1
|
Baltacı MO, Albayrak S, Akbulut S, Dasdemir E, Ozkan H, Adiguzel A, Taskin M. Production of cost-effective rhamnolipid from Halopseudomonas sabulinigri OZK5 using waste frying oil. Int Microbiol 2024:10.1007/s10123-024-00630-7. [PMID: 39738747 DOI: 10.1007/s10123-024-00630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/18/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
The major barrier to the wide-range application of biosurfactants is their high cost of production and low yield. In this study, waste frying oil (WFO) was used as the sole carbon source to produce cost-effective and eco-friendly rhamnolipids by Halopseudomonas sabulinigri OZK5 isolated from crude oil-contaminated soil samples. The optimal culture conditions for rhamnolipid production were determined as 30 ml/l waste frying oil, 37 °C temperature, pH 8, and 72 h incubation time. Under the optimized conditions 2.97 g/l rhamnolipid production was achieved. With a critical micelle concentration of 50 mg/l, the rhamnolipids could reduce the surface tension of water to 37.5 mN/m and demonstrate strong emulsifying activity (E24 = 67.3%). As a result of FTIR analyses, major peaks were obtained at 2924, 2854, 1720, 1570, 1396, 1051, and 981 cm-1. In conclusion, rhamnolipid production by non-pathogenic Halopseudomonas sabulinigri OZK5 using a low-cost fermentation medium has been shown to be biotechnologically promising.
Collapse
Affiliation(s)
- Mustafa Ozkan Baltacı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye.
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, 25240, Erzurum, Türkiye.
| | - Seyda Albayrak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye
| | - Sumeyye Akbulut
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye
| | - Elanur Dasdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye
| |
Collapse
|
2
|
Correia J, Gudiña EJ, Lazar Z, Janek T, Teixeira JA. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Appl Microbiol Biotechnol 2022; 106:7477-7489. [PMID: 36222896 DOI: 10.1007/s00253-022-12225-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
Abstract
The agro-industrial by-products corn steep liquor (CSL) and olive mill wastewater (OMW) were evaluated as low-cost substrates for rhamnolipid production by Burkholderia thailandensis E264. In a culture medium containing CSL (7.5% (v/v)) as sole substrate, B. thailandensis E264 produced 175 mg rhamnolipid/L, which is about 1.3 times the amount produced in the standard medium, which contains glycerol, peptone, and meat extract. When the CSL medium was supplemented with OMW (10% (v/v)), rhamnolipid production further increased up to 253 mg/L in flasks and 269 mg/L in a bioreactor. Rhamnolipids produced in CSL + OMW medium reduced the surface tension up to 27.1 mN/m, with a critical micelle concentration of 51 mg/L, better than the values obtained with the standard medium (28.9 mN/m and 58 mg/L, respectively). However, rhamnolipids produced in CSL + OMW medium displayed a weak emulsifying activity when compared to those produced in the other media. Whereas di-rhamnolipid congeners represented between 90 and 95% of rhamnolipids produced by B. thailandensis E264 in CSL and the standard medium, the relative abundance of mono-rhamnolipids increased up to 55% in the culture medium containing OMW. The difference in the rhamnolipid congeners produced in each medium explains their different surface-active properties. To the best of our knowledge, this is the first report of rhamnolipid production by B. thailandensis using a culture medium containing agro-industrial by-products as sole ingredients. Furthermore, rhamnolipids produced in the different media recovered around 60% of crude oil from contaminated sand, demonstrating its potential application in the petroleum industry and bioremediation. KEY POINTS: • B. thailandensis produced RL using agro-industrial by-products as sole substrates • Purified RL displayed excellent surface activity (minimum surface tension 27mN/m) • Crude RL (cell-free supernatant) recovered 60% of crude oil from contaminated sand.
Collapse
Affiliation(s)
- Jéssica Correia
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Wang W, Zhao Z, Yan H, Zhang H, Li QX, Liu X. Carboxylesterases from bacterial enrichment culture degrade strobilurin fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152751. [PMID: 34979227 DOI: 10.1016/j.scitotenv.2021.152751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Strobilurin fungicides are a class of persistent fungicides frequently detected in the environment. Microbes can effectively degrade strobilurins, but the mechanisms are complex and diverse. Compared with isolated strains, bacterial consortia are more robust in terms of the degradation of multiple pollutants. The enrichment culture XS19 is a group of bacterial strains enriched from soil and degrades six strobilurins at 50 mg/L within 8 d, including azoxystrobin, picoxystrobin, trifloxystrobin, kresoxim-methyl, pyraclostrobin and enestroburin. LC-Q-TOF-MS analysis confirmed that XS19 can demethylate these strobilurins via hydrolysis of the methyl ester group. Analysis of the bacterial communities suggested that Pseudomonas (69.8%), Sphingobacterium (21.2%), Delftia (6.3%), and Achromobacter (1.6%) spp. were highly associated with the removal of strobilurins in the system. Metagenomics-based comprehensive analysis of XS19 suggested that carboxylesterases in Pseudomonas and Sphingobacterium play a central role in the catabolism of strobilurins. Moreover, the carboxylesterase inhibitor bis-p-nitrophenyl phosphate inhibited the degradation activity of strobilurins in XS19. This work proved that XS19 or carboxylesterases can effectively hydrolyze strobilurins, providing a reliable bioremediation paradigm.
Collapse
Affiliation(s)
- Weijun Wang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zixi Zhao
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Yan
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyang Zhang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiaolu Liu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Ortega Ramírez CA, Ching T, Yoza B, Li QX. Glycerol-assisted degradation of dibenzothiophene by Paraburkholderia sp. C3 is associated with polyhydroxyalkanoate granulation. CHEMOSPHERE 2022; 291:133054. [PMID: 34838841 DOI: 10.1016/j.chemosphere.2021.133054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 05/28/2023]
Abstract
Glycerol is a biodiesel byproduct. In the present study, glycerol was used as a co-substrate during biodegradation of dibenzothiophene (DBT) by Paraburkholderia sp. C3. Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent, ubiquitous and carcinogenic chemicals found in the environment. DBT is a major sulfur-containing PAH. The chemical properties of DBT make it an ideal model pollutant for examining the bioremediation of higher molecular weight PAHs. Bioremediation uses microbial catalysis for removal of environmental pollutants. Environmental microorganisms that encounter aromatic substrates such as heterocyclic PAHs develop unique characteristics that allow the uptake and assimilation of these cytotoxic substrates. Microbial adaptations include changes in membrane lipid composition, secretion of surface-active compounds and accumulation of lipid granules to withstand chemical toxicity. Biostimulation using more readily metabolized substrates can increase the biodegradation rate of PAHs, but the molecular mechanisms are not well understood. We analyzed the DBT biodegradation kinetics in C3, proteome changes and TEM micrographs in different culturing conditions. We utilized 2-bromoalkanoic lipid metabolic inhibitors to establish a correlation between polyhydroxyalkanoate (PHA) granule formation and the enhancement of DBT biodegradation induced by glycerol. This is the first description linking PHA biosynthesis, DBT biodegradation and 2-bromoalkanoic acids in a Paraburkholderia species.
Collapse
Affiliation(s)
- Camila A Ortega Ramírez
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Travers Ching
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brandon Yoza
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
5
|
Zhu Z, Zhang B, Cai Q, Cao Y, Ling J, Lee K, Chen B. A critical review on the environmental application of lipopeptide micelles. BIORESOURCE TECHNOLOGY 2021; 339:125602. [PMID: 34311406 DOI: 10.1016/j.biortech.2021.125602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| | - Qinhong Cai
- Biotechnology Research Institute of the National Research Council of Canada, Montreal, QC, Canada
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Jingjing Ling
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| |
Collapse
|