1
|
Song X, Wan W, Zhang Y, Yu G, Li B, Cui Q, Liu YJ, Feng Y. Production of docosahexaenoic acid from corncob residue wastes through integrated whole-cell lignocellulosic saccharification and lipid fermentation by Aurantiochytrium. BIORESOURCE TECHNOLOGY 2025; 431:132606. [PMID: 40306335 DOI: 10.1016/j.biortech.2025.132606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
To convert lignocellulose waste into high-value-added products, we successfully produced docosahexaenoic acid (DHA) oil by Aurantiochytrium sp. SD116 using hydrolysates obtained through a consolidated bio-saccharification (CBS) process with corncob residue (CCR) as the substrate. We conducted fed-batch fermentations using CBS hydrolysates supplemented with sea salt and ammonia, requiring no additional nutrients, and achieved the lipid and DHA titer of 45.10 g L-1 and 16.87 g L-1, respectively. Consequently, 12.6 % (w/w) of the initial CCR was converted to DHA oil. We also assessed the viability of achieving nutrient balance and wastewater recycling in the processes for a substantial reduction of cost.
Collapse
Affiliation(s)
- Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016 Qinghai, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China
| | - Yuedong Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Research Center of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 Shandong, China; Shandong Energy Institute, Qingdao 266101 Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101 Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Ma K, Zhang P, Zhao J, Qin Y. Discovery of a novel translation-machinery-associated protein that positively correlates with cellulase production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:20. [PMID: 39987148 PMCID: PMC11847360 DOI: 10.1186/s13068-025-02624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND The production of cellulases by filamentous fungi is a crucial aspect of sustainable bioproduction from renewable lignocellulosic biomass. Following the transcription of cellulase genes in the nucleus, a complex pathway involving translation, folding, and secretion is required to produce extracellular cellulases. Most studies about cellulase production have focused on examining transcriptional regulatory mechanisms and enhancement of enzyme gene levels; comparatively, little is known about protein translation and secretion for cellulase production. RESULTS A translation-machinery-associated (TMA) protein PoTma15 was identified in cellulosic Penicillium oxalicum. The PoTma15 is conserved in various filamentous fungi, but not in yeast, plants, or animals. All homologous proteins of PoTma15 have previously been uncharacterized. PoTma15 was initially thought to be one of the putative interactors of transcription factor PoXlnR, as it was preyed by tandem affinity purification (TAP) coupled with the mass spectrometry (TAP-MS) technique using PoXlnR as the bait. Subsequent research revealed that PoTma15 is associated with the translation machinery. The top three proteins associated with PoTma15 are orthologs of Saccharomyces cerevisiae translation-machinery-associated protein (Tma19), translation elongation factor eIF5A, and ribosomal protein S28, respectively. PoTma15 is widely distributed in fungal hyphae and positively correlates with the production of cellulases and extracellular proteins. Deleting the Potma15 gene (Δtma15) decreased cellulase production, while overexpressing the Potma15 gene (OEtma15) increased cellulase production. However, the Δtma15 mutant was not observed to have downregulated transcript levels of major (hemi)cellulase and amylase genes, compared to the P. oxalicum wild type (WT). The production of extracellular cellulases and extracellular proteins of the Δtma15 mutant was less affected by cycloheximide, an inhibitor of eukaryotic translation elongation, compared to the WT strain and OEtma15 mutant, suggesting a stronger resistance to the translation-inhibiting effects of cycloheximide in the Δtma15 mutant. The results demonstrate that PoTma15 is a translation-machinery-associated protein that affects translation elongation and, consequently, the production of enzyme proteins. CONCLUSIONS PoTma15 is the first TMA protein characterized in cellulosic filamentous fungi and the first TMA protein used in fungi to increase cellulase production. PoTma15's role in the production of cellulases and total extracellular proteins suggests that not only can it be used to widen the cellulase production pathway, but can even be engineered as a target to improve the production of other heterologous protein or bioproducts using filamentous fungi as cell factories in the future.
Collapse
Affiliation(s)
- Kexuan Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Panpan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- National Glycoengineering Research Center, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
4
|
Yang H, Han Y, Peng X. Efficient production of sophorose from glucose and its potentially industrial application in cellulase production. BIORESOURCE TECHNOLOGY 2024; 412:131402. [PMID: 39218367 DOI: 10.1016/j.biortech.2024.131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Sophorose is the most effective inducer for cellulase production by Trichoderma reesei. Currently, the biosynthesis of sophorose is very inefficient, resulting in that unavailable for cellulase production in industry. In this study, CoGH1A, a multifunctional thermophilic glycoside hydrolase, was employed for sophorose production. Under the optimized conditions, the sophorose yield was 37.86 g/L with a productivity of 9.47 g/L/h which is by far the highest productivity. Meanwhile, the Fe3O4-CS-THP-CoGH1A nanoparticles were constructed to realize the recycling of CoGH1A. After 5 cycles of catalysis, Fe3O4-CS-THP-CoGH1A retained about 83.90 % enzyme activity. Finally, the mixtures of glucose and disaccharides (MGDC) obtained after being catalyzed by CoGH1A was used for cellulase production. As a result, the cellulase productivity achieved 188.38 FPU/L/h in 120 h. These results indicated that sophorose could be efficiently produced from glucose via transglycosylation by CoGH1A, making it possible to be industrially used as the inducer to improving the cellulase productivity.
Collapse
Affiliation(s)
- Haiqian Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Lou L, Jiang H, Xie J, Ge L. Corn-derived Expansin synergistically promotes enzymatic hydrolysis of corn cob. Int J Biol Macromol 2024; 281:136038. [PMID: 39332564 DOI: 10.1016/j.ijbiomac.2024.136038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The enzymatic hydrolysis of lignocellulose is hindered by challenges such as high enzyme usage and associated costs. It is essential to explore effective approaches to improve the efficiency of enzymatic hydrolysis while reducing costs. Expansins are non-enzymatic proteins that can interact with lignocellulose and facilitate the loosening of plant cell walls. Given their natural affinity to plant cell walls, we hypothesized that a corn Expansin could enhance the enzymatic hydrolysis of corn lignocellulose. In this study, we expressed a corn (Zea mays) Expansin, EXPA17, in yeast cells and explored the synergistic effect between EXPA17 and commercial cellulase, and found that EXPA17 exhibited a pronounced synergistic effect on the enzymatic hydrolysis of corn cobs. The addition of 0.015 mg/mL EXPA17 resulted in a 14.00 % increase in glucose yield. Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis revealed that EXPA17 proteins disrupted hydrogen bonds in the amorphous regions of corn cobs, leading to a more porous and looser structure, thereby enhancing cellulose accessibility. Our work leveraged the synergistic effect between Expansin and lignocellulose from the same source of corn, providing a novel strategy to improve the efficiency of enzymatic hydrolysis of corn lignocellulose while potentially reducing the associated costs.
Collapse
Affiliation(s)
- Lin Lou
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China
| | - Huabin Jiang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China.
| | - Liangfa Ge
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China; College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Castañeda-Barreto A, Olivera-Gonzales P, Tamariz-Angeles C. A natural consortium of thermophilic bacteria from Huancarhuaz hot spring (Ancash-Peru) for promising lignocellulose bioconversion. Heliyon 2024; 10:e27272. [PMID: 38486736 PMCID: PMC10937689 DOI: 10.1016/j.heliyon.2024.e27272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The lignocellulose bioconversion process is an eco-friendly and green-economy alternative technology that allows the reduction of pollution and global warming, so it is necessary for thermophilic and thermostable hydrolytic enzymes from natural sources. This research aimed to isolate cellulolytic and xylanolytic microbial consortia from Huancarhuaz hot spring (Peru) from sludge or in situ baiting cultured with or without sugarcane bagasse. According to the hydrolytic activities consortium T4 from in situ baiting was selected. It was cultivated in submerged fermentation at 65 °C, pH 6.5 for eight days using LB supplemented with sugar cane bagasse (SCB), pine wood sawdust (PWS), CMC, xylan of birchwood, or micro granular cellulose. Crude extract of culture supplemented with SCB (T4B) showed better endoglucanase and xylanase activities with higher activities at 75 °C and pH 6. In these conditions, cellulase activity was kept up to 57% after 1 h of incubation, while xylanase activity was up to 63% after 72 h. Furthermore, this crude extract released reduced sugars from pretreated SCB and PWS. According to metagenomic analysis of 16S rDNA, Geobacillus was the predominant genus. It was found thermostable genes: a type of endoglucanase (GH5), an endo-xylanase (GH10), and alkali xylanase (GH10) previously reported in Geobacillus sp. strains. Finally, Huancarhuaz hot spring harbors a genetic microbial diversity for lignocellulosic waste bioconversion in high temperatures, and the T4B consortium will be a promising source of novel extreme condition stable enzymes for the saccharification process.
Collapse
Affiliation(s)
- Alberto Castañeda-Barreto
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| |
Collapse
|
8
|
Gupta JK, Jain KK, Kaushal M, Upton DJ, Joshi M, Pachauri P, Wood AJ, Yazdani SS, Srivastava S. Marine cyanobacterial biomass is an efficient feedstock for fungal bioprocesses. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:23. [PMID: 38350992 PMCID: PMC10863111 DOI: 10.1186/s13068-024-02469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Marine cyanobacteria offer many sustainability advantages, such as the ability to fix atmospheric CO2, very fast growth and no dependence on freshwater for culture. Cyanobacterial biomass is a rich source of sugars and proteins, two essential nutrients for culturing any heterotroph. However, no previous study has evaluated their application as a feedstock for fungal bioprocesses. RESULTS In this work, we cultured the marine cyanobacterium Synechococcus sp. PCC 7002 in a 3-L externally illuminated bioreactor with working volume of 2 L with a biomass productivity of ~ 0.8 g L-1 day-1. Hydrolysis of the biomass with acids released proteins and hydrolyzed glycogen while hydrolysis of the biomass with base released only proteins but did not hydrolyze glycogen. Among the different acids tested, treatment with HNO3 led to the highest release of proteins and glucose. Cyanobacterial biomass hydrolysate (CBH) prepared in HNO3 was used as a medium to produce cellulase enzyme by the Penicillium funiculosum OAO3 strain while CBH prepared in HCl and treated with charcoal was used as a medium for citric acid by Aspergillus tubingensis. Approximately 50% higher titers of both products were obtained compared to traditional media. CONCLUSIONS These results show that the hydrolysate of marine cyanobacteria is an effective source of nutrients/proteins for fungal bioprocesses.
Collapse
Affiliation(s)
- Jai Kumar Gupta
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Zero Cow Factory, Surat, India
| | - Kavish K Jain
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India
- The Live Green Co., Bangalore, India
| | - Mehak Kaushal
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Perfect Day India Pvt. Ltd., Bangalore, India
| | - Daniel J Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Manish Joshi
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India
- Biocon Limited, Bangalore, India
| | - Piyush Pachauri
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - A Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
| | - Syed Shams Yazdani
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India
- Microbial Engineering Group, ICGEB, New Delhi, 110067, India
| | - Shireesh Srivastava
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, 110067, India.
| |
Collapse
|
9
|
Randhawa A, A Ogunyewo O, Jawed K, Yazdani SS. Calcium signaling positively regulates cellulase translation and secretion in a Clr-2-overexpressing, catabolically derepressed strain of Penicillium funiculosum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:21. [PMID: 38336687 PMCID: PMC10858516 DOI: 10.1186/s13068-023-02448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Low-cost cellulase production is vital to sustainable second-generation biorefineries. The catabolically derepressed strain of Penicillium funiculosum NCIM1228 (PfMig188 or ∆Mig1) secretes a superior set of cellulolytic enzymes, that are most suitable for 2G biorefineries. At a 3% (w/w) load, the ∆Mig1 secretome can release > 80% of fermentable sugars from lignocellulose at a 15% (w/v) biomass load, irrespective of the type of biomass and pretreatment. The robustness of the secretome can be further increased by improving the cellulase production capacity of the fungal strain. RESULTS We began by identifying the transcription factor responsible for cellulase production in NCIM1228. An advanced RNA-seq screen identified three genes, clr-2, ctf1a and ctf1b; the genes were cloned under their native promoters and transformed into NCIM1228. Of the three, clr-2 overexpression led to twofold higher cellulase production than the parent strain and was thus identified as the transcriptional activator of cellulase in NCIM1228. Next, we overexpressed clr-2 in ∆Mig1 and expected an exponential increase in cellulolytic attributes accredited to the reinforced activation mechanisms, conjoint with diminished negative regulation. Although clr-2 overexpression increased the transcript levels of cellulase genes in ∆Mig1, there was no increase in cellulase yield. Even a further increase in the transcript levels of clr-2 via a stronger promoter was ineffective. However, when the CaCO3 concentration was increased to 5 g/l in the growth medium, we achieved a 1.5-fold higher activity of 6.4 FPU/ml in the ∆Mig1 strain with clr-2 overexpression. Enthused by the calcium effect, a transcriptomic screen for genes encoding Ca2+-activated kinase identified ssp1, whose overexpression could further increase cellulase yield to ~ 7.5 FPU/ml. Investigation of the mechanism revealed that calcium signaling exclusively enhances the translation and secretion of cellulase in Penicillium funiculosum. CONCLUSIONS Our study identifies for the first time that cellulose activates two discrete signaling events to govern cellulase transcription and posttranscriptional processes (translation, processing and secretion) in P. funiculosum NCIM1228. Whereas Clr-2, the transcriptional activator of cellulase, governs transcription, calcium signaling specifically activates cellulase translation and secretion.
Collapse
Affiliation(s)
- Anmoldeep Randhawa
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
- AMITY University, Mohali, Punjab, 140306, India.
| | - Olusola A Ogunyewo
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kamran Jawed
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
10
|
Zhao Q, Yang Z, Xiao Z, Zhang Z, Xing J, Liang H, Gao L, Zhao J, Qu Y, Liu G. Structure-guided engineering of transcriptional activator XYR1 for inducer-free production of lignocellulolytic enzymes in Trichoderma reesei. Synth Syst Biotechnol 2023; 8:732-740. [PMID: 38187093 PMCID: PMC10770280 DOI: 10.1016/j.synbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
The filamentous fungus Trichoderma reesei is widely used for the production of lignocellulolytic enzymes in industry. XYR1 is the major transcriptional activator of cellulases and hemicellulases in T. reesei. However, rational engineering of XYR1 for improved lignocellulolytic enzymes production has been limited by the lack of structure information. Here, alanine 873 was identified as a new potential target for the engineering of XYR1 based on its structure predicted by AlphaFold2. The mutation of this residue to tyrosine enabled significantly enhanced production of xylanolytic enzymes in the medium with cellulose as the carbon source. Moreover, xylanase and cellulase production increased by 56.7- and 3.3-fold, respectively, when glucose was used as the sole carbon source. Under both conditions, the improvements of lignocellulolytic enzyme production were higher than those in the previously reported V821F mutant. With the enriched hemicellulases and cellulases, the crude enzymes secreted by the A873Y mutant strain produced 51 % more glucose and 52 % more xylose from pretreated corn stover than those of the parent strain. The results provide a novel strategy for engineering the lignocellulolytic enzyme-producing capacity of T. reesei, and would be helpful for understanding the molecular mechanisms of XYR1 regulation.
Collapse
Affiliation(s)
- Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zezheng Yang
- Taishan College, Shandong University, Qingdao, 266237, China
| | - Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jing Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Huiqi Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Taishan College, Shandong University, Qingdao, 266237, China
| |
Collapse
|
11
|
Mou L, Pan R, Liu Y, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. Isolation of a newly Trichoderma asperellum LYS1 with abundant cellulase-hemicellulase enzyme cocktail for lignocellulosic biomass degradation. Enzyme Microb Technol 2023; 171:110318. [PMID: 37683573 DOI: 10.1016/j.enzmictec.2023.110318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
As the most abundant and renewable natural resource in the world, lignocellulose is a promising alternative to fossil energy to relieve environmental concerns and resource depletion. However, due to its recalcitrant structure, strains with efficient degradation capability still need exploring. In this study, a fungus was successfully isolated from decayed wood and named as Trichoderma asperellum LYS1 by phylogenetic and draft genomic analysis. The further investigations showed that strain LYS1 had an outstanding performance on lignocellulose degradation, especially for hemicellulose-rich biomass. After the analysis of encoded CAZymes, mainly on GH family, a large amount of genes coding β-glucosidase and xylanase may contribute to the high degradation of cellulose and hemicellulose. Collectively, the results generated in this study demonstrated that T. asperellum LYS1 is a potential cell factory for lignocellulose biorefinery.
Collapse
Affiliation(s)
- Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Runze Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China
| |
Collapse
|
12
|
Okereke OE, Gupta M, Ogunyewo OA, Sharma K, Kapoor S, Sinha T, Yazdani SS. Profiling of the β-glucosidases identified in the genome of Penicillium funiculosum: insights from genomics, transcriptomics, proteomics, and homology-modeling studies. Appl Environ Microbiol 2023; 89:e0070423. [PMID: 37610233 PMCID: PMC10537656 DOI: 10.1128/aem.00704-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023] Open
Abstract
The enzymatic conversion of lignocellulosic biomass to bioethanol depends on efficient enzyme systems with β-glucosidase as one of the key components. In this study, we performed in-depth profiling of the various β-glucosidases present in the genome of the hypercellulolytic fungus Penicillium funiculosum using genomics, transcriptomics, proteomics, and molecular dynamics simulation approaches. Of the eight β-glucosidase genes identified in the P. funiculosum genome, three were predicted to be extracellular based on signal peptide prediction and abundance in the secretome. Among the three secreted β-glucosidases, two belonged to the GH3 family and one belonged to the GH1 family. Homology models of these proteins predicted a deep and narrow active site for the GH3 β-glucosidases (PfBgl3A and PfBgl3B) and a shallow open active site for the GH1 β-glucosidase (PfBgl1A). The enzymatic assays indicated that P. funiculosum-secreted proteins showed high β-glucosidase activities with prominent bands on the 4-methylumbelliferyl β-D-glucopyranoside zymogram. To understand the contributory effects of each of the three secreted β-glucosidases (PfBgls), the corresponding gene was deleted separately, and the effect of the deletion on the β-glucosidase activity of the secretome was examined. Although not the most abundant, PfBgl3A was found to be one of the most important β-glucosidases, as evidenced by a 42% reduction in β-glucosidase activity in the ΔPfBgl3A strain. Our results advance the understanding of the genetic and biochemical nature of all β-glucosidases produced by P. funiculosum and pave the way to design a superior biocatalyst for the hydrolysis of lignocellulosic biomass. IMPORTANCE Commercially available cellulases are primarily produced from Trichoderma reesei. However, external supplementation of the cellulase cocktail from this host with exogenous β-glucosidase is often required to achieve the desired optimal saccharification of cellulosic feedstocks. This challenge has led to the exploration of other cellulase-producing strains. The nonmodel hypercellulolytic fungus Penicillium funiculosum has been studied in recent times and identified as a promising source of industrial cellulases mainly due to its ability to produce a balanced concoction of cellulolytic enzymes, including β-glucosidases. Various genetic interventions targeted at strain improvement for cellulase production have been performed; however, the β-glucosidases of this strain have remained largely understudied. This study, therefore, reports profiling of all eight β-glucosidases of P. funiculosum via molecular and computational approaches. The results of this study provide useful insights that will establish the background for future engineering strategies to transform this fungus into an industrial workhorse.
Collapse
Affiliation(s)
- Omoaruemike Ebele Okereke
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Biotechnology Advanced Research Centre, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
| | - Mayank Gupta
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Olusola A. Ogunyewo
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kanika Sharma
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sonal Kapoor
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Tulika Sinha
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
13
|
Vega-Sagardía M, Delgado J, Ruiz-Moyano S, Garrido D. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions. Food Res Int 2023; 170:113025. [PMID: 37316088 DOI: 10.1016/j.foodres.2023.113025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The intestinal microbiome is a community of anaerobic microorganisms whose activities significantly impact human health. Its composition can be modulated by consuming foods rich in dietary fiber, such as xylan, a complex polysaccharide that can be considered an emerging prebiotic. In this work, we evaluated how certain gut bacteria acted as primary degraders, fermenting dietary fibers, and releasing metabolites that other bacteria can further use. Different bacterial strains of Lactobacillus, Bifidobacterium, and Bacteroides were evaluated for their ability to consume xylan and interact with one another. Results from unidirectional assays gave indications of possible cross-feeding between bacteria using xylan as a carbon source. Bidirectional assays showed that Bifidobacterium longum PT4 increased its growth in the presence of Bacteroides ovatus HM222. Proteomic analyses indicated that B. ovatus HM222 synthesizes enzymes facilitating xylan degradation, such as β-xylanase, arabinosidase, L-arabinose isomerase, and xylosidase. Interestingly, the relative abundance of these proteins remains largely unaffected in the presence of Bifidobacterium longum PT4. In the presence of B. ovatus, B. longum PT4 increased the production of enzymes such as α-L-arabinosidase, L-arabinose isomerase, xylulose kinase, xylose isomerase, and sugar transporters. These results show an example of positive interaction between bacteria mediated by xylan consumption. Bacteroides degraded this substrate to release xylooligosaccharides, or monosaccharides (xylose, arabinose), which might support the growth of secondary degraders such as B. longum.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, Universidad de Extremadura, Avenida de las Ciencias s/n, 10003 Caceres, Spain.
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
14
|
Zhao S, Wang JX, Hou R, Ning YN, Chen ZX, Liu Q, Luo XM, Feng JX. Novel Transcription Factor CXRD Regulates Cellulase and Xylanase Biosynthesis in Penicillium oxalicum under Solid-State Fermentation. Appl Environ Microbiol 2023; 89:e0036023. [PMID: 37191516 PMCID: PMC10305053 DOI: 10.1128/aem.00360-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Penicillium oxalicum produces an integrated, extracellular cellulase and xylanase system, strictly regulated by several transcription factors. However, the understanding of the regulatory mechanism of cellulase and xylanase biosynthesis in P. oxalicum is limited, particularly under solid-state fermentation (SSF) conditions. In our study, deletion of a novel gene, cxrD (cellulolytic and xylanolytic regulator D), resulted in 49.3 to 2,230% enhanced production of cellulase and xylanase, except for 75.0% less xylanase at 2 days, compared with the P. oxalicum parental strain, when cultured on solid medium containing wheat bran plus rice straw for 2 to 4 days after transfer from glucose. In addition, the deletion of cxrD delayed conidiospore formation, leading to 45.1 to 81.8% reduced asexual spore production and altered mycelial accumulation to various extents. Comparative transcriptomics and real-time quantitative reverse transcription-PCR found that CXRD dynamically regulated the expression of major cellulase and xylanase genes and conidiation-regulatory gene brlA under SSF. In vitro electrophoretic mobility shift assays demonstrated that CXRD bound to the promoter regions of these genes. The core DNA sequence 5'-CYGTSW-3' was identified to be specifically bound by CXRD. These findings will contribute to understanding the molecular mechanism of negative regulation of fungal cellulase and xylanase biosynthesis under SSF. IMPORTANCE Application of plant cell wall-degrading enzymes (CWDEs) as catalysts in biorefining of lignocellulosic biomass into bioproducts and biofuels reduces both chemical waste production and carbon footprint. The filamentous fungus Penicillium oxalicum can secrete integrated CWDEs, with potential for industrial application. Solid-state fermentation (SSF), simulating the natural habitat of soil fungi, such as P. oxalicum, is used for CWDE production, but a limited understanding of CWDE biosynthesis hampers the improvement of CWDE yields through synthetic biology. Here, we identified a novel transcription factor CXRD, which negatively regulates the biosynthesis of cellulase and xylanase in P. oxalicum under SSF, providing a potential target for genetic engineering to improve CWDE production.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Jiu-Xiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Run Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Zhao-Xing Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Qi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
15
|
Guan Y, Xie C, Zhang R, Zhang Z, Tian Z, Feng J, Shen X, Li H, Chang S, Zhao C, Chai R. Characterization and the cholesterol-lowering effect of dietary fiber from fermented black rice ( Oryza sativa L.). Food Funct 2023. [PMID: 37334479 DOI: 10.1039/d3fo01308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Black rice was fermented with Neurospora crassa, after which the dietary fiber (DF) extracted from it was characterized and evaluated for its cholesterol-lowering effect in mice. The findings demonstrated that fermentation increased the level of soluble DF from 17.27% ± 0.12 to 29.69% ± 0.26 and increased the adsorption capacity of DF for water, oil, cholesterol, glucose and sodium cholate. The fermented DF had a more loose and porous structure than that extracted from unfermented rice. Additionally, feeding with DF from the fermented black rice significantly reduced body weight, lowered total cholesterol levels and improved the lipid profile in mice gavaged with a high dose (5 g per kg bw) or a low dose (2.5 g per kg·bw). ELISA showed that the hepatic expression of typical proteins and enzymes that are involved in cholesterol metabolism was regulated by the fermented rice DF, leading to reduced cholesterol production and increased cholesterol clearance. The fermented DF also modified the gut microbiota composition (e.g. Firmicutes reduced and Akkermansia increased), which promoted the production of short-chain fatty acids. In conclusion, fermentation can modify the structure and function of DF in black rice and the fermented dietary fiber has excellent cholesterol lowering effects possibly by cholesterol adsorption, cholesterol metabolism modulation, and intestinal microflora regulation.
Collapse
Affiliation(s)
- Yuting Guan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Chanyuan Xie
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Rui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Ziyang Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Zhenyang Tian
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Jianing Feng
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Xiaoyong Shen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Haiqin Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Shimin Chang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ran Chai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| |
Collapse
|
16
|
Park HJ, Gwon SY, Lee J, Koo NK, Min K. Synergetic effect of lytic polysaccharide monooxygenase from Thermobifida fusca on saccharification of agrowastes. BIORESOURCE TECHNOLOGY 2023; 378:129015. [PMID: 37019417 DOI: 10.1016/j.biortech.2023.129015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Saccharification is one of the most noteworthy processes in biomass-based biorefineries. In particular, the lytic polysaccharide monooxygenase has recently emerged as an oxidative cleavage-recalcitrant polysaccharide; however, there is insufficient information regarding its application to actual biomass. Accordingly, this study focused optimizing the recombinant expression level of a bacterial lytic polysaccharide monooxygenase from Thermobifida fusca (TfLPMO), which was characterized as a cellulolytic enzyme. Finally, the synergistic effect of the lytic polysaccharide monooxygenase and a commercial cellulase cocktail on the saccharification of agrowaste was investigated. TfLPMO functioned on various cellulosic and hemicellulosic substrates, and the combination of TfLPMO with cellulase exhibited a synergistic effect on the saccharification of agrowastes, resulting in a 19.2% and 14.1% increase in reducing sugars from rice straw and corncob, respectively. The results discussed herein can lead to an in-depth understanding of enzymatic saccharification and suggest viable options for valorizing agrowastes as renewable feedstocks in biorefineries.
Collapse
Affiliation(s)
- Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Seung Yeon Gwon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jeongmi Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Na Kyeong Koo
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Kyoungseon Min
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
17
|
Christopher M, Sreeja-Raju A, Abraham A, Gokhale DV, Pandey A, Sukumaran RK. Early cellular events and potential regulators of cellulase induction in Penicillium janthinellum NCIM 1366. Sci Rep 2023; 13:5057. [PMID: 36977777 PMCID: PMC10050438 DOI: 10.1038/s41598-023-32340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Cellulase production by fungi is tightly regulated in response to environmental cues, and understanding this mechanism is a key pre-requisite in the efforts to improve cellulase secretion. Based on UniProt descriptions of secreted Carbohydrate Active enZymes (CAZymes), 13 proteins of the cellulase hyper-producer Penicillium janthinellum NCIM 1366 (PJ-1366) were annotated as cellulases- 4 cellobiohydrolases (CBH), 7 endoglucanases (EG) and 2 beta glucosidases (BGL). Cellulase, xylanase, BGL and peroxidase activities were higher for cultures grown on a combination of cellulose and wheat bran, while EG was stimulated by disaccharides. Docking studies indicated that the most abundant BGL- Bgl2- has different binding sites for the substrate cellobiose and the product glucose, which helps to alleviate feedback inhibition, probably accounting for the low level of glucose tolerance exhibited. Out of the 758 transcription factors (TFs) differentially expressed on cellulose induction, 13 TFs were identified whose binding site frequencies on the promoter regions of the cellulases positively correlated with their abundance in the secretome. Further, correlation analysis of the transcriptional response of these regulators and TF-binding sites on their promoters indicated that cellulase expression is possibly preceded by up-regulation of 12 TFs and down-regulation of 16 TFs, which cumulatively regulate transcription, translation, nutrient metabolism and stress response.
Collapse
Affiliation(s)
- Meera Christopher
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - AthiraRaj Sreeja-Raju
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Rajeev K Sukumaran
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
18
|
Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. FUEL 2023; 333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
19
|
Wang J, Zhuang Y, Song X, Lin X, Wang X, Yang F, Chen X. Differential transcriptome analysis of Sporocytophaga sp. CX11 and identification of candidate genes involved in lignocellulose degradation. BIORESOUR BIOPROCESS 2023; 10:8. [PMID: 38647554 PMCID: PMC10992098 DOI: 10.1186/s40643-023-00629-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Cellulose is the most abundant renewable bioresources on earth, and the biodegradation and utilization of cellulose would contribute to the sustainable development of global environment. Sporocytophaga species are common aerobic cellulose-degrading bacteria in soil, which can adhere to the surface of cellulose matrix and motile by gliding. In this study, a differential transcriptome analysis of Sporocytophaga sp. CX11 was performed and a total of 4,217 differentially expressed genes (DEGs) were identified. Gene Ontology enrichment results showed that there are three GO categories related to cellulose degradation function among the annotated DEGs. A total of 177 DEGs were identified as genes encoding carbohydrate-active enzymes (CAZymes), among which 54 significantly upregulated CAZymes were mainly cellulases, hemicellulases, pectinases, etc. 39 DEGs were screened to associate with gliding function. In order to explore unannotated genes potentially related to cellulose metabolism, cluster analysis was performed using the Short-Time Series Expression Miner algorithm (STEM). 281 unannotated genes were predicted to be associated with the initial-middle stage of cellulose degradation and 289 unannotated genes might function in the middle-last stage of cellulose degradation. Sporocytophaga sp. CX11 could produce extracellular endo-xylanase, endo-glucanase, FPase and β-glucosidase, respectively, according to different carbon source conditions. Altogether, this study provides valuable insights into the transcriptome information of Sporocytophaga sp. CX11, which would be useful to explore its application in biodegradation and utilization of cellulose resources.
Collapse
Affiliation(s)
- Jiwei Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Ying Zhuang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xianghe Song
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xu Lin
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Xiangyi Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China.
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian, 116034, People's Republic of China.
| |
Collapse
|
20
|
Christopher M, Sreeja-Raju A, Sankar M, Gokhale DV, Pandey A, Sukumaran RK. Lignocellulose degradation by Penicillium janthinellum enzymes is influenced by its variable secretome and a unique set of feedstock characteristics. BIORESOURCE TECHNOLOGY 2022; 365:128129. [PMID: 36252760 DOI: 10.1016/j.biortech.2022.128129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Substrate characteristics and proteins that affect lignocellulose-hydrolysis by the hypercellulolytic fungus Penicillium janthinellum NCIM 1366 (PJ-1366) were investigated. The hydrolysis rate of PJ-1366 enzymes was very high, with upto 75 % of the reaction being completed in initial 4 h. Comparison of the hydrolytic efficiencies on differently pretreated biomass indicated that the greatest (negative) effect was imparted by lignin, suggesting that improving ligninase activity of the PJ-1366 enzymes may help to improve hydrolysis. Larger pore sizes and higher crystallinity of substrates, which favor enzyme penetration and processive hydrolysis, positively influenced hydrolysis efficiency. For alkali-pretreated substrates, 16 FPU/g of PJ-1366 cellulases released the sugar-equivalent of using 10 FPU/g of a commercial biomass hydrolyzing enzyme. By correlation analysis, 41 proteins, including 20 CAZymes were identified, whose abundance in the secretome positively correlated with the cellulase activities of the culture filtrate. These proteins may be considered as the primary drivers of FPase/CMCase/pNPGase/xylanase activity in PJ-1366.
Collapse
Affiliation(s)
- Meera Christopher
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athiraraj Sreeja-Raju
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meena Sankar
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Ashok Pandey
- Centre for Innovation & Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Rajeev K Sukumaran
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Antoniêto ACC, Nogueira KMV, Mendes V, Maués DB, Oshiquiri LH, Zenaide-Neto H, de Paula RG, Gaffey J, Tabatabaei M, Gupta VK, Silva RN. Use of carbohydrate-directed enzymes for the potential exploitation of sugarcane bagasse to obtain value-added biotechnological products. Int J Biol Macromol 2022; 221:456-471. [PMID: 36070819 DOI: 10.1016/j.ijbiomac.2022.08.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
Microorganisms, such as fungi and bacteria, are crucial players in the production of enzymatic cocktails for biomass hydrolysis or the bioconversion of plant biomass into products with industrial relevance. The biotechnology industry can exploit lignocellulosic biomass for the production of high-value chemicals. The generation of biotechnological products from lignocellulosic feedstock presents several bottlenecks, including low efficiency of enzymatic hydrolysis, high cost of enzymes, and limitations on microbe metabolic performance. Genetic engineering offers a route for developing improved microbial strains for biotechnological applications in high-value product biosynthesis. Sugarcane bagasse, for example, is an agro-industrial waste that is abundantly produced in sugar and first-generation processing plants. Here, we review the potential conversion of its feedstock into relevant industrial products via microbial production and discuss the advances that have been made in improving strains for biotechnological applications.
Collapse
Affiliation(s)
- Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Vanessa Mendes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Letícia Harumi Oshiquiri
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Hermano Zenaide-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES 29047-105, Brazil
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland; BiOrbic, Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
22
|
Pant S, Ritika, Nag P, Ghati A, Chakraborty D, Maximiano MR, Franco OL, Mandal AK, Kuila A. Employment of the CRISPR/Cas9 system to improve cellulase production in Trichoderma reesei. Biotechnol Adv 2022; 60:108022. [PMID: 35870723 DOI: 10.1016/j.biotechadv.2022.108022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 12/27/2022]
Abstract
Trichoderma reesei has been explored intensively in the laboratory and on an industrial scale for its highly potent cellulase secretion machinery since its characterization over 70 years ago. Emergence of new genetic tools over the past decade has strengthened the understanding of mechanism involved in transcription of cellulase genes in fungi and provided a boost to edit them at molecular level. Since several transcriptional factors work synergistically for cellulase expression in fungi; engineering of cellulase secretome for enhanced cellulase titer require combined manipulation of these factors. In the same context, CRISPR/Cas9 has emerged as a powerful, versatile genetic engineering tool for multiplex gene editing in fungi. It is true that considerable efforts with CRISPR technologies have largely developed fungal genetic engineering, but its application in fungi is still challenging and limited. The present review illustrates the precision, strengths and challenges of using CRISPR/Cas9 technology for cellulase engineering in T. reesei, highlighting key strategies that could be employed for strain improvement.
Collapse
Affiliation(s)
- Shailja Pant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Ritika
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Piyali Nag
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, Barrackpore, Kolkata 700120, India
| | - Amit Ghati
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, Barrackpore, Kolkata 700120, India.
| | - Dipjyoti Chakraborty
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Amit Kumar Mandal
- Centre for Nanotechnology Sciences & Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, 733134, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
23
|
Li CX, Liu L, Zhang T, Luo XM, Feng JX, Zhao S. Three-Dimensional Genome Map of the Filamentous Fungus Penicillium oxalicum. Microbiol Spectr 2022; 10:e0212121. [PMID: 35499317 PMCID: PMC9241887 DOI: 10.1128/spectrum.02121-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 01/14/2023] Open
Abstract
Higher-order spatial organization of the chromatin in the nucleus plays crucial roles in the maintenance of cell functions and the regulation of gene expression. Three-dimensional (3D) genome sequencing has been used to great effect in mammal and plants, but the availability of 3D genomes of filamentous fungi is severely limited. Here, we performed a chromosome-level genome assembly of Penicillium oxalicum through single-molecule real-time sequencing (Pacific Biosciences) and chromatin interaction mapping (Hi-C), with a scaffold N50 of 4.07 Mb and a contig N50 of 3.81 Mb, and further elucidated the 3D genome architecture of P. oxalicum. High-frequency interchromosomal contacts occurred within the centromeres and telomeres, as well as within individual chromosomes. There were 12,203 cis-interactions and 7,884 trans-interactions detected at a resolution of 1 kb. Moreover, a total of 1,099 topologically associated domains (or globules) were found, ranging in size from 2.0 to 76.0 kb. Interestingly, transcription factor-bound motifs were enriched in the globule boundaries. All the cellulase and xylanase genes were discretely distributed in the 3D model of the P. oxalicum genome as a result of few cis- and trans-interactions. Our results from this study provide a global view of chromatin interactions in the P. oxalicum genome and will act as a resource for studying spatial regulation of gene expression in filamentous fungi. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and the regulation of gene expression. The three-dimensional (3D) architectures of the genomes of many mammals and plants have been elucidated, but corresponding studies on filamentous fungi, which play vital roles as decomposers of organic matter in the soil, are very limited. Penicillium oxalicum is one of the predominant cellulolytic aerobic fungi in subtropical and tropical forest soils and can secrete integrative cellulase and xylanase under integrated regulatory control, degrading plant biomass highly efficiently. In the present study, we employed Hi-C technology to construct the 3D genome model of P. oxalicum strain HP7-1 and to further investigate cellulase and xylanase as well as transcription factor genes in 3D genome. These results provide a resource to achieve a deeper understanding of cell function and the regulation of gene expression in filamentous fungi.
Collapse
Affiliation(s)
- Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
24
|
Zhang P, Li Q, Chen Y, Peng N, Liu W, Wang X, Li Y. Induction of cellulase production in Trichoderma reesei by a glucose-sophorose mixture as an inducer prepared using stevioside. RSC Adv 2022; 12:17392-17400. [PMID: 35765440 PMCID: PMC9190947 DOI: 10.1039/d2ra01192a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Sophorose is currently the most effective inducer of cellulase production by Trichoderma reesei; however, the use of byproduct sophorose from the stevioside acid hydrolysis process has not been developed. In this study, stevioside was hydrolysed with different concentrations of HCl to obtain isosteviol and a mixture of glucose and sophorose (MGS). Isosteviol showed good inhibitory effects on the growth of Aspergillus niger, Saccharomyces cerevisiae and Escherichia coli after separation. At the same time, MGS, as a byproduct, was evaluated for cellulase production to determine the feasibility of this approach. MGS was compared with common soluble inducers, such as lactose, cellobiose, and a mixture of glucose and β-disaccharide (MGD), and induced higher cellulase production than the other inducers. The cellulase activity induced by MGS was 1.64- and 5.26-fold higher than that induced by lactose and cellobiose, respectively, and was not significantly different from that induced by MGD. The crude enzyme using MGS as an inducer with commercial β-glucosidase was further tested by hydrolyzing NaOH-pretreated corn stover with 5% solid loading, and 33.4 g L-1 glucose was released with a glucose yield of 96.04%. The strategy developed in this work will be beneficial for reducing inducer production cost through a simple stevia glycoside hydrolysis reaction and will contribute to studies aimed at improving cellulase production using soluble inducers for easier operation in industrial-scale cellulase production.
Collapse
Affiliation(s)
- Peng Zhang
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Qian Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Yudian Chen
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Nian Peng
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Wenshu Liu
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Xuemei Wang
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| | - Yonghao Li
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology Chongqing 401331 China +86-23-65022211
| |
Collapse
|
25
|
Metagenomic mining of Indian river confluence reveal functional microbial community with lignocelluloytic potential. 3 Biotech 2022; 12:132. [PMID: 35611093 DOI: 10.1007/s13205-022-03190-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Microbial carbohydrate-active enzymes (CAZyme) can be harnessed for valorization of Lignocellulosic biomass (LCB) to value-added chemicals/products. The two Indian Rivers Ganges and the Yamuna having different origins and flow, face accumulation of carbon-rich substrates due to the discharge of wastewater from adjoining paper and pulp industries, which could potentially contribute to the natural enrichment of LCB utilizing genes, especially at their confluence. We analyzed CAZyme diversity in metagenomic datasets across the sacred confluence of the Rivers Ganges and Yamuna. Functional annotation using CAZyme database identified a total of 77,815 putative genes with functional domains involved in the catalysis of carbohydrate degradation or synthesis of glycosidic bonds. The metagenomic analysis detected ~ 41% CAZymes catalyzing the hydrolysis of lignocellulosic biomass polymers- cellulose, hemicellulose, lignin, and pectin. The Beta diversity analysis suggested higher CAZyme diversity at downstream region of the river confluence, which could be useful niche for culture-based studies. Taxonomic origin for CAZymes revealed the predominance of bacteria (97%), followed by archaea (1.67%), Eukaryota (0.63%), and viruses (0.7%). Metagenome guided CAZyme diversity of the microflora spanning across the confluence of Ganges-Yamuna River, could be harnessed for biomass and bioenergy applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03190-7.
Collapse
|
26
|
Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. BIORESOURCE TECHNOLOGY 2022; 352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.
Collapse
Affiliation(s)
- Chunjie Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Liping Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Donglai Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dongsheng Xue
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
27
|
Zhao S, Mai RM, Zhang T, Feng XZ, Li WT, Wang WX, Luo XM, Feng JX. Simultaneous manipulation of transcriptional regulator CxrC and translational elongation factor eEF1A enhances the production of plant-biomass-degrading enzymes of Penicillium oxalicum. BIORESOURCE TECHNOLOGY 2022; 351:127058. [PMID: 35339654 DOI: 10.1016/j.biortech.2022.127058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Genetic engineering is an efficient approach to improve fungal bioproducts, but the specific targets are limited. In this study, it was found that the key transcription repressor CxrC of Penicillium oxalicum could physically interact with the translational elongation factor eEF1A that positively regulated the production of plant-biomass-degrading enzymes by the fungus under Avicel induction. Simultaneously deletion of the cxrC and overexpression of the eEF1A in the strain Δku70 resulted in 55.4%-314.6% higher production of cellulase, xylanase and raw-starch-degrading enzymes than that of the start strain Δku70. Transcript abundance of the genes encoding predominant cellulases, xylanases and raw-starch-degrading enzymes were significantly upregulated in the mutant ΔcxrC::eEF1A. The ΔcxrC::eEF1A enhanced saccharification efficiency of raw cassava flour by 9.3%-15.5% at early-middle stage of hydrolysis in comparison with Δku70. The obtained knowledges expanded the sources used as effective targets for increased production of plant-biomass-degrading enzymes by fungi.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rong-Ming Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiang-Zhao Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wen-Xuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
28
|
Zhang Y, Wang Y, Yang J, Yang W, Wang X, Wu C, Song Y. Improved γ-Linolenic Acid Production from Cellulose in Mucor circinelloides via Coexpression of Cellobiohydrolase and Delta-6 Desaturase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4373-4381. [PMID: 35357816 DOI: 10.1021/acs.jafc.2c00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study was aimed at facilitating the production of γ-linolenic acid (GLA) from the cellulosic substrate with the engineered oleaginous fungus Mucor circinelloides WJ11. Here, the homologous recombination technology was used to overexpress the cellobiohydrolase (CBH2) derived from Trichoderma longibrachiatum and the original delta-6 fatty acid desaturase (D6) in M. circinelloides to construct genetically engineered strains capable of effectively using cellulose to enhance GLA synthesis. When cultivated in modified K&R medium supplemented with microcrystalline cellulose, the CBH2 and D6 coexpressing strains led to increases in the biomass (up to 12.8 g/L) and lipid yield (up to 3.7 g/L) of 87% and 2.4-fold, respectively, compared to that of the control strain. Notably, when CBH2 and D6 were coexpressed in M. circinelloides, the yield of GLA reached 608 mg/L, which was a dramatic increase of 3.9-fold compared to that of the control strain. This is the first report on promoting the GLA production from the cellulosic substrate via coexpression of CBH2 and delta-6 desaturase. This work provides a theoretical basis for efficient transformation from the cellulosic substrate to functional GLA by CBH2 and D6 coexpressing strains, which might play a positive role in promoting the sustainable development of biological industry.
Collapse
Affiliation(s)
- Yao Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Yanxia Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Junhuan Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, Shandong, People's Republic of China
| |
Collapse
|
29
|
Lian LD, Shi LY, Zhu J, Liu R, Shi L, Ren A, Yu HS, Zhao MW. GlSwi6 Positively Regulates Cellulase and Xylanase Activities through Intracellular Ca2+ Signaling in Ganoderma lucidum. J Fungi (Basel) 2022; 8:jof8020187. [PMID: 35205940 PMCID: PMC8877461 DOI: 10.3390/jof8020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Ganoderma lucidum is a white-rot fungus that produces a range of lignocellulolytic enzymes to decompose lignin and cellulose. The mitogen-activated protein kinase (MAPK) pathway has been implicated in xylanases and cellulases production. As the downstream transcription factor of Slt2-MAPK, the function of Swi6 in G. lucidum has not been fully studied. In this study, the transcription factor GlSwi6 in G. lucidum was characterized and shown to significantly positively regulate cellulases and xylanases production. Knockdown of the GlSwi6 gene decreased the activities of cellulases and xylanases by approximately 31%~38% and 54%~60% compared with those of the wild-type (WT) strain, respectively. Besides, GlSwi6 can be alternatively spliced into two isoforms, GlSwi6A and GlSwi6B, and overexpression of GlSwi6B increased the activities of cellulase and xylanase by approximately 50% and 60%, respectively. Further study indicates that the existence of GlSwi6B significantly increased the concentration of cytosolic Ca2+. Our study indicated that GlSwi6 promotes the activities of cellulase and xylanase by regulating the Ca2+ signaling. These results connected the GlSwi6 and Ca2+ signaling in the regulation of cellulose degradation, and provide an insight for further improvement of cellulase or xylanase activities in G. lucidum as well as other fungi.
Collapse
|
30
|
Zhang J, Meng Markillie L, Mitchell HD, Gaffrey MJ, Orr G, Schilling JS. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal Genet Biol 2022; 159:103673. [PMID: 35150839 DOI: 10.1016/j.fgb.2022.103673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments. This implies the crucial role of concise gene regulation to brown rot efficacy, but the underlying regulatory mechanisms remain uncharacterized. Here, using the combined transcriptomic and enzyme analyses we investigated the roles of carbon catabolites in controlling gene expression in model brown rot fungus Rhodonia placenta. We identified co-regulated gene regulons as shared transcriptional responses to no-carbon controls, glucose, cellobiose, or aspen wood (Populus sp.). We found that cellobiose, a common inducing catabolite for fungi, induced expression of main chain-cleaving cellulases in GH5 and GH12 families (cellobiose vs. no-carbon > 4-fold, Padj < 0.05), whereas complex aspen was a universal inducer for Carbohydrate Active Enzymes (CAZymes) expression. Importantly, we observed the attenuated glucose-mediated repression effects on cellulases expression, but not on hemicellulases and lignin oxidoreductases, suggesting fungi might have adapted diverged regulatory routes to boost cellulase production for the fast carbohydrate release. Using carbon regulons, we further predicted the cis- and trans-regulatory elements and assembled a network model of the distinctive regulatory machinery of brown rot. These results offer mechanistic insights into the energy efficiency traits of a common group of decomposer fungi with enormous influence on the carbon cycle.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States.
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Hugh D Mitchell
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Matthew J Gaffrey
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
31
|
Guo H, He T, Lee DJ. Contemporary proteomic research on lignocellulosic enzymes and enzymolysis: A review. BIORESOURCE TECHNOLOGY 2022; 344:126263. [PMID: 34728359 DOI: 10.1016/j.biortech.2021.126263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This review overviewed the current researches on the isolation of novel strains, the development of novel identification protocols, the key enzymes and their synergistic interactions with other functional enzyme systems, and the strategies for enhancing enzymolysis efficiencies. The main obstacle for realizing biorefinery of lignocellulosic biomass to biofuels or biochemicals is the high cost of enzymolysis stage. Therefore, research prospects to reduce the costs for lignocellulose hydrolysis were outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Tongyuan He
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong.
| |
Collapse
|
32
|
Li Y, Zhang P, Zhu D, Yao B, Hasunuma T, Kondo A, Zhao X. Efficient preparation of soluble inducer for cellulase production and saccharification of corn stover using in-house generated crude enzymes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Patel AK, Saini JK, Singhania RR. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. BIORESOURCE TECHNOLOGY 2022; 344:126247. [PMID: 34740795 DOI: 10.1016/j.biortech.2021.126247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The present research work aimed at developing robust yeast cell factory via adaptive laboratory evolution (ALE) for improved cellulosic bioethanol production. Kluyveromyces marxianus JKH5, a newly isolated thermotolerant ethanologenic yeast, was engineered by serial passaging for 60 generations in medium supplemented with gradually higher concentration of inhibitors (acetic acid, furfural, and vanillin) that are generated during dilute acid pretreatment. The improved strain K. marxianus JKH5 C60, showed 3.3-fold higher specific growth rate, 56% reduced lag phase and 80% enhanced fermentation efficiency at 42 °C in comparison to parent strain in inhibitor cocktail comprising medium. Bioethanol production by simultaneous saccharification and fermentation of sequential dilute acid-alkali pretreated sugarcane bagasse in presence of inhibitors, resulted in ethanol titre and yield, respectively, 54.8 ± 0.9 g/L and 0.40 g/g. The adapted yeast can be used to ferment unwashed pretreated biomass, thereby, reducing overall cost, time, and wastewater generation, hence making bioethanol production sustainable.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| |
Collapse
|
34
|
Min K, Kim H, Park HJ, Lee S, Jung YJ, Yoon JH, Lee JS, Park K, Yoo YJ, Joo JC. Improving the catalytic performance of xylanase from Bacillus circulans through structure-based rational design. BIORESOURCE TECHNOLOGY 2021; 340:125737. [PMID: 34426235 DOI: 10.1016/j.biortech.2021.125737] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Endo-1,4-β-xylanase is one of the most important enzymes employed in biorefineries for obtaining fermentable sugars from hemicellulosic components. Herein, we aimed to improve the catalytic performance of Bacillus circulans xylanase (Bcx) using a structure-guided rational design. A systematic analysis of flexible motions revealed that the R49 component of Bcx (i) constrains the global conformational changes essential for substrate binding and (ii) is involved in modulating flexible motion. Site-saturated mutagenesis of the R49 residue led to the engineering of the active mutants with the trade-off between flexibility and rigidity. The most active mutant R49N improved the catalytic performance, including its catalytic efficiency (7.51-fold), conformational stability (0.7 °C improvement), and production of xylose oligomers (2.18-fold higher xylobiose and 1.72-fold higher xylotriose). The results discussed herein can be applied to enhance the catalytic performance of industrially important enzymes by controlling flexibility.
Collapse
Affiliation(s)
- Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hoyong Kim
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ye Jean Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Ji Hyun Yoon
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Kyoungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Young Je Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Chan Joo
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
35
|
Mondal S, Halder SK, Mondal KC. Tailoring in fungi for next generation cellulase production with special reference to CRISPR/CAS system. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 2:113-129. [PMID: 38624901 PMCID: PMC8319711 DOI: 10.1007/s43393-021-00045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Cellulose is the utmost plenteous source of biopolymer in our earth, and fungi are the most efficient and ubiquitous organism in degrading the cellulosic biomass by synthesizing cellulases. Tailoring through genetic manipulation has played a substantial role in constructing novel fungal strains towards improved cellulase production of desired traits. However, the traditional methods of genetic manipulation of fungi are time-consuming and tedious. With the availability of the full-genome sequences of several industrially relevant filamentous fungi, CRISPR-CAS (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) technology has come into the focus for the proficient development of manipulated strains of filamentous fungi. This review summarizes the mode of action of cellulases, transcription level regulation for cellulase expression, various traditional strategies of genetic manipulation with CRISPR-CAS technology to develop modified fungal strains for a preferred level of cellulase production, and the futuristic trend in this arena of research.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Center for Life Sciences, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, 721102 West Bengal India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102 West Bengal India
| |
Collapse
|
36
|
Qian Y, Gao Z, Wang J, Wang C, Li G, Fu F, Guo J, Shan Y. Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing. Foods 2021; 10:foods10081736. [PMID: 34441514 PMCID: PMC8391945 DOI: 10.3390/foods10081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Aspergillus japonicas PJ01 (A. japonicas PJ01) is a strain isolated from the rotten branches. In previ-ous studies, it was shown that it can produce complex enzymes to degrade polysaccharide com-ponents. In this study, we evaluated the safety of its crude enzyme solution. Acute oral toxicity, subchronic toxicity, micronucleus and sperm malformation tests all validated the high biologi-cal safety for the crude enzymes. Secondly, we carried out the citrus segment degradation ex-periment of crude enzyme solution. Compared with the control group, the crude enzyme solu-tion of A. japonicas PJ01 can completely degrade the segments in 50 min, which provides the basis for enzymatic peeling during juice processing. The whole genome sequencing showed that the genome of A. japonicus PJ01 has a GC content of 51.37% with a size of 36204647 bp, and encoded 10070 genes. GO, COG, KEGG and CAZy databases were used in gene annotation analyses. Pathway enrichment showed many genes related to carbohydrate metabolism, rich in genes re-lated to pectinase, xylanase and carboxylcellulase. Therefore, the complex enzyme produced by A. japonicus PJ01 can be used in gizzard juice processing to achieve efficient enzymatic decapsu-lation.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Jieyi Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| |
Collapse
|
37
|
Potential Role of Sequential Solid-State and Submerged-Liquid Fermentations in a Circular Bioeconomy. FERMENTATION 2021. [DOI: 10.3390/fermentation7020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An efficient processing of organic solid residues will be pivotal in the development of the circular bioeconomy. Due to their composition, such residues comprise a great biochemical conversion potential through fermentations. Generally, the carbohydrates and proteins present in the organic wastes cannot be directly metabolized by microorganisms. Thus, before fermentation, enzymes are used in a hydrolysis step to release digestible sugars and nitrogen. Although enzymes can be efficiently produced from organic solid residues in solid-state fermentations (SsF), challenges in the development and scale-up of SsF technologies, especially bioreactors, have hindered a wider application of such systems. Therefore, most of the commercial enzymes are produced in submerged-liquid fermentations (SmF) from expensive simple sugars. Instead of independently evaluating SsF and SmF, the review covers the option of combining them in a sequential process in which, enzymes are firstly produced in SsF and then used for hydrolysis, yielding a suitable medium for SmF. The article reviews experimental work that has demonstrated the feasibility of the process and underlines the benefits that such combination has. Finally, a discussion is included which highlights that, unlike typically perceived, SsF should not be considered a counterpart of SmF but, in contrast, the main advantages of each type of fermentation are accentuated in a synergistic sequential SsF-SmF.
Collapse
|