1
|
Zhang M, Liao C, Zhang Z, Lu L, Chen J, Chen D. Enhancing biodegradation of gaseous chlorobenzene by introducing micro-nano bubbles (MNBs): Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138745. [PMID: 40449219 DOI: 10.1016/j.jhazmat.2025.138745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/20/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025]
Abstract
Chlorobenzene (CB) biodegradation is challenging due to its hydrophobic characteristics. Addition of silicone oil and surfactants are commonly used methods to enhance biodegradation efficiency by improve CB gas-liquid mass transfer efficiency. However, both approaches introduced new chemicals into the reactor, either as carbon sources for microorganisms or requiring regeneration. This study established a synergistic reactor by applying micro-nano bubbles (MNBs) with biodegradation process in a stirred tank bioreactor (STB) to purify CB waste gas. Experimental results demonstrate a reduction in start-up time by 2 days and a 13.5 % increase in overall degradation rate in synergistic reactor. The mass transfer fraction of CB (β*s) was increased by 13.33 %. Additionally, the synergistic reactor showed improved system stability and microbial activity, evidenced by the increased Zeta potential, extracellular polymer substances (EPS) secretion, and protein content. Notably, MNBs upregulate genes involved in aromatic ring hydroxylation and dehalogenation processes and promoted the enzyme SCACT (EC2.8.3.18) within the genus Acidovorax, which enhanced intracellular coenzyme A activity and facilitated chlorobenzene degradation in this genus, thereby enhancing CB degradation efficiency. These results indicate that MNBs can significantly improve the biodegradation performance of CB waste gas, offering a promising strategy for industrial applications.
Collapse
Affiliation(s)
- Minmin Zhang
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316022, China
| | - Chenyan Liao
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China
| | - Zhonghuai Zhang
- Lishui Supply & Discharge Water Co., Ltd, 155 Beihuan Road, Liandu Sistrict, Lishui, Zhejiang 323000, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316022, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongzhi Chen
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Zhoushan 316022, China.
| |
Collapse
|
2
|
Meng Z, Yan Y, Li G, Li Y, Wu K, Zhang Z, Reid MC, Gu AZ. New strategy for integration of anaerobic side-stream reactor with mainstream B-stage nitritation for short-cut nitrogen removal with granulation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70056. [PMID: 40070314 DOI: 10.1002/wer.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
This study reported a successful mainstream B-stage nitritation reactor with sludge granulation that incorporated a side-stream anaerobic reactor to treat municipal wastewater A-stage effluent. With influent COD/N and COD/P ratios of 2.60 and 27.1, respectively, the system achieved a stable nitrite accumulating ratio (NAR) of 95.1% via partial nitrification with sludge granulations. Kinetic assessment,16S ribosomal RNA sequencing, and functional gene marker quantification confirmed successful nitrite-oxidizing bacteria (NOB) out-selection (<0.05% relative abundance), while none of the commonly employed approaches for NOB out-selection occurred in our study. Notably, approximately 90% of the total biomass was in the biofilm in the mainstream sequencing batch reactor (SBR), with the remaining 10% of the biomass in suspension as granules under the selective wasting strategy. The substrates and oxygen gradient along the depth of the biofilm's layered structure, alongside the anaerobic conditions in the side-stream reactor, were suggested to play roles in NOB suppression and out-selection. Overall, this study provided evidence for a possible new strategy for achieving stable mainstream B-stage nitritation, which is the prerequisite for the downstream anammox process. The novelty aspect of the systems, including the incorporation of an anaerobic sire-stream reactor, absence of the employment of any previously reported nitritation strategies, and granulation formation, provided possible new feasible routes to achieve mainstream short-cut nitrogen removal for efficient wastewater treatment. PRACTITIONER POINTS: Stable partial nitrification achieved in mainstream B-stage SBR under conditions distinct from previous reports. NOB out-selection confirmed by both activities' tests and molecular analysis. Thick biofilm and anaerobic side-stream reactor likely facilitated NOB suppression. Stable sludge granulation was maintained with selective wasting strategy.
Collapse
Affiliation(s)
- Zijun Meng
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Yuang Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Kenneth Wu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Zihao Zhang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Boonsiri W, Aung HH, Aswakool J, Santironnarong S, Pothipan P, Phatthanakun R, Chancharoen W, Moonwiriyakit A. Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space. Biomed Microdevices 2025; 27:3. [PMID: 39800809 PMCID: PMC11725547 DOI: 10.1007/s10544-024-00727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/16/2025]
Abstract
Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.7 Pa and two strategically placed bubble traps. Commercially available magnets are used for fabrication, effectively reducing production costs. The trapping efficiency is assessed through video recordings with a phone camera and analysis of captured air volumes by injecting dye at flow rates of 50, 100, and 150 µL/min. This assessment uses L*A*B* color space with analysis of the perceptual color difference ∆E and computational fluid dynamics (CFD) simulations. The results demonstrate successful application of the bubble trap mechanism for lab-on-chip bubble detection, effectively preventing bubbles from entering microchannels and mitigating potential damage. Furthermore, the correlation between the L*A*B* color space and volume fraction from CFD simulations allows accurate assessment of trap performance. Therefore, this observation leads to the hypothesis that ∆E could be used to estimate the air volume inside the bubble trap. Future research will validate the bubble trap performance in cell cultures and develop efficient methods for long-term air bubble removal.
Collapse
Affiliation(s)
- Warisara Boonsiri
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
| | - Hein Htet Aung
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
| | - Jirasin Aswakool
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand
| | - Siraphob Santironnarong
- Defence Technology Institute, Office of the Permanent Secretary of Defence (Chaengwattana) 7th Floor, 47/433 Moo 3, Ban Mai, Pak Kret, Nonthaburi, 11120, Thailand
| | - Phattarin Pothipan
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand
| | - Rungrueang Phatthanakun
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Wares Chancharoen
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand.
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.
| |
Collapse
|
4
|
Stoddard H, Kulas D, Zolghadr A, Aloba S, Schaerer LG, Putman L, Valencia I, Lacey JA, Shonnard DR, Techtmann SM, Ong RG. Biofilm mitigation in hybrid chemical-biological upcycling of waste polymers. Front Bioeng Biotechnol 2024; 12:1435695. [PMID: 39104625 PMCID: PMC11298394 DOI: 10.3389/fbioe.2024.1435695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction: Accumulation of plastic waste in the environment is a serious global issue. To deal with this, there is a need for improved and more efficient methods for plastic waste recycling. One approach is to depolymerize plastic using pyrolysis or chemical deconstruction followed by microbial-upcycling of the monomers into more valuable products. Microbial consortia may be able to increase stability in response to process perturbations and adapt to diverse carbon sources, but may be more likely to form biofilms that foul process equipment, increasing the challenge of harvesting the cell biomass. Methods: To better understand the relationship between bioprocess conditions, biofilm formation, and ecology within the bioreactor, in this study a previously-enriched microbial consortium (LS1_Calumet) was grown on (1) ammonium hydroxide-depolymerized polyethylene terephthalate (PET) monomers and (2) the pyrolysis products of polyethylene (PE) and polypropylene (PP). Bioreactor temperature, pH, agitation speed, and aeration were varied to determine the conditions that led to the highest production of planktonic biomass and minimal formation of biofilm. The community makeup and diversity in the planktonic and biofilm states were evaluated using 16S rRNA gene amplicon sequencing. Results: Results showed that there was very little microbial growth on the liquid product from pyrolysis under all fermentation conditions. When grown on the chemically-deconstructed PET the highest cell density (0.69 g/L) with minimal biofilm formation was produced at 30°C, pH 7, 100 rpm agitation, and 10 sL/hr airflow. Results from 16S rRNAsequencing showed that the planktonic phase had higher observed diversity than the biofilm, and that Rhodococcus, Paracoccus, and Chelatococcus were the most abundant genera for all process conditions. Biofilm formation by Rhodococcus sp. And Paracoccus sp. Isolates was typically lower than the full microbial community and varied based on the carbon source. Discussion: Ultimately, the results indicate that biofilm formation within the bioreactor can be significantly reduced by optimizing process conditions and using pure cultures or a less diverse community, while maintaining high biomass productivity. The results of this study provide insight into methods for upcycling plastic waste and how process conditions can be used to control the formation of biofilm in bioreactors.
Collapse
Affiliation(s)
- Hunter Stoddard
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Daniel Kulas
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Ali Zolghadr
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Sulihat Aloba
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Laura G. Schaerer
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Lindsay Putman
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Isabel Valencia
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Jeffrey A. Lacey
- Biological Processing Department, Idaho National Laboratory, Idaho Falls, ID, United States
| | - David R. Shonnard
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Stephen M. Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Rebecca G. Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
5
|
Fu L, Wang P, Wu C, Zhou Y, Song Y, Guo S, Li Z, Zhou J. Upgrade of the biggest catalytic ozonation wastewater treatment plant in China: From pollution control to carbon reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119421. [PMID: 37939466 DOI: 10.1016/j.jenvman.2023.119421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Catalytic ozonation is a widely used effective technology in advanced treatment for the removal of refractory organics from wastewater. However, it is also a highly energy-consuming technology, usually accounting for 30%∼40% of the total electricity consumption of a wastewater treatment plant (WWTP). The O3 consumption per unit of COD removed (g-O3/g-COD) is usually higher than 1.5 g-O3/g-COD, and the total carbon emission from catalytic ozonation is usually higher than 393.12 kgCO2 e/m3 of wastewater. In this study, we investigated an energy reduction strategy for the biggest catalytic ozonation WWTP, from laboratory-scale experimentation to corresponding engineering application. Laboratory-scale experiments showed that the mass transfer rate of dissolved O3 to the catalyst surface is crucial for COD removal efficiency. To improve the efficiency of catalytic ozonation, adding effluent backflow is a simple method that can enhance the removal of extracellular polymeric substances (EPS) from the catalyst surface and promote surface exposure. In the pilot-scale experiment (48 m3/d), when the backflow ratio increased from 0% to 100% (the optimal value), the proteins in EPS on the catalyst surface decreased significantly by 66.7%. The corresponding O3 consumption per unit of COD removed was reduced from 2.0 to 1.0 g-O3/g-COD. Furthermore, in the engineering application (52,000 m3/d) with a backflow ratio of 100%, the average effluent COD reduced from 52.0 to 43.3 mg/L, and the O3 consumption per unit of COD removed decreased from 0.98 to 0.69 g-O3/g-COD. In terms of carbon reduction, the indirect carbon emission reduction was approximately 3.0 × 103 t CO2 e/a. This study demonstrates the advantages of catalytic ozonation improvement and provides an engineering model of energy conversation and carbon emission reduction for over 35 similar WWTPs in China.
Collapse
Affiliation(s)
- Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Panxin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yudong Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Shujun Guo
- Jilin Petrochemical Wastewater Treatment Plant, Jilin Petrochemical Company of PetroChina, Jilin, 132000, China
| | - Zhimin Li
- Jilin Petrochemical Wastewater Treatment Plant, Jilin Petrochemical Company of PetroChina, Jilin, 132000, China
| | - Jian Zhou
- Jilin Petrochemical Wastewater Treatment Plant, Jilin Petrochemical Company of PetroChina, Jilin, 132000, China
| |
Collapse
|
6
|
Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, Chew J, Khanal SK, Chen G, An AK. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. WATER RESEARCH 2023; 245:120613. [PMID: 37738940 DOI: 10.1016/j.watres.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Nallapaneni Manoj Kumar
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Circular Supplies, HICCER - Hariterde International Council of Circular Economy Research, Palakkad, Kerala 678631, India
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - John Chew
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
7
|
Li Y, Han Q, Li B. Engineering-scale application of sulfur-driven autotrophic denitrification wetland for advanced treatment of municipal tailwater. BIORESOURCE TECHNOLOGY 2023; 379:129035. [PMID: 37037329 DOI: 10.1016/j.biortech.2023.129035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
An engineering-scale sulfur driven autotrophic denitrification vertical-flow constructed wetland (SADN-VFCW) was established to treat low C/N ratio tailwater from municipal wastewater treatment plants (MWTPs). One-year stable operation results indicated that the addition of sulfur prominently enhanced TN, NO3--N and TP removal with efficiencies higher than 68.9%, 69.2% and 45.5%, respectively. Higher nitrogen and phosphorus removal rates were achieved in summer than that in other seasons. Furthermore, the microbial analysis revealed the structure of the microbial community changed significantly after sulfur addition, which proved that sulfur promoted the enrichment of autotrophic (Thiobacillus, Sulfurimonas, Ferritrophicum) and heterotrophic (Denitratisoma, Anaerolineaae, Simplicispira) functional bacteria, thus facilitating pollutants removal. Function prediction analysis results also indicated the abundance of nitrate removal/sulfur metabolism functions was significantly strengthened. This study achieved reliable engineering-scale application of SADN-VFCW and offered great potential for simultaneous in-depth treatment of N and P in municipal tailwater by SADN system.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
8
|
Zhou S, Liu M, Chen B, Sun L, Lu H. Microbubble- and nanobubble-aeration for upgrading conventional activated sludge process: A review. BIORESOURCE TECHNOLOGY 2022; 362:127826. [PMID: 36029987 DOI: 10.1016/j.biortech.2022.127826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The activated sludge process (ASP) is widely used for wastewater treatment, and the aeration efficiency is crucial to the operation of wastewater treatment plants. Recently, microbubble (MB)- and nanobubble (NB)-aeration has attracted much attention as there is growing evidence that it holds a great promise for upgrading the process efficiency of current ASP under conventional macro-bubble-aeration. However, a comprehensive review to elucidate the potential application of MB- and NB-aeration in ASP is still lacking. Therefore, this review will provide a systematic introduction to MB- and NB-aeration (including the unique properties and generation methods of MBs and NBs), and gain mechanistic insights on how MB- and NB-aeration improve gas-liquid mass transfer. The recent advances in MB- and NB-aeration applications to ASP and the resultant effects are also highlighted and discussed in-depth. The review concludes with a brief consideration of future research interests.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Min Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Ben Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|