1
|
Lee Y, Ko J, Kwon O, Park H, Lee H, Jeong S, Ha B, Hwangbo S, Han J. Biological-chemical conversion process design and machine learning-related life cycle assessment: Bio-lubricant production in a real case study of South Korea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124877. [PMID: 40058042 DOI: 10.1016/j.jenvman.2025.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
This study explores the production of poly alpha olefin (PAO) from biomass as an environmentally friendly alternative to fossil fuel-based methods, aiming to reduce greenhouse gas (GHG) emissions. The primary goal is to design a process for converting 2,000 metric tons of biomass into PAO daily, integrating biological and chemical pathways. Environmental impact is assessed through a life cycle assessment (LCA), comparing this biomass-based method with traditional fossil fuel-derived processes. Key findings include the successful production of 458 metric tons of PAO, with the LCA revealing a 34.8% reduction in GHG emissions (9.88 kg CO2-eq./kg of PAO) compared to fossil fuel-based PAO. Sensitivity analyses on the oligomerization yield (60-70%, base case at 65%) and the recycle ratio of glucose in the bioprocess for octanoic acid production show significant environmental benefits when exceeding a 55% recycle ratio. Additionally, an energy scenario analysis predicts the impact of shifting to renewable energy by 2030. In a scenario where all electric utilities are renewable (RE100 scenario), GHG emissions are estimated at 13.07 kg CO2-eq./kg of PAO, further emphasizing the environmental advantage of biomass-based PAO. This study, through its integration of biological and chemical processes and comprehensive LCA, provides critical insights into the potential of biomass-based materials for reducing GHG emissions, making a substantial contribution to future research in high-value material production from renewable resources.
Collapse
Affiliation(s)
- Yoonjae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jaerak Ko
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Oseok Kwon
- Carbon Neutralization TFT.Platform Technology, LG Chem, Seoul, 07796, Republic of Korea
| | - Hoyoung Park
- Research & Development Institute, Lotte Engineering & Construction, Seoul, 06527, Republic of Korea
| | - Hyeonjeong Lee
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Sumin Jeong
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Byeongmin Ha
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Soonho Hwangbo
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea; Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| | - Jeehoon Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
2
|
Yu X, Li J, Sun Y, Xie Y, Su Y, Tang S, Bian S, Liu L, Huo F, Huang Q, Chen G. Co-immobilized multi-enzyme biocatalytic system on reversible and soluble carrier for saccharification of corn straw cellulose. BIORESOURCE TECHNOLOGY 2024; 395:130325. [PMID: 38228219 DOI: 10.1016/j.biortech.2024.130325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Herein, three enzymes (cellulase, β-glucosidase, and pectinase) with synergistic effects were co-immobilized on the Eudragit L-100, and the recovery of co-immobilized enzymes from solid substrates were achieved through the reversible and soluble property of the carrier. The optimization of enzyme ratio overcomed the problem of inappropriate enzyme activity ratio caused by different immobilization efficiencies among enzymes during the preparation process of co-immobilized enzymes. The co-immobilized enzymes were utilized to catalytically hydrolyze cellulose from corn straw into glucose, achieving a cellulose conversion rate of 74.45% under conditions optimized for their enzymatic characteristics and hydrolytic reaction conditions. As a result of the reversibility and solubility of the carrier, the co-immobilized enzymes were recovered from the solid substrate after five cycles, retaining 54.67% of the enzyme activity. The aim of this study is to investigate the potential of co-immobilizing multiple enzymes onto the Eudragit L-100 carrier for the synergistic degradation of straw cellulose.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianzhen Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yan Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yubing Xie
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Sijia Bian
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Liying Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fei Huo
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Qing Huang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Kwon O, Son M, Kim J, Han JH. Organic waste derived bioethanol supply chain network: Multiobjective snapshot model with a real-Korea case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118279. [PMID: 37290310 DOI: 10.1016/j.jenvman.2023.118279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Bioethanol, a promising biofuel gasoline additive, was recently produced by a new technology using acetic acid derived from organic waste. This study develops a multiobjective mathematical model with two competing minimization objectives: economy and environmental impact. The formulation is based on a mixed integer linear programming approach. The configuration of the organic-waste (OW)-based bioethanol supply chain network is optimized in terms of the number and locations of bioethanol refineries. The flows of acetic acid and bioethanol between the geographical nodes must meet the bioethanol regional demand. The model is validated in three real-scenario case studies with different OW utilization rates (30%, 50%, and 70%) in South Korea in the near future (2030). The multiobjective problem is solved using the ε-constraint method and the selected Pareto solutions balance the trade-off between the economic and environmental objectives. At the "best-choice" solution points, increasing the OW utilization rate from 30% to 70% decreased the total annual cost from 904.2 to 707.3 million $/yr and the total greenhouse emissions from 1087.2 to -15.7 CO2 equiv./yr.
Collapse
Affiliation(s)
- Oseok Kwon
- Carbon Neutralization TFT.Platform Technology, LG Chem, 07796, Republic of Korea
| | - Myungsuk Son
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juyeon Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee-Hoon Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
4
|
Do Kim P, Park H, Rajendran N, Yu J, Min J, Kim SK, Han J. Economic and Environmentally Viable Preparation of a Biodegradable Polymer Composite from Lignocellulose. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Rajendran N, Han J. Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:168-176. [PMID: 36470012 DOI: 10.1016/j.wasman.2022.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
In this present study, the production of poly (butylene succinate) (PBS) from food waste was investigated and critical factors were evaluated. The economic feasibility of the process was investigated, as well as the minimum selling price (MSP) of PBS and sensitivity analysis of economic factors based on critical input parameters. 1,4-butanediol price and solvent usage in PBS purification significantly impacted economics during the process. In this process, the MSP of PBS was 3.5 $/kg. The Monte Carlo simulation technique was used to determine the uncertainty in the MSP of PBS. The plant's return on investment (ROI), payback period, internal rate of return (IRR), and net present value (NPV) were 15.79 %, 6.33 years, 16.48 %, and 58,879,000 USD, respectively. The environmental impact factors were evaluated. The results showed the GHG emission from the process was 5.19 kg CO2-eq/kg of PBS which is low than conventional PBS production.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
6
|
Han J, Son M, Kang D. Process design and environmental analysis for catalytic production of gamma-valerolactone from Kenaf. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Kang D, Han J. Lifecycle assessment of methanol production from blast furnace gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61601-61607. [PMID: 34184218 DOI: 10.1007/s11356-021-15063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A technological scenario configuration for producing methanol (MeOH) from blast furnace gas (BFG) with natural gas (NG)-based energy generation was evaluated by a rigorous life cycle assessment. The new BFG scenario was compared to a conventional BFG scenario-BFG energy generation with NG-based MeOH production. In all, 18 environmental impact categories were estimated for both technological BFG scenario configurations on a conceptual plant level. The results of a case study in South Korea indicated that the new BFG scenario performs better for 12 environmental impacts (20-97% lower), but fossil resource depletion is worse because NG is used for the displacement of energy generation. The robustness of the environmental impact results for the new BFG scenario was supported by a case study, which highlighted that the primary source for the displacement of energy generation is crucial.
Collapse
Affiliation(s)
- Dongseong Kang
- School of Chemical Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
8
|
Rajendran N, Gurunathan B, Han J, Krishna S, Ananth A, Venugopal K, Sherly Priyanka RB. Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis. BIORESOURCE TECHNOLOGY 2021; 337:125498. [PMID: 34320774 DOI: 10.1016/j.biortech.2021.125498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Researcher's all around works on a copious technique to lessen waste production and superintend the waste management for long-term socio-economic and environmental benefits. Value-added products can be produced from municipal waste by using holistic and integrated approaches. In this review, a detail about the superiority of the different methods like anaerobic digestion, biofuel production, incineration, pyrolysis and gasification were used for the conversion of municipal waste to feedstock for alternate energy and its economic- environmental impacts were consolidated. Most conversion techniques were environmentally friendly to manage municipal waste. The biological process was more economically feasible compare to the thermal process, for the reason thermal process required a large amount of capital investment and energy utilization. In the thermal process, gasification shows low emission, and pyrolysis shows low capital investment and economically feasible compare to other thermal processes. Waste to energy technology significantly reduced the emission and energy demand.
Collapse
Affiliation(s)
- Naveenkumar Rajendran
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India; School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| | - Jeehoon Han
- School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea; School of Semiconductor and Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
| | - Saraswathi Krishna
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Kancheepuram 603308, India
| | - A Ananth
- Department of Microbiology, Srinivasan College of Arts and Science, Perambalur 621212, India
| | - K Venugopal
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Kancheepuram 603308, India
| | | |
Collapse
|