1
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Jin Y, Li Y, Qi Y, Wei Q, Yang G, Ma X. A modified cultivation strategy to enhance biomass production and lipid accumulation of Tetradesmus obliquus FACHB-14 with copper stress and light quality induction. BIORESOURCE TECHNOLOGY 2024; 400:130677. [PMID: 38588782 DOI: 10.1016/j.biortech.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
In this study, a two-stage culture strategy was refined to concurrently enhance the growth and lipid accumulation of Tetradesmus obliquus. The results unveiled that, during the initial stage, the optimal conditions for biomass accumulation were achieved with 0.02 mg·L-1 Cu2+ concentration and red light. Under these conditions, biomass accumulation reached 0.628 g·L-1, marking a substantial 23.62 % increase compared to the control group. In the second stage, the optimal conditions for lipid accumulation were identified as 0.5 mg·L-1 Cu2+ concentration and red light, achieving 64.25 mg·g-1·d-1 and marking a 128.38 % increase over the control. Furthermore, the fatty acid analysis results revealed an 18.85 % increase in the saturated fatty acid content, indicating enhanced combustion performance of microalgae cultivated under the dual stress of red light and 0.5 mg·L-1 Cu2+. This study offers insights into the potential application of Tetradesmus obliquus in biofuel production.
Collapse
Affiliation(s)
- Yuanrong Jin
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yinting Li
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yingying Qi
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Gairen Yang
- Forestry College of Guangxi University, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, No. 100 Daxue Road, Nanning 530004, PR China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, PR China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, PR China.
| |
Collapse
|
3
|
Singh Chauhan D, Sahoo L, Mohanty K. Acclimation-driven microalgal cultivation improved temperature and light stress tolerance, CO 2 sequestration and metabolite regulation for bioenergy production. BIORESOURCE TECHNOLOGY 2023; 385:129386. [PMID: 37364652 DOI: 10.1016/j.biortech.2023.129386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
This study investigates temperature and light impact on the ability of Micractinium pusillum microalgae to mitigate CO2 and produce bioenergy in semi-continuous mode. Microalgae were exposed to temperatures (15, 25, and 35 °C) and light intensities (50, 350, and 650 μmol m-2 s-1), including two temperature cycles, 25 °C had the maximum growth rate, with no significant difference at 35 °C and light intensities of 350 and 650 μmol m-2 s-1. 15 °C temperature and 50 μmol m-2 s-1 light intensity reduced growth. Increased light intensity accelerated growth, CO2 utilization with carbon and bioenergy accumulation. Microalgae demonstrate rapid primary metabolic adjustment and acclimation reactions in response to changes in light and temperature conditions. Temperature correlated positively with carbon and nitrogen fixation, CO2 fixation, and carbon accumulation in the biomass, whereas there was no correlation found between light. In the temperature regime experiment, higher light intensity boosted nutrient and CO2 utilization, carbon buildup, and biomass bioenergy.
Collapse
Affiliation(s)
- Deepesh Singh Chauhan
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Lingaraj Sahoo
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
4
|
Jia YL, Li J, Nong FT, Yan CX, Ma W, Zhu XF, Zhang LH, Sun XM. Application of Adaptive Laboratory Evolution in Lipid and Terpenoid Production in Yeast and Microalgae. ACS Synth Biol 2023; 12:1396-1407. [PMID: 37084707 DOI: 10.1021/acssynbio.3c00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Due to the complexity of metabolic and regulatory networks in microorganisms, it is difficult to obtain robust phenotypes through artificial rational design and genetic perturbation. Adaptive laboratory evolution (ALE) engineering plays an important role in the construction of stable microbial cell factories by simulating the natural evolution process and rapidly obtaining strains with stable traits through screening. This review summarizes the application of ALE technology in microbial breeding, describes the commonly used methods for ALE, and highlights the important applications of ALE technology in the production of lipids and terpenoids in yeast and microalgae. Overall, ALE technology provides a powerful tool for the construction of microbial cell factories, and it has been widely used in improving the level of target product synthesis, expanding the range of substrate utilization, and enhancing the tolerance of chassis cells. In addition, in order to improve the production of target compounds, ALE also employs environmental or nutritional stress strategies corresponding to the characteristics of different terpenoids, lipids, and strains.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Feng Zhu
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Hui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Maneechote W, Cheirsilp B, Angelidaki I, Suyotha W, Boonsawang P. Chitosan-coated oleaginous microalgae-fungal pellets for improved bioremediation of non-sterile secondary effluent and application in carbon dioxide sequestration in bubble column photobioreactors. BIORESOURCE TECHNOLOGY 2023; 372:128675. [PMID: 36706817 DOI: 10.1016/j.biortech.2023.128675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Oleaginous microalga Scenedesmus sp. SPP was rapidly immobilized in oleaginous fungal pellets by their opposite-surface-charges. Microalgae-fungal (MF) pellets were more effective in bioremediation of non-sterile secondary effluent than mono-culture. The optimal hydraulic retention time for dual bioremediation in semi-continuous mode was 72 h. The MF pellets coated with 0.4 %-chitosan improved removal efficiencies of COD, total nitrogen (TN), and total phosphorus (TP) up to 96.2±0.0 %, 88.2±2.8 % and 71.5±0.7 %, respectively, likely because of better cell retention and more nutrient adsorption and assimilation. Dual bioremediation by coated MF pellets was also successfully scaled up in 30-L bubble-column photobioreactors with improved COD, TN, and TP removal efficiencies of 98.5±0.0 %, 90.2±0.0 % and 79.5±2.1 %, respectively. This system also effectively removed CO2 from simulated flue gas at 71.2±0.4 % and produced biomass with high lipid content. These results highlight the effectiveness of bio-immobilization by fungal pellets; chitosan coating; and their practical applications in bioremediation and CO2 sequestration.
Collapse
Affiliation(s)
- Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand.
| | - Irini Angelidaki
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Wasana Suyotha
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | - Piyarat Boonsawang
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| |
Collapse
|
6
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Shen XF, Xu YP, Tong XQ, Huang Q, Zhang S, Gong J, Chu FF, Zeng RJ. The mechanism of carbon source utilization by microalgae when co-cultivated with photosynthetic bacteria. BIORESOURCE TECHNOLOGY 2022; 365:128152. [PMID: 36265788 DOI: 10.1016/j.biortech.2022.128152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-photosynthetic bacteria (PSB) co-culture, which is promising for wastewater treatment and lipid production, is lacking of study. In this work, the combinations of 3 microalgae and 3 PSB strains were firstly screened and then different inoculation ratios of the co-cultures were investigated. It was found the best promotion was Chlorella pyrenoidosa/Rhodobacter capsulatus co-culture (1:1), where the biomass productivity, acetate assimilation rate and lipid productivity were 1.64, 1.61 and 2.79 times than that of the sum of pure microalgae and PSB cultures, respectively. Meanwhile, the inoculation ratio significantly affected the growth rate and lipid productivity of co-culture systems. iTRAQ analysis showed that PSB played a positive effect on acetate assimilation, TCA cycle and glyoxylate cycle of microalgae, but decreased the carbon dioxide utilization and photosynthesis, indicating PSB promoted the microalgae metabolism of organic carbon utilization and weakened inorganic carbon utilization. These findings provide in-depth understanding of carbon utilization in microalgae-PSB co-culture.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Ya-Ping Xu
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Xiao-Qin Tong
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Qi Huang
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Shuai Zhang
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Jing Gong
- School of Ecology and Environment, Anhui Normal University, Anhui 241000, PR China
| | - Fei-Fei Chu
- College of Standardization, China Jiliang University, Zhejiang 310018, PR China
| | - Raymond Jianxiong Zeng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian 350002, PR China.
| |
Collapse
|
8
|
Zhou JL, Yang L, Huang KX, Chen DZ, Gao F. Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 364:128049. [PMID: 36191750 DOI: 10.1016/j.biortech.2022.128049] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study reviews the development of the ability of microalgae to remove emerging contaminants (ECs) from wastewater. Contaminant removal by microalgae-based systems (MBSs) includes biosorption, bioaccumulation, biodegradation, photolysis, hydrolysis, and volatilization. Usually, the existence of ECs can inhibit microalgae growth and reduce their removal ability. Therefore, three methods (acclimation, co-metabolism, and algal-bacterial consortia) are proposed in this paper to improve the removal performance of ECs by microalgae. Finally, due to the high removal performance of contaminants from wastewater by algal-bacterial consortia systems, three kinds of algal-bacterial consortia applications (algal-bacterial activatedsludge, algal-bacterial biofilm reactor, and algal-bacterial constructed wetland system) are recommended in this paper. These applications are promising for ECs removal. But most of them are still in their infancy, and limited research has been conducted on operational mechanisms and removal processes. Extra research is needed to clarify the applicability and cost-effectiveness of hybrid processes.
Collapse
Affiliation(s)
- Jin-Long Zhou
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Kai-Xuan Huang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
9
|
Singh Chauhan D, Sahoo L, Mohanty K. Maximize microalgal carbon dioxide utilization and lipid productivity by using toxic flue gas compounds as nutrient source. BIORESOURCE TECHNOLOGY 2022; 348:126784. [PMID: 35104656 DOI: 10.1016/j.biortech.2022.126784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
NOx and SOx present in flue gas inhibit microalgal based CO2 mitigation process. In this work, 13 microalgal strains were screened to evaluate their gradual acclimation capacity to toxic flue gas compounds, by testing their growth capability and photosynthetic ability in dissolved flue gas compounds. Six strains out of them were evaluated for their acclimation to bicarbonate and 15% CO2 as sole carbon sources. Two strains, Micractinium pusillum KMC8 and Scenedesmus acutus NCIM5584 were found to accumulate nitrite as fixed nitrogen and showed improved growth performance in photobioreactor upon stepwise acclimation to bisulphite/sulphite. Notably, the strain KMC8 showed a high tolerance and rapidly acclimated dissolved flue gas compounds with higher biomass yield (1.32 g L-1) and neutral lipid accumulation (32%), enhanced CO2 utilization efficiency (3.07%) and CO2 fixation rate (136.79 mg L-1 d-1) post acclimation. KMC8 sustained its stability in biomass and lipid productivity while simultaneously bio-mitigated CO2 under semi-continuous mode.
Collapse
Affiliation(s)
- Deepesh Singh Chauhan
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Lingaraj Sahoo
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
10
|
Nookwam K, Cheirsilp B, Maneechote W, Boonsawang P, Sukkasem C. Microbial fuel cells with Photosynthetic-Cathodic chamber in vertical cascade for integrated Bioelectricity, biodiesel feedstock production and wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 346:126559. [PMID: 34929328 DOI: 10.1016/j.biortech.2021.126559] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to develop efficient microbial fuel cells (MFCs) for integrated bioelectricity, biodiesel feedstock production and wastewater treatment. Among wastewaters tested, MFC fed with anaerobic digester effluent from rubber industry gave the maximum power density (55.43 ± 1.08 W/m3) and simultaneously removed COD, nitrogen and phosphorus (by 72.4 ± 0.9%, 40.5 ± 0.8% and 24.4 ± 1.5%, respectively). 16S rRNA gene analysis revealed that dominant microbial communities were: Firmicutes (43.68%), Bacteroidetes (25.41%) and Chloroflexi (15.02%), which mostly contributed to bioelectricity generation. After optimizing organic loading rate, photosynthetic oleaginous microalgae were applied in cathodic chamber in order to increase oxygen availability, secondarily treat anodic chamber effluent and produce lipids as biodiesel feedstocks. Four MFCs with photosynthetic-cathodic chamber connected in vertical cascade could improve power density up to 116.9 ± 15.5 W/m3, sequentially treat wastewater, and also produce microalgal biomass (465 ± 10 g/m3) with high lipid content (38.17 ± 0.01%). These strategies may greatly contribute to sustainable development of integrated bioenergy generation and environment.
Collapse
Affiliation(s)
- Kidakarn Nookwam
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Benjamas Cheirsilp
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyarat Boonsawang
- Biotechnology Program, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chontisa Sukkasem
- Microbial Fuel Cell Laboratory, Research Center in Energy and Environment, Faculty of Agro and Bio Industry, Thaksin University, Phatthalung 93110, Thailand
| |
Collapse
|
11
|
Chu R, Hu D, Zhu L, Li S, Yin Z, Yu Y. Recycling spent water from microalgae harvesting by fungal pellets to re-cultivate Chlorella vulgaris under different nutrient loads for biodiesel production. BIORESOURCE TECHNOLOGY 2022; 344:126227. [PMID: 34743995 DOI: 10.1016/j.biortech.2021.126227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Fungal pellet is an emerging material to collect oleaginous microalgae, but rare studies have noticed that harvested water is available resource for the next round of cultivation. To systematically optimize regrowth performances of microalgae Chlorella vulgaris, separated water after harvesting by fungi Aspergillus oryzae was prepared under different N/P ratios. The results showed that chlorophylls and enzymes were significantly affected by the proportion of N and P. Although nutrient deficiency was functioned as a stress factor to restrict carbohydrate and protein synthesis, lipid content was obviously increased by 12.69%. The percentage of saturated fatty acids associated with oxidation stability increased, while this part in fresh wastewater accounted for only 36.96%. The favorable biomass concentration (1.37 g/L) with the highest lipid yield (0.42 g/L) appeared in N/P of 6:1. More strikingly, suitable conditions could save 52.4% of cultivation costs. These experiments confirmed that reusing bioflocculated water could be effectively utilized for biodiesel production.
Collapse
Affiliation(s)
- Ruoyu Chu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| |
Collapse
|
12
|
Ren Y, Deng J, Huang J, Wu Z, Yi L, Bi Y, Chen F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. BIORESOURCE TECHNOLOGY 2021; 340:125736. [PMID: 34426245 DOI: 10.1016/j.biortech.2021.125736] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Astaxanthin is one of the secondary carotenoids involved in mediating abiotic stress of microalgae. As an important antioxidant and nutraceutical compound, astaxanthin is widely applied in dietary supplements and cosmetic ingredients. However, most astaxanthin in the market is chemically synthesized, which are structurally heterogeneous and inefficient for biological uptake. Astaxanthin refinery from Haematococcus pluvialis is now a growing industrial sector. H. pluvialis can accumulate astaxanthin to ∼5% of dry weight. As productivity is a key metric to evaluate the production feasibility, understanding the biological mechanisms of astaxanthin accumulation is beneficial for further production optimization. In this review, the biosynthesis mechanism of astaxanthin and production strategies are summarized. The current research on enhancing astaxanthin accumulation and the potential joint-production of astaxanthin with lipids was also discussed. It is conceivable that with further improvement on the productivity of astaxanthin and by-products, the algal-derived astaxanthin would be more accessible to low-profit applications.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhaoming Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuge Bi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|