1
|
Vasudhevan P, Ruoyu Z, Ma H, Singh S, Varshney D, Pu S. Biocatalytic enzymes in food packaging, biomedical, and biotechnological applications: A comprehensive review. Int J Biol Macromol 2025; 300:140069. [PMID: 39832587 DOI: 10.1016/j.ijbiomac.2025.140069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The increasing environmental concerns and health risks associated with synthetic chemicals have driven the demand for sustainable and eco-friendly solutions. Biocatalysis, employing enzymes or whole cells as biocatalysts, has emerged as a powerful alternative. This review provides a comprehensive analysis of the applications of biocatalytic enzymes in food packaging, biomedical sciences, and biotechnology. We highlight the potential of enzymes like laccase, glucose oxidase, lysozyme, protease, lipase, cellulase, and asparaginase to replace traditional chemical methods, driving innovation and sustainability. The global enzyme market is also analyzed, including current trends, emerging demands, and the impact of the COVID-19 pandemic. This review aims to bridge knowledge gaps, emphasize recent technological breakthroughs, and showcase the potential of biocatalytic enzymes to address critical industrial challenges while supporting environmental sustainability and economic growth.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Zhang Ruoyu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Division of research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Deekshant Varshney
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Division of Research & innovation, Uttaranchal University, Dehradun, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
2
|
Abdelaziz AA, Abo-Kamar AM, Elkotb ES, Al-Madboly LA. Microbial lipases: advances in production, purification, biochemical characterization, and multifaceted applications in industry and medicine. Microb Cell Fact 2025; 24:40. [PMID: 39939876 PMCID: PMC11823137 DOI: 10.1186/s12934-025-02664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
Lipases are biocatalysts of significant industrial and medical relevance, owing to their ability to hydrolyze lipid substrates and catalyze esterification reactions under mild conditions. This review provides a comprehensive overview of microbial lipases' production, purification, and biochemical properties. It explores optimized fermentation strategies to enhance enzyme yield, including using agro-industrial residues as substrates. The challenges associated with purification techniques such as ultrafiltration, chromatography, and precipitation are discussed, alongside methods to improve enzyme stability and specificity. Additionally, the review addresses the growing importance of genetic engineering approaches for improving lipase characteristics, such as activity, stability, and specificity.Additionally, this review highlights the diverse applications of microbial lipases in industries, including food, pharmaceuticals, biofuels, and cosmetics. The enzyme's role in bioremediation, biodegradation, and the synthesis of bioactive compounds is analyzed, emphasizing its potential in sustainable and eco-friendly technologies. The biocatalytic properties of lipases make them ideal candidates for the green chemistry initiatives in these industries. In the biomedical domain, lipase has shown promise in drug delivery systems, anti-obesity treatments, and diagnostics.This review provides insights into the strategic development of microbes as microbial cell factories for the sustainable production of lipases, paving the way for future research and industrial innovations in enzyme technology.
Collapse
Affiliation(s)
- Ahmed A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amal M Abo-Kamar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Esraa Sobhy Elkotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Kolotylo V, Piwowarek K, Synowiec A, Kieliszek M. Optimization of fermentation conditions for microbial transglutaminase production by Streptoverticillium cinnamoneum KKP 1658 using response surface methodology (RSM). Folia Microbiol (Praha) 2025; 70:259-269. [PMID: 39578338 PMCID: PMC11861405 DOI: 10.1007/s12223-024-01223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| |
Collapse
|
4
|
Tang R, Xu R, Gao X, Dai C, Qin X, Yang J. Production of α-amylase from gluconate and carbon dioxide by protein synthesis and secretion optimization in Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2025; 416:131744. [PMID: 39500400 DOI: 10.1016/j.biortech.2024.131744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024]
Abstract
Chemoautotrophic Cupriavidus necator H16 has a strong protein synthesis ability and has been used to produce intracellular protein products. However, studies optimizing its secretion system and the producing extracellular enzyme products (EEPs) are lacking. Here, we focused on investigating the feasibility of synthesizing and secreting EEPs in C. necator H16, using α-amylase as a prototype. α-Amylase expression optimization, genome modification, and secretion system engineering were performed to construct and optimize the α-amylase-producing engineering C. necator H16. Finally, the optimized engineering strain could produce α-amylase, with the α-amylase activity per unit cells reaching up to 5.54 U/OD600 using gluconate as substrate, which was 29.2-fold compared with that of initial engineering strain. Additionally, when using carbon dioxide as substrate, the α-amylase activity per unit cells of engineered strain reached 4.26 U/OD600. Overall, this study demonstrates the feasibility of developing C. necator H16 as a host for autotrophic production of α-amylase.
Collapse
Affiliation(s)
- Ruohao Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China
| | - Rui Xu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Xuemin Gao
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Cunxi Dai
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong Province, PR China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China.
| |
Collapse
|
5
|
Yüksek G, Taş DO, Ubay-Cokgor E, Jones JP, Gosselin M, Cabana H. Effects of potential inducers to enhance laccase production and evaluating concomitant enzyme immobilisation. ENVIRONMENTAL TECHNOLOGY 2024; 45:3517-3532. [PMID: 37259795 DOI: 10.1080/09593330.2023.2219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
This work investigated non-polar solvent hexane and polar solvents methanol and ethanol as inducers besides a well-known inducer, copper, for laccase production with and without mesoporous silica-covered plastic packing under sterilised and unsterilised conditions. The potential of waste-hexane water, which is generated during the mesoporous silica production process, was also investigated as a laccase inducer. During the study, the free and immobilised laccase activity on the packing was measured. The results showed that the highest total laccase activity, approximately 10,000 Units, was obtained under sterilised conditions with 0.5 mM copper concentration. However, no immobilised laccase activity was detected except in the copper and ethanol sets under unsterilised conditions. The maximum immobilised laccase activity of the sets that used waste hexane as an inducer was 1.25 U/mg packing. According to its significant performance, waste hexane can be an alternative inducer under sterilised conditions. Concomitant immobilised packing showed satisfactory laccase activities and could be a promising method to reduce operation costs and improve the cost-efficiency of enzymatic processes in wastewater treatment plants.
Collapse
Affiliation(s)
- Gülten Yüksek
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Didem Okutman Taş
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emine Ubay-Cokgor
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - J Peter Jones
- Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Hubert Cabana
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
6
|
Rudrappa M, Santosh Kumar M, Basavarajappa DS, Hiremath H, Hugar A, Almansour AI, Kantli GB, Nayaka S. Bioproduction, purification, partial characterization and phenol removal efficacy of tyrosinase enzyme from Streptomyces sp. strain MR28. ENVIRONMENTAL RESEARCH 2024; 251:118701. [PMID: 38508362 DOI: 10.1016/j.envres.2024.118701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The study focused on the production of the tyrosinase enzyme from Streptomyces sp. MR28 and its potency in removal of phenol content from water using free and immobilized tyrosinase enzyme. The tyrosinase was produced by Streptomyces sp. MR28 in liquid tyrosine broth medium, and it was further purified to near its homogeneity by employing, precipitation, dialysis, and column chromatography. After the purification, 44.49% yield with a 4 fold purification was achieved. The characterization of the purified enzyme showed a single major peak on HPLC and a solitary band on SDS-PAGE. The purified tyrosinase enzyme was active at a pH of 7.0 and a temperature of 30 °C. Further immobilization of purified tyrosinase was performed using the sodium alginate entrapment method. The capacity of the purified tyrosinase to remove phenol in water was evaluated by spectrophotometric method. The free tyrosinase enzyme-treated solutions showed a gradual decrease in the concentration of phenol with increased incubation time at 30 °C and 40 °C, at 90 min of the incubation time, it showed maximum efficacy in removing phenol from the solution. At 50 °C and 60 °C, the free tyrosinase enzyme exhibited very less capacity to remove the phenol. The immobilized enzyme showed good capacity for the removal of phenol from the solutions; the concentration of phenol in the solution decreased with an increase in the incubation time. At temperatures of 40 °C and 50 °C, the immobilized tyrosinase enzyme beads showed significant removal of phenol from the solution, and at temperatures of 30 °C and 60 °C, they also exhibited good capacity for the removal of phenol. At the end of the 90 min incubation period, it exhibited good capability. The current study suggests using immobilized microbial tyrosinase enzyme can be used for the removal of phenol from the contaminated water in a greener manner.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India.
| | - M Santosh Kumar
- Department of Studies in Biochemistry, Davangere University, Davangere, 577007, Karnataka, India
| | | | - Halaswamy Hiremath
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Anil Hugar
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gireesh Babu Kantli
- Department of Life Sciences, PIAS, Parul University, Vadodara, 391760, Gujarat, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India.
| |
Collapse
|
7
|
Camargo AF, Kubeneck S, Bonatto C, Bazoti SF, Nerling JP, Klein GH, Michelon W, Alves SL, Mossi AJ, Fongaro G, Treichel H. Trichoderma koningiopsis fermentation in airlift bioreactor for bioherbicide production. Bioprocess Biosyst Eng 2024; 47:651-663. [PMID: 38554182 DOI: 10.1007/s00449-024-02991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024]
Abstract
During scaling of fermentations, choosing a bioreactor is fundamental to ensure the product's quality. This study aims to produce bioherbicides using Trichoderma koningiopsis fermentation, evaluating process parameters in an Airlift bioreactor. As a response, we quantified the production of enzymes involved in the bioherbicide activity (amylase, cellulase, laccase, lipase, and peroxidase). In addition, it evaluated the agronomic efficiency of the fermented extract optimized through tests that promoted soybean growth and nodulation, soybean seed germination, and in vitro phytopathogen control. As a result of optimizing the scaling bioprocess, it was possible to obtain an adequate fermentation condition, which, when applied to soybean seeds, had beneficial effects on their growth. It allowed the production of an enzyme cocktail. These results add a crucial biotechnological potential factor for the success of the optimized formulation in the Airlift bioreactor, in addition to presenting relevant results for the scientific community.
Collapse
Affiliation(s)
- Aline Frumi Camargo
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Suzana Fátima Bazoti
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Júlia Pieper Nerling
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gabriel Henrique Klein
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - William Michelon
- University of Contestado, Concórdia, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Sérgio L Alves
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Altemir José Mossi
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Helen Treichel
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
8
|
Melchor-Moncada JJ, García-Barco A, Zuluaga-Vélez A, Veloza LA, Sepúlveda-Arias JC. Scale-Up of the Fermentation Process for the Production and Purification of Serratiopeptidase Using Silkworm Pupae as a Substrate. Methods Protoc 2024; 7:19. [PMID: 38525777 PMCID: PMC10961818 DOI: 10.3390/mps7020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Serratiopeptidase, a bacterial metalloprotease known for its pain-relieving and anti-inflammatory properties, can be produced through fermentation with S. marcescens. This study aimed to identify key factors related to nutrient composition and physicochemical conditions for production in Erlenmeyer flasks and to scale up the mixture to a bioreactor to obtain the maximum proteolytic activity. A Plackett-Burman design was used to determine whether the presence of silkworm pupae (at 1.5%) was a significant parameter for serratiopeptidase production. Along with the variables pH, temperature, and time, they were optimized using a Taguchi experimental design, resulting in values of 7, 25 °C, and 36 h, respectively. Scaling up with a kLa of 25.45 ± 3.12 h-1 showed the highest serratiopeptidase production at 24 h. A factorial design was used for ultrafiltration, resulting in an LMH (liters per square meter per hour) of 960 L/m2h, a TMP (transmembrane pressure) of 15 psi, and a concentration factor of five, with a specific activity of 24,325.81 ± 1515.69 U/mg. Afterward, the retentate was purified using strong anion exchange chromatography and ultrafiltration, yielding a 19.94 ± 3.07% recovery and a purification factor of 1.59 ± 0.31. In conclusion, waste from the sericulture industry can be used for serratiopeptidase production.
Collapse
Affiliation(s)
- Jhon Jairo Melchor-Moncada
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| | - Alejandra García-Barco
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnología, Escuela de Tecnología Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (A.G.-B.); (A.Z.-V.)
| |
Collapse
|
9
|
Kim SM, Kang SH, Jeon BW, Kim YH. Tunnel engineering of gas-converting enzymes for inhibitor retardation and substrate acceleration. BIORESOURCE TECHNOLOGY 2024; 394:130248. [PMID: 38158090 DOI: 10.1016/j.biortech.2023.130248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Bilal M, Singh AK, Iqbal HM, Boczkaj G. Enzyme-conjugated MXene nanocomposites for biocatalysis and biosensing. CHEMICAL ENGINEERING JOURNAL 2023; 474:145020. [DOI: 10.1016/j.cej.2023.145020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
11
|
Shi N, Zheng M, Wu X, Chen N, Jiang L, Chang B, Lu F, Liu F. Construction and Catalytic Study of Affinity Peptide Orientation and Light Crosslinking Immobilized Sucrose Isomerase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13401-13408. [PMID: 37647235 DOI: 10.1021/acs.jafc.3c02644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A novel affinity peptide orientation and light-controlled covalent immobilized method was developed. Sucrose isomerase (SI) was selected as the model enzyme. Molecular simulation was first performed to select the targeted immobilization region. Subsequently, a short peptide (H2N-VNIGGX-COOH, VG) with high affinity to this region was rationally designed. Thereafter, 4-benzoyl-l-phenylalanine with the photosensitive group of benzophenone was introduced. Then, the affinity between the ligand and the SI was validated using molecular dynamics simulation. Thereafter, the SI was directionally immobilized onto the surface of the epoxy resin (EP) guided by VG via photo-crosslinking, and thus the oriented photo-crosslinking enzymes were obtained. The enzymatic activity, thermostability, and reusability of the affinity directional photo-crosslinked immobilized sucrose isomerase (hv-EP-VG-SI) were systematically studied. The oriented immobilization enzymes were significantly improved in recycling and heat resistance. Moreover, hv-EP-VG-SI retained more than 90% of the original activity and 50% of the activity after 11 cycles.
Collapse
Affiliation(s)
- Nian Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingqiang Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Baogen Chang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
12
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
13
|
Maghraby Y, El-Shabasy RM, Ibrahim AH, Azzazy HMES. Enzyme Immobilization Technologies and Industrial Applications. ACS OMEGA 2023; 8:5184-5196. [PMID: 36816672 PMCID: PMC9933091 DOI: 10.1021/acsomega.2c07560] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immobilization is protecting the enzymes from the harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). The immobilized enzymes can be utilized in various large-scale industries, e.g., medical, food, detergent, textile, and pharmaceutical industries, besides being used in water treatment plants. According to the required application, a suitable enzyme immobilization technique and suitable carrier materials are chosen. Enzyme immobilization techniques involve covalent binding, encapsulation, entrapment, adsorption, etc. This review mainly covers enzyme immobilization by various techniques and their usage in different industrial applications starting from 1992 until 2022. It also focuses on the multiscale operation of immobilized enzymes to maximize yields of certain products. Lastly, the severe consequence of the COVID-19 pandemic on global enzyme production is briefly discussed.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin El-Kom 32512, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, 6th of October 12578, Giza, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
14
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Feng S, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Zhang X, Bui XT, Varjani S, Hoang BN. Wastewater-derived biohydrogen: Critical analysis of related enzymatic processes at the research and large scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158112. [PMID: 35985587 DOI: 10.1016/j.scitotenv.2022.158112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Organic-rich wastewater is a feasible feedstock for biohydrogen production. Numerous review on the performance of microorganisms and the diversity of their communities during a biohydrogen process were published. However, there is still no in-depth overview of enzymes for biohydrogen production from wastewater and their scale-up applications. This review aims at providing an insightful exploration of critical discussion in terms of: (i) the roles and applications of enzymes in wastewater-based biohydrogen fermentation; (ii) systematical introduction to the enzymatic processes of photo fermentation and dark fermentation; (iii) parameters that affect enzymatic performances and measures for enzyme activity/ability enhancement; (iv) biohydrogen production bioreactors; as well as (v) enzymatic biohydrogen production systems and their larger scales application. Furthermore, to assess the best applications of enzymes in biohydrogen production from wastewater, existing problems and feasible future studies on the development of low-cost enzyme production methods and immobilized enzymes, the construction of multiple enzyme cooperation systems, the study of biohydrogen production mechanisms, more effective bioreactor exploration, larger scales enzymatic biohydrogen production, and the enhancement of enzyme activity or ability are also addressed.
Collapse
Affiliation(s)
- Siran Feng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xinbo Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh city 70000, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar 382 010, Gujarat, India
| | - Bich Ngoc Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
16
|
Chettri D, Nad S, Konar U, Verma AK. CAZyme from gut microbiome for efficient lignocellulose degradation and biofuel production. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1054242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over-exploitation and energy security concerns of the diminishing fossil fuels is a challenge to the present global economy. Further, the negative impact of greenhouse gases released using conventional fuels has led to the need for searching for alternative biofuel sources with biomass in the form of lignocellulose coming up as among the potent candidates. The entrapped carbon source of the lignocellulose has multiple applications other than biofuel generation under the biorefinery approach. However, the major bottleneck in using lignocellulose for biofuel production is its recalcitrant nature. Carbohydrate Active Enzymes (CAZymes) are enzymes that are employed for the disintegration and consumption of lignocellulose biomass as the carbon source for the production of biofuels and bio-derivatives. However, the cost of enzyme production and their stability and catalytic efficiency under stressed conditions is a concern that hinders large-scale biofuel production and utilization. Search for novel CAZymes with superior activity and stability under industrial condition has become a major research focus in this area considering the fact that the most conventional CAZymes has low commercial viability. The gut of plant-eating herbivores and other organisms is a potential source of CAZyme with high efficiency. The review explores the potential of the gut microbiome of various organisms in the production of an efficient CAZyme system and the challenges in using the biofuels produced through this approach as an alternative to conventional biofuels.
Collapse
|
17
|
Pouyan S, Lagzian M, Sangtarash MH. Enhancing thermostabilization of a newly discovered α-amylase from Bacillus cereus GL96 by combining computer-aided directed evolution and site-directed mutagenesis. Int J Biol Macromol 2022; 197:12-22. [PMID: 34920075 DOI: 10.1016/j.ijbiomac.2021.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
This study has described the characterization of a new a-amylase from the recently isolated Bacillus cereus GL96. Subsequently, an in-silico approach was taken into account to redesign the enzyme to meet higher thermal stability. Finally, the engineered enzyme was constructed experimentally using side-directed mutagenesis (SDM) and characterized accordingly. The enzyme was stable over pH 4-11, with the highest activity at 9.5. The temperature profile of the wild-type enzyme showed optimum activity at 50 °C plus 40% of stability at temperatures up to 70 °C. The in-silico result was indicated D162W, D162R, and D162K as the three stabilizing mutations. Among them, D162K showed better results, especially in the molecular dynamics simulation, and therefore, it was constructed by SDM. This variant was shown 5 °C higher optimum temperature (55 °C) with increasing activity than the native enzyme. In addition, it was significantly more stable than the native form. For example, while the latter almost wholly lost its function at a temperature above 70 °C, the D162K can retain more than 40% of its initial activity up to 80 °C. Considering the promising properties that the mutant enzyme showed, it can be considered for further investigation to meet the industrial requirement completely.
Collapse
Affiliation(s)
- Soroosh Pouyan
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Dept. of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
18
|
Sirohi R, Lee JS, Yu BS, Roh H, Sim SJ. Sustainable production of polyhydroxybutyrate from autotrophs using CO 2 as feedstock: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2021; 341:125751. [PMID: 34416655 DOI: 10.1016/j.biortech.2021.125751] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Due to industrialization and rapid increase in world population, the global energy consumption has increased dramatically. As a consequence, there is increased consumption of fossil fuels, leading to a rapid increase in CO2 concentration in the atmosphere. This accumulated CO2 can be efficiently used by autotrophs as a carbon source to produce chemicals and biopolymers. There has been increasing attention on the production of polyhydroxybutyrate (PHB), a biopolymer, with focus on reducing the production cost. For this, cheaper renewable feedstocks, molecular tools, including metabolic and genetic engineering have been explored to improve microbial strains along with process engineering aspects for scale-up of PHB production. This review discusses the recent advents on the utilization of CO2 as feedstock especially by engineered autotrophs, for sustainable production of PHB. The review also discusses the innovations in cultivation technology and process monitoring while understanding the underlying mechanisms for CO2 to biopolymer conversion.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Hyejin Roh
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea.
| |
Collapse
|
19
|
Sirohi R, Ummalyma SB, Sagar NA, Sharma P, Awasthi MK, Badgujar PC, Madhavan A, Rajasekharan R, Sindhu R, Sim SJ, Pandey A. Strategies and advances in the pretreatment of microalgal biomass. J Biotechnol 2021; 341:63-75. [PMID: 34537253 DOI: 10.1016/j.jbiotec.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Modification of structural components, especially the cell wall, through adequate pretreatment strategies is critical to the bioconversion efficiency of algal biomass to biorefinery products. Over the years, several physical, physicochemical, chemical and green pretreatment methods have been developed to achieve maximum productivity of desirable by-products to sustain a circular bioeconomy. The effectiveness of the pretreatment methods is however, species specific due to diversity in the innate nature of the microalgal cell wall. This review provides a comprehensive overview of the most notable and promising pretreatment strategies for several microalgae species. Methods including the application of stress, ultrasound, electromagnetic fields, pressure, heat as well as chemical solvents (ionic liquids, supercritical fluids, deep eutectic solvents etc.) have been detailed and analyzed. Enzyme and hydrolytic microorganism based green pretreatment methods have also been reviewed. Metabolic engineering of microorganisms for product specificity and lower inhibitors can be a future breakthrough in microalgal pretreatment.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226001, Uttar Pradesh, India.
| | | | - Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat 131028, Haryana, India.
| | - Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226025, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, Haryana, India.
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India.
| | - Sang Jun Sim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea.
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226001, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|