1
|
Palla S, Surya DV, Pritam K, Puppala H, Basak T, Palla VCS. A critical review on the influence of operating parameters and feedstock characteristics on microwave pyrolysis of biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57570-57593. [PMID: 38888826 DOI: 10.1007/s11356-024-33607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/04/2024] [Indexed: 06/20/2024]
Abstract
Biomass pyrolysis is the most effective process to convert abundant organic matter into value-added products that could be an alternative to depleting fossil fuels. A comprehensive understanding of the biomass pyrolysis is essential in designing the experiments. However, pyrolysis is a complex process dependent on multiple feedstock characteristics, such as biomass consisting of volatile matter, moisture content, fixed carbon, and ash content, all of which can influence yield formation. On top of that, product composition can also be affected by the particle size, shape, susceptors used, and pre-treatment conditions of the feedstock. Compared to conventional pyrolysis, microwave-assisted pyrolysis (MAP) is a novel thermochemical process that improves internal heat transfer. MAP experiments complicate the operation due to additional governing factors (i.e. operating parameters) such as heating rate, temperature, and microwave power. In most instances, a single parameter or the interaction of parameters, i.e. the influence of other parameter integration, plays a crucial role in pyrolysis. Although various studies on a few operating parameters or feedstock characteristics have been discussed in the literature, a comprehensive review still needs to be provided. Consequently, this review paper deconstructed biomass and its sources, including microwave-assisted pyrolysis, and discussed the impact of operating parameters and biomass properties on pyrolysis products. This paper addresses the challenge of handling multivariate problems in MAP and delivers solutions by application of the machine learning technique to minimise experimental effort. Techno-economic analysis of the biomass pyrolysis process and suggestions for future research are also discussed.
Collapse
Affiliation(s)
- Sridhar Palla
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy Visakhapatnam, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Dadi Venkata Surya
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, 382426, India.
| | - Kocherlakota Pritam
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Harish Puppala
- 1Department of Civil Engineering, SRM University AP, Mangalagiri, Andhra Pradesh, 522502, India
| | - Tanmay Basak
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Venkata Chandra Sekhar Palla
- Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, India
| |
Collapse
|
2
|
Andreides D, Lopez Marin MA, Zabranska J. Selective syngas fermentation to acetate under acidic and psychrophilic conditions using mixed anaerobic culture. BIORESOURCE TECHNOLOGY 2024; 394:130235. [PMID: 38141884 DOI: 10.1016/j.biortech.2023.130235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Syngas fermentation to acetate offers a promising solution for its valorisation, particularly when syngas contains a high N2 concentration, which otherwise impedes the utilisation of syngas biomethanation gaseous product in cogeneration or upgrading units. In this study, continuous lab-scale syngas fermentation assessing the effects of acidic pH and psychrophilic conditions (28 °C and 20 °C) on bioconversion efficiency and anaerobic consortium diversity was studied. The results showed that as temperature and pH decrease, acetate yield increases. The highest H2 and CO consumption rates were observed at 20 °C and pH 4.5, reaching 48.4 mmol/(L·d) and 31.5 mmol/(L·d), respectively, and methanogenic activity was not completely suppressed. The microbial community composition indicated an enhanced abundance of acetate-producing bacteria and hydrogenotrophic methanogens at 28 °C. The PICRUSt2 prediction of metabolic potential indicated that temperature and pH changes appear to have a more pronounced impact on acetotrophic methanogenesis genes than carbon dioxide-based methanogenesis genes.
Collapse
Affiliation(s)
- Dominik Andreides
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic.
| | - Marco A Lopez Marin
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic
| | - Jana Zabranska
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technicka 1905, 166 28 Prague, Czech Republic
| |
Collapse
|
3
|
Paniagua S, Lebrero R, Muñoz R. Syngas biomethanation: Current state and future perspectives. BIORESOURCE TECHNOLOGY 2022; 358:127436. [PMID: 35680093 DOI: 10.1016/j.biortech.2022.127436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In regions highly dependent on fossil fuels imports, biomethane represents a promising biofuel for the transition to a bio-based circular economy. While biomethane is typically produced via anaerobic digestion and upgrading, biomethanation of the synthesis gas (syngas) derived from the gasification of recalcitrant solid waste has emerged as a promising alternative. This work presents a comprehensive and in-depth analysis of the state-of-the-art and most recent advances in the field, compiling the potential of this technology along with the bottlenecks requiring further research. The key design and operational parameters governing syngas production and biomethanation (e.g. organic feedstock, gasifier design, microbiology, bioreactor configuration, etc.) are critically analysed.
Collapse
Affiliation(s)
- Sergio Paniagua
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Microbial community development during syngas methanation in a trickle bed reactor with various nutrient sources. Appl Microbiol Biotechnol 2022; 106:5317-5333. [PMID: 35799068 PMCID: PMC9329420 DOI: 10.1007/s00253-022-12035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
Abstract
Microbial community development within an anaerobic trickle bed reactor (TBR) during methanation of syngas (56% H2, 30% CO, 14% CO2) was investigated using three different nutrient media: defined nutrient medium (241 days), diluted digestate from a thermophilic co-digestion plant operating with food waste (200 days) and reject water from dewatered digested sewage sludge at a wastewater treatment plant (220 days). Different TBR operating periods showed slightly different performance that was not clearly linked to the nutrient medium, as all proved suitable for the methanation process. During operation, maximum syngas load was 5.33 L per L packed bed volume (pbv) & day and methane (CH4) production was 1.26 L CH4/Lpbv/d. Microbial community analysis with Illumina Miseq targeting 16S rDNA revealed high relative abundance (20-40%) of several potential syngas and acetate consumers within the genera Sporomusa, Spirochaetaceae, Rikenellaceae and Acetobacterium during the process. These were the dominant taxa except in a period with high flow rate of digestate from the food waste plant. The dominant methanogen in all periods was a member of the genus Methanobacterium, while Methanosarcina was also observed in the carrier community. As in reactor effluent, the dominant bacterial genus in the carrier was Sporomusa. These results show that syngas methanation in TBR can proceed well with different nutrient sources, including undefined medium of different origins. Moreover, the dominant syngas community remained the same over time even when non-sterilised digestates were used as nutrient medium. KEY POINTS: • Independent of nutrient source, syngas methanation above 1 L/Lpbv/D was achieved. • Methanobacterium and Sporomusa were dominant genera throughout the process. • Acetate conversion proceeded via both methanogenesis and syntrophic acetate oxidation.
Collapse
|
5
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
6
|
Zhang C, Liu Y, Zhang W, Sun L, Baeyens J. Modification of wheat straw to improve the caproate production in a cell immobilized system. BIORESOURCE TECHNOLOGY 2021; 342:125984. [PMID: 34563819 DOI: 10.1016/j.biortech.2021.125984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Wheat straw is a favorable cell carrier in the caproate fermentation system, yet its smooth surface limits the biofilm formation. In this study, the modification of wheat straw was conducted using three different chemical methods and the influence of its modified surface on the caproate fermentation was investigated. Results showed that the sodium hydroxide was the optimum reagent for modification of wheat straw, where both the external and internal surfaces were effectively modified, resulting in 34.4% increased specific surface area. The highest caproate production of 21.1 g/L was obtained in fed-batch fermentation, which was ascribed to the formation of a thick biofilm on the modified carrier. Moreover, the crystallinity index of the carrier increased during the fed-batch fermentation, implying that the modified wheat straw was a stable matrix for cell immobilization. This study provides an effective way for efficient caproate production through modification of wheat straw.
Collapse
Affiliation(s)
- Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China; Jiangsu Key Laboratory for Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China.
| | - Yan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Wenhui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jan Baeyens
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|