptidoglycan. A new algorithm is proposed to discover that Anammox image bacteria contain peptidoglycan, which completes a theory in microbiology. The identification of different diseases is listed, and the proposed model compares the exact results while comparing the parameters like accuracy, precision, recall, and F1-Score. Keywords: Anammox image bacteria, cell wall, cell stability, cryo-electron, microscope images, accuracy, precision, recall, F1-score.
Collapse
Affiliation(s)
- Jafar Ali Ibrahim Syed Masood
- Department of Internet of Things, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India.
| | - N S Kalyan Chakravarthy
- Center for Data Science, School of Computer Science and Engineering, QIS College of Engineering and Technology, Ongole 523272, Andhra Pradesh, India.
| | - Omar H Abd-Elkader
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Vijayan Sugumaran
- Department of Decision and Information Sciences, School of Business Administration, Oakland University, Rochester, MI 48309, USA..
| |
Collapse
|
8
|
Zhu Z, Qin J, Chen Z, Chen Y, Chen H, Wang X. Sulfammox forwarding thiosulfate-driven denitrification and anammox process for nitrogen removal. ENVIRONMENTAL RESEARCH 2022; 214:113904. [PMID: 35863443 DOI: 10.1016/j.envres.2022.113904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The coupled process of thiosulfate-driven denitrification (NO3-→NO2-) and Anammox (TDDA) was a promising process for the treatment of wastewater containing NH4+-N and NO3--N. However, the high concentration of SO42- production limited its application, which needs to be alleviated by an economical and effective way to promote the application of TDDA process. In this study, TDDA process was started in a relatively short time by stepwise replacing nitrite with nitrate and operated continuously for 146 days. Results presented that the average total nitrogen removal efficiency of 82.18% can be acquired at a high loading rate of 1.98 kg N/(m3·d) with maximum nitrogen removal efficiency up to 87.04%. It was observed that the increase of S/N ratio improved the denitrification efficiency and slightly inhibit the Anammox process. Batch tests showed that Sulfammox process appeared in TDDA process under certain conditions, further contributing 2.59% nitrogen removal and 10.46% sulfur removal (14.42 mg/L NH4+-N and 37.68 mg/L SO42--S were removed). This finding was mainly attributed to the reduction of sulfate in TDDA system to elemental S0 or HS-, which subsequently was used as an electron donor to realize the recycling of sulfate (SO42--S) pollutants and promote the sulfur-nitrogen (S-N) cycle. High-throughput analysis displayed that Anammox bacteria (Candidatus_Kuenenia), Sulfur-oxidizing bacteria (Thiobacillus) with relatively high abundance of 5.37%, 7.74%, respectively, guaranteeing the excellent nitrogen and sulfate removal performance in the reactor. The enrichment of phyla Chloroflexi (31.79%), Proteobacteria (31.82%), class Ignavibacteriales (10.55%), genus Planctomycetes (13.57%) further verified the exitence of Sulfammox process in the TDDA reactor. This study provides a new perspective for the practical application of TDDA in terms of reducing the production of high concentration SO42- and saving operational cost and strengthening deeply nitrogen removal.
Collapse
Affiliation(s)
- Zijian Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Jiafu Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou, 510006, China; Hua An Biotech Co., Ltd., Foshan, 528300, China
| | - Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Haochuan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan, 528300, China.
| |
Collapse
|
9
|
Liu H, Zeng W, Li J, Zhan M, Fan Z, Peng Y. Effect of S 2O 32--S addition on Anammox coupling sulfur autotrophic denitrification and mechanism analysis using N and O dual isotope effects. WATER RESEARCH 2022; 218:118404. [PMID: 35462259 DOI: 10.1016/j.watres.2022.118404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonia oxidation (Anammox) coupling sulfur autotrophic denitrification is an effective method for the advanced nitrogen removal from the wastewater with limited carbon source. The influence of S2O32--S addition on Anammox coupling sulfur autotrophic denitrification was investigated by adding different concentrations of S2O32--S (0, 39, 78, 156 and 312 mg/L) to the Anammox system. The contribution of sulfur autotrophic denitrification and Anammox to nitrogen removal at S2O32--S concentrations of 156 mg/L was 75% ∼83% and 17%∼25%, respectively, and the mixed system achieved completely nitrogen removal. However, Anammox bioactivity was completely inhibited at S2O32--S concentrations up to 312 mg/L, and only sulfur autotrophic denitrification occurred. The isotopic effects of NO2--N (δ15NNO2 and δ18ONO2) and NO3--N (δ15NNO3 and δ18ONO3) during Anammox coupling sulfur autotrophic denitrification showed a gradual decrease trend with the increase of S2O32--S addition. The ratios of δ15NNO2:δ18ONO2 and δ15NNO3:δ18ONO3 was maintained at 1.30-2.41 and 1.36-2.52, respectively, which revealed that Anammox was dominant nitrogen removal pathway at S2O32--S concentrations less than 156 mg/L. Microbial diversity gradually decreased with the increase of S2O32--S. The S2O32--S addition enhanced the S2O32--driven autotrophic denitrification and weakened the Anammox, leading to a gradually decreasing trend of the proportion of Candidatus Brocadia as Anammox bacteria from the initial 27% to 4% (S2O32--S of 156 mg/L). Yet Norank-f-Hydrogenophilaceae (more than 50%) and Thiobacillus (54%) as functional bacteria of autotrophic denitrification obviously increased. The appropriate amount of S2O32--S addition promoted the performance of Anammox coupling sulfur autotrophic denitrification achieved completely nitrogen removal.
Collapse
Affiliation(s)
- Hong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Zhiwei Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
10
|
Wang D, Huang K, He X, Zhang XX, Meng Y. Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single-stage simultaneous anammox and denitrification system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152519. [PMID: 34968587 DOI: 10.1016/j.scitotenv.2021.152519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 05/05/2023]
Abstract
The simultaneous anammox and denitrification (SAD) system has received growing interest for the enhanced nitrogen removal, while the ecological traits of microbial community including spatial distribution characteristics, assembly processes and interspecies interactions have not been fully unraveled. The present study applied metagenomics and ecological analysis methods to gain the ecological traits of microbial communities in the SAD system across different organic substrate loadings. Results showed that organic matter significantly affected the bioreactor performance, and the optimal total nitrogen removal efficiency reached 93.4 ± 0.7% under the COD concentrations of 180 ± 18.2 mg/L. Functional organisms including Candidatus Brocadia (3.9%), Denitratisoma (1.6%), Dokdonella (4.4%) and Thauera (4.6%) obviously enriched under the optimal organic loading conditions. Moreover, microbial communities were significantly governed by deterministic process under high organic concentrations, and the denitrifying organisms displayed important ecological roles in the communities. Although anammox bacteria obviously enriched at the middle of bioreactor, it possessed the highest expression activities at both bottom and middle sites. Denitrifying bacteria that enriched at the bottom sites strongly achieved nitrate reduction and provided nitrite for anammox bacteria, while these organisms trended to compete nitrite with anammox bacteria at the middle site. These findings highlight the importance of microbial ecology in the SAD systems, which may expand our understanding of the synergistic patterns between anammox and denitrifying bacteria.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing 210019, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Gao R, Peng Y, Li J, Liu Y, Deng L, Li W, Kao C. Mainstream partial denitrification-anammox (PD/A) for municipal sewage treatment from moderate to low temperature: Reactor performance and bacterial structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150267. [PMID: 34600206 DOI: 10.1016/j.scitotenv.2021.150267] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Anammox is sensitive to temperature, which can limit its practical application in wastewater treatment. In this study, a step-feed anoxic-oxic (A/O) process coupled with PD/A was operated steadily from 26.8 °C to 13.1 °C for wastewater treatment for 200 days. The effluent total inorganic nitrogen (TIN) and phosphorus concentrations were 10.2 mg/L and 0.29 mg/L at C/N ratio of 4.6 and 15.0 °C even with increasing nitrogen loading rate (NLR). The anammox activity was 5.60 mg NH4+-N/gMLSS/d even at 14 °C, moreover, anammox abundance on the biocarriers increased with decreasing temperature. It was observed that the effect of partial denitrification (PD) was enhanced under low temperature, thus the contribution of anammox for nitrogen removal was improved. The pathway of anammox for nitrogen removal accounted for 48% and the effect of effluent did not deteriorate under low temperature. This study states that PD/A has advantages under low temperature operation, which is suitable for treatment of wastewater with low C/N ratio.
Collapse
Affiliation(s)
- Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Liu
- Zhongshan Public Utilities Water Co.Ltd., Zhongshan 528400, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
12
|
Zhao Y, Zhang Q, Peng Y, Peng Y, Li X, Jiang H. Advanced nitrogen elimination from domestic sewage through two stage partial nitrification and denitrification (PND) coupled with simultaneous anaerobic ammonia oxidation and denitrification (SAD). BIORESOURCE TECHNOLOGY 2022; 343:125986. [PMID: 34653628 DOI: 10.1016/j.biortech.2021.125986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The start-up, efficient, and secure operation of Anammox treating low ammonia sewage, is an important research focus. In this study, a partial nitrification-denitrification coupled with simultaneous Anammox and denitrification (PND-SAD) process was achieved in sequencing batch reactor/up-flow anaerobic sludge bed (SBR-UASB). The key measures to maintain high efficiency PND were: (i) controlling dissolved oxygen in the SBR below 0.5 mg/L, which is not only conducive to PN, but also promotes the contribution of simultaneous nitrification and denitrification to nitrogen removal; (ii) monitoring the nitrate (NO3--N) of SBR effluent and discharging sludge to wash out nitrate oxidation bacteria when the NO3--N exceeds 1.0 mg/L. The nitrite accumulation rate reached 97.6%. SBR effluent and domestic sewage entered the UASB. Although Candidatus Brocadia only accounted for 0.8%, its contribution to nitrogen removal reached 76.8%. In PND-SAD system, the aerobic HRT was only 3.8 h, nitrogen removal efficiency up to 97.3%.
Collapse
Affiliation(s)
- Yueru Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environment Investment Co., Ltd., Beijing 101101, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
13
|
Sun R, Zhang W. Addition of anaerobic ammonium oxidation bacteria to lower running cost during the membrane bioreactor process treating sewage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:166-173. [PMID: 35050874 DOI: 10.2166/wst.2021.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reducing energy consumption or running cost associated with the membrane bioreactor (MBR) process is a serious challenge that needs to be addressed in treating sewage. The addition of anaerobic ammonium oxidation bacteria (AnAOB) to a running MBR has the potential to lower the aeration rate, thus decreasing the running cost in treating sewage. The results obtained showed that owing to addition of AnAOB, TN and NH4+-N removal rates increased by 9.8% and 1.13%, respectively, while the aeration rate decreased by 50%. Additionally, high throughput sequencing and isotope experiments showed that both AnAOB and heterotrophic denitrification bacteria could survive simultaneously and play an important role in nitrogen removal, with AnAOB having a significantly greater contribution. It can be concluded that the addition of AnAOB reduced the running cost of MBR in treating sewage.
Collapse
Affiliation(s)
- Ronglin Sun
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China E-mail:
| | - Wenjie Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China E-mail:
| |
Collapse
|
14
|
Ban Q, Zhang L, Li J. Correlating bacterial and archaeal community with efficiency of a coking wastewater treatment plant employing anaerobic-anoxic-oxic process in coal industry. CHEMOSPHERE 2022; 286:131724. [PMID: 34388873 DOI: 10.1016/j.chemosphere.2021.131724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Coking wastewater (CWW) contains various complex pollutants, and biological treatment processes are frequently applied in the coking wastewater treatment plants (CWWTPs). The present work is to evaluate the contaminants removal of a full-scale CWWTP with an anaerobic-anoxic-oxic process (A/A/O), to reveal function of bacterial and archaeal community involved in different bioreactors, and to clarify the relationship between the performance and microbial community. Illumina Miseq sequencing of bacteria showed that β-proteobacteria dominated in three bioreactors with relative abundance of 60.2%~81.7%. 75.2% of sequences were assigned to Petrobacter in the bioreactor A1, while Thiobacillus dominated in A2 and O with relative abundance of 31.8% and 38.7%, respectively. Illumina Miseq sequencing of archaea revealed a high diversity of methanogens existed in A1 and A2 activated sludge. Moreover, Halostagnicola was the dominant archaea in A1 and A2 activated sludge with relative abundance of 41.8% and 66.5%, respectively. Function predicted analysis explored that function of bacteria was similar to that of archaea but the relative abundance differed from each other. A putative biodegradation model of CWW treatment in A/A/O process indicated that A1 and A2 activated sludge mainly reduced carbohydrate, protein, TN, phenol and cyanide, as well as methane production. Bacteria in the bioreactor O were responsible for aerobic biotransformation of residual carbohydrates, refractory organics and nitrification. The redundancy analysis (RDA) further revealed that removal of COD, TN, and NO3--N, phenol and cyanides were highly correlated with some anaerobic bacteria and archaea, whereas the transformation of NH4+-N was positively correlated with some aerobic bacteria.
Collapse
Affiliation(s)
- Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
15
|
Liu X, Li X, Peng Y, Zhang Q, Jiang H, Ji J. Synergistic partial denitrification, anammox and in-situ fermentation (SPDAF) process for treating domestic and nitrate wastewater: Response of nitrogen removal performance to decreasing temperature. BIORESOURCE TECHNOLOGY 2021; 342:125865. [PMID: 34536838 DOI: 10.1016/j.biortech.2021.125865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
A synergistic partial denitrification, anaerobic ammonium oxidation (Anammox), and in-situ fermentation (SPDAF) system was established to solve problems of wastewater treatment plants (WWTPs) in combined treatment of domestic sewage, and nitrate wastewater discharged from industrial areas. The SPDAF system was started up at decreasing temperatures (26.8-18.9 ℃), and remained robust at abrupt temperature drop and drastic temperature fluctuations (20.7-14.1 ℃). The influent and effluent total inorganic nitrogen (TIN) were 97.0 ± 3.7 mg/L and 10.3 ± 4.0 mg/L, respectively. In-situ fermentation supplemented electron donors for NO3--N reduction. A high TIN removal efficiency, of 89.5 ± 3.9% was obtained. Specifically, Anammox contributed 90.9 ± 5.2% to TIN removal. Furthermore, the abundances of hydrolysis and acidogenesis bacteria were 14.02% and 29.47% in the low and high zones, respectively, which promoted fermentation and the use of complex organics. This study provided novel insights for actual operation of WWTPs.
Collapse
Affiliation(s)
- Xiping Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Liu Z, Lin W, Luo Q, Chen Y, Hu Y. Effects of an organic carbon source on the coupling of sulfur(thiosulfate)-driven denitration with Anammox process. BIORESOURCE TECHNOLOGY 2021; 335:125280. [PMID: 34015567 DOI: 10.1016/j.biortech.2021.125280] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The sulfur(thiosulfate)-driven autotrophic denitrification coupled with Anammox (SDDA) process is proposed as an emerging technology for wastewater containing NH4+-N and NO3--N. However, the influence of organic matter on the SDDA process is not fully understood. A long-term experiment has shown that a moderate organic (acetate) (<140 mg/L COD) can accelerate the heterotrophic/autotrophic denitrification and Anammox activity, to reach as high as 92.8% ± 0.3% total nitrogen at a loading rate of 1.34 kg-N/(m3·d). Batch test results showed that Anammox made the largest contribution to the removal of nitrogen, even in an SDDA system with COD addition. Additionally, organics can promote the bioavailability of solid sulfur through reaction with sulfide to form polysulfides, which increased nitrite accumulation to forward Anammox process. Sulfur-oxidizing bacteria (e.g., Thiobacillus and Denitratisoma) coexisted with Anammox bacteria (e.g., Ca. Brocadia and Ca. Kuenenia) in the SDDA system despite the addition of exogenous COD.
Collapse
Affiliation(s)
- Zihe Liu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou, 510006, China
| | - Wenmin Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou, 510006, China
| | - Qijin Luo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou, 510006, China; South China Institute of Environmental Sciences, MEE, Guangzhou, 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou, 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology Guangzhou, 510006, China
| |
Collapse
|