1
|
Zhang S, Huang X, Dong W, Wang H, Hu L, Zhou G, Zheng Z. Potential effects of Cu 2+ stress on nitrogen removal performance, microbial characteristics, and metabolism pathways of biofilm reactor. ENVIRONMENTAL RESEARCH 2024; 259:119541. [PMID: 38960353 DOI: 10.1016/j.envres.2024.119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Sequencing batch biofilm reactors (SBBR) were utilized to investigate the impact of Cu2+ on nitrogen (N) removal and microbial characteristics. The result indicated that the low concentration of Cu2+ (0.5 mg L-1) facilitated the removal of ammonia nitrogen (NH4+-N), total nitrogen (TN), nitrate nitrogen (NO3--N), and chemical oxygen demand (COD). In comparison to the average effluent concentration of the control group, the average effluent concentrations of NH4+-N, NO3--N, COD, and TN were found to decrease by 40.53%, 17.02%, 10.73%, and 15.86%, respectively. Conversely, the high concentration of Cu2+ (5 mg L-1) resulted in an increase of 94.27%, 55.47%, 22.22%, and 14.23% in the aforementioned parameters, compared to the control group. Low concentrations of Cu2+ increased the abundance of nitrifying bacteria (Rhodanobacter, unclassified-o-Sacharimonadales), denitrifying bacteria (Thermomonas, Comamonas), denitrification-associated genes (hao, nosZ, norC, nffA, nirB, nick, and nifD), and heavy-metal-resistant genes related to Cu2+ (pcoB, cutM, cutC, pcoA, copZ) to promote nitrification and denitrification. Conversely, high concentration Cu2+ hindered the interspecies relationship among denitrifying bacteria genera, nitrifying bacteria genera, and other genera, reducing denitrification and nitrification efficiency. Cu2+ involved in the N and tricarboxylic acid (TCA) cycles, as evidenced by changes in the abundance of key enzymes, such as (EC:1.7.99.1), (EC:1.7.2.4), and (EC:1.1.1.42), which initially increased and then decreased with varying concentrations of Cu2+. Conversely, the abundance of EC1.7.2.1, associated with the accumulation of nitrite nitrogen (NO2--N), gradually declined. These findings provided insights into the impact of Cu2+ on biological N removal.
Collapse
Affiliation(s)
- Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hongjie Wang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangshan Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guorun Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihao Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
2
|
Wu H, Li A, Wang J, Li X, Cui M, Yang N, Liu Y, Zhang L, Wang X, Zhan G. A novel electrochemical sensor based on autotropic and heterotrophic nitrifying biofilm for trichloroacetic acid toxicity monitoring. ENVIRONMENTAL RESEARCH 2022; 210:112985. [PMID: 35192804 DOI: 10.1016/j.envres.2022.112985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 μg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 μg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Wu H, Cui M, Yang X, Liu Y, Wang J, Zhang L, Zhan G, Zhao Y. Visual signal sensor coupling to nitrification for sustainable monitoring of trichloroacetaldehyde and the response mechanisms. Bioelectrochemistry 2022; 146:108142. [DOI: 10.1016/j.bioelechem.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
|
4
|
Liu J, Zhang L, Qiu S, He Q, Zhang Q, Peng Y, Peng Y. Insight into the mechanism of nitritation establishment through external fermented sludge addition. BIORESOURCE TECHNOLOGY 2021; 341:125763. [PMID: 34411940 DOI: 10.1016/j.biortech.2021.125763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel strategy for nitritation establishment through external fermented sludge addition is proposed. The nitrifying activities under various fermentation times were assessed; batch tests results revealed that the decay rate of nitrite oxidizing bacteria (0.53 ± 0.08 d-1) was much higher than that of ammonia oxidizing bacteria (0.15 ± 0.04 d-1), during alkaline fermentation with high endogenous free ammonia concentrations (0.57-138.79 mg·L-1). The long-term effects of fermented sludge addition were constantly monitored in an anaerobic/oxic/anoxic sequencing batch reactor. During 60 days of operation, the nitrite accumulation rate reached above 90% and could be maintained stably. Total inorganic nitrogen removal achieved 94.7%, with an average external sludge reduction rate of 61.3%, after incorporation of the sludge addition. Illumina MiSeq sequencing demonstrated that nitrite oxidizing bacteria were successfully eliminated and the relative abundance of ammonia oxidizing bacteria remained at 0.39%, resulting in nitrite accumulation.
Collapse
Affiliation(s)
- Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Shengjie Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiang He
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environment Investment Co., Ltd, Beijing 101100, PR China
| |
Collapse
|
5
|
Weralupitiya C, Wanigatunge R, Joseph S, Athapattu BCL, Lee TH, Kumar Biswas J, Ginige MP, Shiung Lam S, Senthil Kumar P, Vithanage M. Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal. BIORESOURCE TECHNOLOGY 2021; 334:125240. [PMID: 33964811 DOI: 10.1016/j.biortech.2021.125240] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
The discovery of anammox process has provided eco-friendly and low-cost means of treating ammonia rich wastewater with remarkable efficiency. Furthermore, recent studies have shown that the possibility of operating the anammox process under low temperatures and high organic matter contents broadening the application of the anammox process. However, short doubling time and extensive levels of sensitivity towards nutrients and environmental alterations such as salinity and temperature are the limitations in practical applications of the anammox process. This review article provides the recent yet comprehensive viewpoint on anammox bacteria and the key perspectives in applying them as an efficient strategy for wastewater treatment.
Collapse
Affiliation(s)
- Chanusha Weralupitiya
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Rasika Wanigatunge
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Sarangi Joseph
- Department of Civil Engineering, The Open University of Sri Lanka, Nawala, Sri Lanka
| | | | - Tae-Ho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, South Korea
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | | | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|