1
|
Sun T, Sun ML, Lin L, Gao J, Wang K, Ji XJ. Advancing Succinic Acid Biomanufacturing Using the Nonconventional Yeast Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:100-109. [PMID: 39707966 DOI: 10.1021/acs.jafc.4c09990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Succinic acid is an essential bulk chemical with wide-ranging applications in materials, food, and pharmaceuticals. With the advancement of biotechnology, there has been a surge in focus on low-carbon sustainable microbial synthesis methods for producing biobased succinic acid. Due to its high intrinsic acid tolerance, Yarrowia lipolytica has gained recognition as a competitive chassis for the industrial manufacture of succinic acid. This review summarizes the research progress on succinic acid biomanufacturing using Y. lipolytica. First, it introduces the major metabolic routes for succinic acid biosynthesis and the pertinent engineering approaches for building efficient cell factories. Subsequently, we offer a review of methods employed for succinic acid synthesis by Y. lipolytica utilizing alternative substrates as well as the relevant optimization strategies for the fermentation process. Finally, future research directions for improving succinic acid biomanufacturing in Y. lipolytica are delineated in light of the recent progress, obstacles, and trends in this area.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, No. 211 Jianjun Road, Yancheng 224051, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
2
|
Tian L, Qi T, Zhang F, Tran VG, Yuan J, Wang Y, He N, Cao M. Synthetic biology approaches to improve tolerance of inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2025; 78:108477. [PMID: 39551454 DOI: 10.1016/j.biotechadv.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Increasing attention is being focused on using lignocellulose for valuable products. Microbial decomposition can convert lignocellulose into renewable biofuels and other high-value bioproducts, contributing to sustainable development. However, the presence of inhibitors in lignocellulosic hydrolysates can negatively affect microorganisms during fermentation. Improving microbial tolerance to these hydrolysates is a major focus in metabolic engineering. Traditional detoxification methods increase costs, so there is a need for cheap and efficient cell-based detoxification strategies. Synthetic biology approaches offer several strategies for improving microbial tolerance, including redox balancing, membrane engineering, omics-guided technologies, expression of protectants and transcription factors, irrational engineering, cell flocculation, and other novel technologies. Advances in molecular biology, high-throughput sequencing, and artificial intelligence (AI) allow for precise strain modification and efficient industrial production. Developing AI-based computational models to guide synthetic biology efforts and creating large-scale heterologous libraries with automation and high-throughput technologies will be important for future research.
Collapse
Affiliation(s)
- Linyue Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tianqi Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
3
|
Xu Z, Sha Y, Li M, Chen S, Li J, Ding B, Zhang Y, Li P, Yan K, Jin M. Adaptive evolution and mechanism elucidation for ethanol tolerant Saccharomyces cerevisiae used in starch based biorefinery. Int J Biol Macromol 2025; 284:138155. [PMID: 39613065 DOI: 10.1016/j.ijbiomac.2024.138155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ethanol tolerant Saccharomyces cerevisiae is compulsory for ethanol production in starch based biorefinery, especially during high-gravity fermentation. In this study, adaptive evolution with increased initial ethanol concentrations as a driving force was harnessed for achieving ethanol tolerant S. cerevisiae. After evolution, an outstanding ethanol tolerant strain was screened, which contributed to significant improvements in glucose consumption and ethanol production in scenarios of 300 g/L initial glucose, high solid loadings (30 wt%, 33 wt%, 35 wt% and 40 wt%) of corn, and high solid loadings (30 wt% and 33 wt%) of cassava, compared with the original strain. Genome re-sequencing was applied for the evolved strain, and 504 sense mutations in 205 genes were detected, among which PAM1 gene was demonstrated related to the elevated ethanol tolerance. In sum, this study provided a practical approach for obtaining ethanol tolerant strain and the identified PAM1 gene enhanced our understanding on ethanol tolerant mechanism, as well as provided a target basis for rational metabolic engineering.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pingping Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kang Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Zhang L, Yang X, Nie C, Chen C, Zhang W. Combined transcriptomics and cellular analyses reveal the molecular mechanism by which Candida tropicalis ZD-3 adapts to and degrades gossypol. Int J Biol Macromol 2024; 279:135294. [PMID: 39233179 DOI: 10.1016/j.ijbiomac.2024.135294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Microbial degradation techniques are often considered an environmentally friendly and cost-effective strategy for reducing gossypol toxicity. However, the mechanism by which Candida tropicalis degrades gossypol remains unclear. In the current study, we aimed to establish the mechanisms of biodegradation and adaptation mechanisms by C. tropicalis ZD-3. The toxicological evaluation results revealed that ZD-3 adapts to gossypol primarily by activating the antioxidant defense system to alleviate the oxidative stress response induced by gossypol. Transcriptomic analyses further suggested that ZD-3 protects against gossypol toxicity via cell wall remodeling. The intracellular enzyme CTRG_04744 gene was significantly up-regulated under gossypol stress, and then expressed in Pichia pastoris. The purified AKR_Z1 degraded 92 % of gossypol within 48 h. In addition, the aldehyde group of gossypol was effectively eliminated to achieve the desired detoxification. Collectively, these results provide theoretical guidance for the continued development of bio-efficient strategies capable of degrading gossypol.
Collapse
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xiaolong Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - CunXi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
5
|
Chen A, Zhang B, Bao J. Adaptive evolution of Paecilomyces variotii enhanced the biodetoxification of high-titer inhibitors in pretreated lignocellulosic feedstock. BIORESOURCE TECHNOLOGY 2024; 411:131351. [PMID: 39182793 DOI: 10.1016/j.biortech.2024.131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
High inhibitor concentrations in lignocellulose feedstock negatively affect the degradation rate of biodetoxification strains. This study designed two adaptive laboratory evolutions in solid substrate and liquid medium to boost the biodetoxification capacity of P. variotii to high titers of lignocellulose-derived inhibitors, resulting in two evolved strains AC70 and ZW70. The results showed that the evolutionary adaptation in liquid medium could better boost the acetic acid assimilation compared to that on solid substrate. Transcriptional analysis revealed that the evolved strains exhibited a significant upregulation of adh, acs, ach1, and ackA directly related to the initial steps of acetate and furan aldehydes metabolisms. ZW70 strain can effectively remove the high concentration inhibitors cocktail from the hydrolysates derived from pretreated wheat straw and furfural residues. The biodetoxified hydrolysates by ZW70 were successfully used for cellulose chiral L-lactic acid production with the titers of ∼110 g/L, which were over 20 % higher than that detoxified by parental strain.
Collapse
Affiliation(s)
- Agustian Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
6
|
Wu Y, Li S, Sun B, Guo J, Zheng M, Li A. Enhancing Gastrodin Production in Yarrowia lipolytica by Metabolic Engineering. ACS Synth Biol 2024; 13:1332-1342. [PMID: 38563122 DOI: 10.1021/acssynbio.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrodin, 4-hydroxybenzyl alcohol-4-O-β-D-glucopyranoside, has been widely used in the treatment of neurogenic and cardiovascular diseases. Currently, gastrodin biosynthesis is being achieved in model microorganisms. However, the production levels are insufficient for industrial applications. In this study, we successfully engineered a Yarrowia lipolytica strain to overproduce gastrodin through metabolic engineering. Initially, the engineered strain expressing the heterologous gastrodin biosynthetic pathway, which comprises chorismate lyase, carboxylic acid reductase, phosphopantetheinyl transferase, endogenous alcohol dehydrogenases, and a UDP-glucosyltransferase, produced 1.05 g/L gastrodin from glucose in a shaking flask. Then, the production was further enhanced to 6.68 g/L with a productivity of 2.23 g/L/day by overexpressing the key node DAHP synthases of the shikimate pathway and alleviating the native tryptophan and phenylalanine biosynthetic pathways. Finally, the best strain, Gd07, produced 13.22 g/L gastrodin in a 5 L fermenter. This represents the highest reported production of gastrodin in an engineered microorganism to date, marking the first successful de novo production of gastrodin using Y. lipolytica.
Collapse
Affiliation(s)
- Yuanqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Shuocheng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Baijian Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Jingyi Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Meiyi Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| |
Collapse
|
7
|
Xia K, Chen Y, Liu F, Zhao X, Sha R, Huang J. Adaptive responses of erythritol-producing Yarrowia lipolytica to thermal stress after evolution. Appl Microbiol Biotechnol 2024; 108:263. [PMID: 38489040 PMCID: PMC10943161 DOI: 10.1007/s00253-024-13103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Elucidation of the thermotolerance mechanism of erythritol-producing Yarrowia lipolytica is of great significance to breed robust industrial strains and reduce cost. This study aimed to breed thermotolerant Y. lipolytica and investigate the mechanism underlying the thermotolerant phenotype. Yarrowia lipolytica HT34, Yarrowia lipolytica HT36, and Yarrowia lipolytica HT385 that were capable of growing at 34 °C, 36 °C, and 38.5 °C, respectively, were obtained within 150 days (352 generations) by adaptive laboratory evolution (ALE) integrated with 60Co-γ radiation and ultraviolet ray radiation. Comparative genomics analysis showed that genes involved in signal transduction, transcription, and translation regulation were mutated during adaptive evolution. Further, we demonstrated that thermal stress increased the expression of genes related to DNA replication and repair, ceramide and steroid synthesis, and the degradation of branched amino acid (BCAA) and free fatty acid (FFA), while inhibiting the expression of genes involved in glycolysis and the citrate cycle. Erythritol production in thermotolerant strains was remarkably inhibited, which might result from the differential expression of genes involved in erythritol metabolism. Exogenous addition of BCAA and soybean oil promoted the growth of HT385, highlighting the importance of BCAA and FFA in thermal stress response. Additionally, overexpression of 11 out of the 18 upregulated genes individually enabled Yarrowia lipolytica CA20 to grow at 34 °C, of which genes A000121, A003183, and A005690 had a better effect. Collectively, this study provides novel insights into the adaptation mechanism of Y. lipolytica to thermal stress, which will be conducive to the construction of thermotolerant erythritol-producing strains. KEY POINTS: • ALE combined with mutagenesis is efficient for breeding thermotolerant Y. lipolytica • Genes encoding global regulators are mutated during thermal adaptive evolution • Ceramide and BCAA are critical molecules for cells to tolerate thermal stress.
Collapse
Affiliation(s)
- Kai Xia
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yuqing Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Fangmei Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xuequn Zhao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
8
|
Shi TQ, Shen YH, Li YW, Huang ZY, Nie ZK, Ye C, Wang YT, Guo Q. Improving the productivity of gibberellic acid by combining small-molecule compounds-based targeting technology and transcriptomics analysis in Fusarium fujikuroi. BIORESOURCE TECHNOLOGY 2024; 394:130299. [PMID: 38185446 DOI: 10.1016/j.biortech.2024.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Gibberellic acid (GA3), produced industrially by Fusarium fujikuroi, stands as a crucial plant growth regulator extensively employed in the agriculture filed while limited understanding of the global metabolic network hinders researchers from conducting rapid targeted modifications. In this study, a small-molecule compounds-based targeting technology was developed to increase GA3 production. Firstly, various small molecules were used to target key nodes of different pathways and the result displayed that supplement of terbinafine improved significantly GA3 accumulation, which reached to 1.08 g/L. Subsequently, lipid and squalene biosynthesis pathway were identified as the key pathways influencing GA3 biosynthesis by transcriptomic analysis. Thus, the strategies including in vivo metabolic engineering modification and in vitro supplementation of lipid substrates were adopted, both contributed to an enhanced GA3 yield. Finally, the engineered strain demonstrated the ability to achieve a GA3 yield of 3.24 g/L in 5 L bioreactor when utilizing WCO as carbon source and feed.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nancang 330031, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Yi-Hang Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zi-Yi Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| |
Collapse
|
9
|
Xu N, Yang X, Yang Q, Guo M. Comparative Genomic and Transcriptomic Analysis of Phenol Degradation and Tolerance in Acinetobacter lwoffii through Adaptive Evolution. Int J Mol Sci 2023; 24:16529. [PMID: 38003719 PMCID: PMC10671910 DOI: 10.3390/ijms242216529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Microorganism-based methods have been widely applied for the treatment of phenol-polluted environments. The previously isolated Acinetobacter lwoffii NL1 strain could completely degrade 0.5 g/L phenol within 12 h, but not higher concentrations of phenol. In this study, we developed an evolutionary strain NL115, through adaptive laboratory evolution, which possessed improved degradation ability and was able to degrade 1.5 g/L phenol within 12 h. Compared with that of the starting strain NL1, the concentration of degradable phenol by the developed strain increased three-fold; its phenol tolerance was also enhanced. Furthermore, comparative genomics showed that sense mutations mainly occurred in genes encoding alkyl hydroperoxide reductase, phenol hydroxylase, 30S ribosomal protein, and mercury resistance operon. Comparative transcriptomics between A. lwoffii NL115 and NL1 revealed the enrichment of direct degradation, stress resistance, and vital activity processes among the metabolic responses of A. lwoffii adapted to phenol stress. Among these, all the upregulated genes (log2fold-change > 5) encoded peroxidases. A phenotypic comparison of A. lwoffii NL1 and NL115 found that the adapted strain NL115 exhibited strengthened antioxidant capacity. Furthermore, the increased enzymatic activities of phenol hydroxylase and alkyl hydroperoxide reductase in A. lwoffii NL115 validated their response to phenol. Overall, this study provides insight into the mechanism of efficient phenol degradation through adaptive microbial evolution and can help to drive improvements in phenol bioremediation.
Collapse
Affiliation(s)
| | | | | | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Chen C, Li YW, Chen XY, Wang YT, Ye C, Shi TQ. Application of adaptive laboratory evolution for Yarrowia lipolytica: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 391:129893. [PMID: 39491116 DOI: 10.1016/j.biortech.2023.129893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Adaptive laboratory evolution is an innovative approach utilized by researchers to enhance the characteristics of microorganisms in the field of biology. With the advancement of this technology, it is now being extended to non-model strains. Yarrowia lipolytica, an oleaginous yeast with significant industrial potential, stands out among the non-conventional fungi. However, the activity of Yarrowia lipolytica is frequently affected by specific substances and environmental factors, necessitating the development of techniques to address these challenges. This manuscript provides an overview of adaptive laboratory evolution experiments conducted on Yarrowia lipolytica, and categorizes the contents into two aspects including improving lignocellulose utilization and enhancing the production in Yarrowia lipolytica. Additionally, we selected several representative examples to illustrate how adaptive laboratory evolution can be combined with other techniques to elucidate the potential mechanisms underlying strain evolution. Lastly, we anticipate a promising future for adaptive laboratory evolution technology and Yarrowia lipolytica in tandem.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xin-Yu Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
11
|
Ran Y, Yang Q, Zeng J, Li F, Cao Y, Xu Q, Qiao D, Xu H, Cao Y. Potential xylose transporters regulated by CreA improved lipid yield and furfural tolerance in oleaginous yeast Saitozyma podzolica zwy-2-3. BIORESOURCE TECHNOLOGY 2023; 386:129413. [PMID: 37390935 DOI: 10.1016/j.biortech.2023.129413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Lignocellulose's hydrolysate, a significant renewable source, contains xylose and furfural, making it challenging for industrial production of oleaginous yeast. On xylose fermentation with furfural treatment, OE::DN7263 and OE::DN7661 increased lipid yield and furfural tolerance versus WT, while, which of OE::CreA were decreased owing to CreA regulating DN7263 and DN7661 negatively. OE::CreA generated reactive oxygen species (ROS) causing oxidative damage. OE::DN7263, OE::DN7661, and ΔCreA reduced furfural via NADH; while ΔCreA produced less ROS and OE::DN7263, and OE::DN7661 scavenged ROS quickly, minimizing oxidative damage. Overall, CreA knockout increased DN7263 and DN7661 expression to facilitate xylose assimilation, enhancing NADH generation and ROS clearance. Finally, with mixed sugar fermentation, ΔCreA and OE::DN7263's biomass and lipid yield rose without furfural addition, while that of ΔCreA remained higher than WT after furfural treatment. These findings revealed how oleaginous yeast zwy-2-3 resisted furfural stress and indicated ΔCreA and OE::DN7263 might develop into robust industrial chassis strains.
Collapse
Affiliation(s)
- Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China
| | - Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China
| | - Fazhi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China
| | - Qingrui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan Province 610065, PR China.
| |
Collapse
|
12
|
Jia YL, Li J, Nong FT, Yan CX, Ma W, Zhu XF, Zhang LH, Sun XM. Application of Adaptive Laboratory Evolution in Lipid and Terpenoid Production in Yeast and Microalgae. ACS Synth Biol 2023; 12:1396-1407. [PMID: 37084707 DOI: 10.1021/acssynbio.3c00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Due to the complexity of metabolic and regulatory networks in microorganisms, it is difficult to obtain robust phenotypes through artificial rational design and genetic perturbation. Adaptive laboratory evolution (ALE) engineering plays an important role in the construction of stable microbial cell factories by simulating the natural evolution process and rapidly obtaining strains with stable traits through screening. This review summarizes the application of ALE technology in microbial breeding, describes the commonly used methods for ALE, and highlights the important applications of ALE technology in the production of lipids and terpenoids in yeast and microalgae. Overall, ALE technology provides a powerful tool for the construction of microbial cell factories, and it has been widely used in improving the level of target product synthesis, expanding the range of substrate utilization, and enhancing the tolerance of chassis cells. In addition, in order to improve the production of target compounds, ALE also employs environmental or nutritional stress strategies corresponding to the characteristics of different terpenoids, lipids, and strains.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Feng Zhu
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Hui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
13
|
Sha Y, Zhou L, Wang Z, Ding Y, Lu M, Xu Z, Zhai R, Jin M. Adaptive laboratory evolution boost Yarrowia lipolytica tolerance to vanillic acid. J Biotechnol 2023; 367:42-52. [PMID: 36965629 DOI: 10.1016/j.jbiotec.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Microbial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways. Further analysis by reverse engineering confirmed that the amplification of YALI0_F13475g coding for transcriptional coactivator and YALI0_E25201g coding for multidrug transporter conferred tolerance not only to vanillic acid but also towards ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and syringic acid. These findings suggested that regulation of RNA processing and multidrug transporting pathways may be important for enhanced aromatic acid tolerance in Y. lipolytica. This study provides valuable genetic information for robust strain construction for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zedi Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
14
|
Coleman SM, Cordova LT, Lad BC, Ali SA, Ramanan E, Collett JR, Alper HS. Evolving tolerance of Yarrowia lipolytica to hydrothermal liquefaction aqueous phase waste. Appl Microbiol Biotechnol 2023; 107:2011-2025. [PMID: 36719433 DOI: 10.1007/s00253-023-12393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Hydrothermal liquefaction (HTL) is an emerging method for thermochemical conversion of wet organic waste and biomass into renewable biocrude. HTL also produces an aqueous phase (HTL-AP) side stream containing 2-4% light organic compounds that require treatment. Although anaerobic digestion (AD) of HTL-AP has shown promise, lengthy time periods were required for AD microbial communities to adapt to metabolic inhibitors in HTL-AP. An alternative for HTL-AP valorization was recently demonstrated using two engineered strains of Yarrowia lipolytica, E26 and Diploid TAL, for the overproduction of lipids and the polyketide triacetic acid lactone (TAL) respectively. These strains tolerated up to 10% HTL-AP (v/v) in defined media and up to 25% (v/v) HTL-AP in rich media. In this work, adaptive laboratory evolution (ALE) of these strains increased the bulk population tolerance for HTL-AP to up to 30% (v/v) in defined media and up to 35% (v/v) for individual isolates in rich media. The predominate organic acids within HTL-AP (acetic, butyric, and propionic) were rapidly consumed by the evolved Y. lipolytica strains. A TAL-producing isolate (strain 144-3) achieved a nearly 3-fold increase in TAL titer over the parent strain while simultaneously reducing the chemical oxygen demand (COD) of HTL-AP containing media. Fermentation with HTL-AP as the sole nutrient source demonstrated direct conversion of waste into TAL at 10% theoretical yield. Potential genetic mutations of evolved TAL production strains that could be imparting tolerance were explored. This work advances the potential of Y. lipolytica to biologically treat and simultaneously extract value from HTL wastewater. KEY POINTS: • Adaptive evolution of two Y. lipolytica strains enhanced their tolerance to waste. • Y. lipolytica reduces chemical oxygen demand in media containing waste. • Y. lipolytica can produce triacetic acid lactone directly from wastewater.
Collapse
Affiliation(s)
- Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Lauren T Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street Stop A500, Austin, TX, 78712, USA
| | - Sabah A Ali
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Esha Ramanan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - James R Collett
- Chemical and Biological Process Group, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99352, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences, The University of Texas at Austin, 100 East 24th St., Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Park YK, Ledesma-Amaro R. What makes Yarrowia lipolytica well suited for industry? Trends Biotechnol 2023; 41:242-254. [PMID: 35940976 DOI: 10.1016/j.tibtech.2022.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023]
Abstract
Yarrowia lipolytica possesses natural and engineered traits that make it a good host for the industrial bioproduction of chemicals, fuels, foods, and pharmaceuticals. In recent years, academic and industrial researchers have assessed its potential, developed synthetic biology techniques, improved its features, scaled its processes, and identified its limitations. Both publications and patents related to Y. lipolytica have shown a drastic increase during the past decade. Here, we discuss the characteristics of this yeast that make it suitable for industry and the remaining challenges for its wider use at large scale. We present evidence herein that shows the importance and potential of Y. lipolytica in bioproduction such that it may soon be one of the preferred choices of industry.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
16
|
Liu F, Zhou J, Hu M, Chen Y, Han J, Pan X, You J, Xu M, Yang T, Shao M, Zhang X, Rao Z. Efficient biosynthesis of (R)-mandelic acid from styrene oxide by an adaptive evolutionary Gluconobacter oxydans STA. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:8. [PMID: 36639820 PMCID: PMC9838050 DOI: 10.1186/s13068-023-02258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND (R)-mandelic acid (R-MA) is a highly valuable hydroxyl acid in the pharmaceutical industry. However, biosynthesis of optically pure R-MA remains significant challenges, including the lack of suitable catalysts and high toxicity to host strains. Adaptive laboratory evolution (ALE) was a promising and powerful strategy to obtain specially evolved strains. RESULTS Herein, we report a new cell factory of the Gluconobacter oxydans to biocatalytic styrene oxide into R-MA by utilizing the G. oxydans endogenous efficiently incomplete oxidization and the epoxide hydrolase (SpEH) heterologous expressed in G. oxydans. With a new screened strong endogenous promoter P12780, the production of R-MA was improved to 10.26 g/L compared to 7.36 g/L of using Plac. As R-MA showed great inhibition for the reaction and toxicity to cell growth, adaptive laboratory evolution (ALE) strategy was introduced to improve the cellular R-MA tolerance. The adapted strain that can tolerate 6 g/L R-MA was isolated (named G. oxydans STA), while the wild-type strain cannot grow under this stress. The conversion rate was increased from 0.366 g/L/h of wild type to 0.703 g/L/h by the recombinant STA, and the final R-MA titer reached 14.06 g/L. Whole-genome sequencing revealed multiple gene-mutations in STA, in combination with transcriptome analysis under R-MA stress condition, we identified five critical genes that were associated with R-MA tolerance, among which AcrA overexpression could further improve R-MA titer to 15.70 g/L, the highest titer reported from bulk styrene oxide substrate. CONCLUSIONS The microbial engineering with systematic combination of static regulation, ALE, and transcriptome analysis strategy provides valuable solutions for high-efficient chemical biosynthesis, and our evolved G. oxydans would be better to serve as a chassis cell for hydroxyl acid production.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Junping Zhou
- School of Biotechnology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengkai Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jin Han
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Bigey F, Pasteur E, Połomska X, Thomas S, Crutz-Le Coq AM, Devillers H, Neuvéglise C. Insights into the Genomic and Phenotypic Landscape of the Oleaginous Yeast Yarrowia lipolytica. J Fungi (Basel) 2023; 9:jof9010076. [PMID: 36675897 PMCID: PMC9865632 DOI: 10.3390/jof9010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Although Yarrowia lipolytica is a model yeast for the study of lipid metabolism, its diversity is poorly known, as studies generally consider only a few standard laboratory strains. To extend our knowledge of this biotechnological workhorse, we investigated the genomic and phenotypic diversity of 56 natural isolates. Y. lipolytica is classified into five clades with no correlation between clade membership and geographic or ecological origin. A low genetic diversity (π = 0.0017) and a pan-genome (6528 genes) barely different from the core genome (6315 genes) suggest Y. lipolytica is a recently evolving species. Large segmental duplications were detected, totaling 892 genes. With three new LTR-retrotransposons of the Gypsy family (Tyl4, Tyl9, and Tyl10), the transposable element content of genomes appeared diversified but still low (from 0.36% to 3.62%). We quantified 34 traits with substantial phenotypic diversity, but genome-wide association studies failed to evidence any associations. Instead, we investigated known genes and found four mutational events leading to XPR2 protease inactivation. Regarding lipid metabolism, most high-impact mutations were found in family-belonging genes, such as ALK or LIP, and therefore had a low phenotypic impact, suggesting that the huge diversity of lipid synthesis and accumulation is multifactorial or due to complex regulations.
Collapse
Affiliation(s)
- Frédéric Bigey
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
| | - Emilie Pasteur
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Xymena Połomska
- Department of Biotechnology & Food Microbiology, Wroclaw University of Environmental and Life Sciences (WUELS), 50-375 Wroclaw, Poland
| | - Stéphane Thomas
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
- IJPB, INRAE, 78000 Versailles, France
| | - Hugo Devillers
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Cécile Neuvéglise
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
- Correspondence:
| |
Collapse
|
18
|
Wang L, Qi A, Liu J, Shen Y, Wang J. Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Guo L, Sun L, Huo YX. Toward bioproduction of oxo chemicals from C1 feedstocks using isobutyraldehyde as an example. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:80. [PMID: 35945564 PMCID: PMC9361566 DOI: 10.1186/s13068-022-02178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Abstract
AbstractOxo chemicals are valuable chemicals for synthesizing a wide array of industrial and consumer products. However, producing of oxo chemicals is predominately through the chemical process called hydroformylation, which requires petroleum-sourced materials and generates abundant greenhouse gas. Current concerns on global climate change have renewed the interest in reducing greenhouse gas emissions and recycling the plentiful greenhouse gas. A carbon–neutral manner in this regard is producing oxo chemicals biotechnologically using greenhouse gas as C1 feedstocks. Exemplifying isobutyraldehyde, this review demonstrates the significance of using greenhouse gas for oxo chemicals production. We highlight the current state and the potential of isobutyraldehyde synthesis with a special focus on the in vivo and in vitro scheme of C1-based biomanufacturing. Specifically, perspectives and scenarios toward carbon– and nitrogen–neutral isobutyraldehyde production are proposed. In addition, key challenges and promising approaches for enhancing isobutyraldehyde bioproduction are thoroughly discussed. This study will serve as a reference case in exploring the biotechnological potential and advancing oxo chemicals production derived from C1 feedstocks.
Collapse
|
20
|
Chen Z, Chen X, Li Q, Zhou P, Zhao Z, Li B. Transcriptome Analysis Reveals Potential Mechanisms of L-Serine Production by Escherichia coli Fermentation in Different Carbon-Nitrogen Ratio Medium. Foods 2022; 11:2092. [PMID: 35885334 PMCID: PMC9318367 DOI: 10.3390/foods11142092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
L-serine is an industrially valuable amino acid that is widely used in the food, cosmetics and pharmaceutical industries. In this study, transcriptome sequencing technology was applied to analyze the changes in gene expression levels during the synthesis of L-serine in Escherichia coli fermentation. The optimal carbon-nitrogen ratio for L-serine synthesis in E. coli was determined by setting five carbon-nitrogen ratios for shake flask fermentation. Transcriptome sequencing was performed on E. coli fermented in five carbon-nitrogen ratio medium in which a total of 791 differentially expressed genes (DEGs) were identified in the CZ4_vs_CZ1 group, including 212 upregulated genes and 579 downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these DEGs showed that the effect of an altered carbon-nitrogen ratio on the fermentability of E. coli was mainly focused on metabolic pathways such as GABAergic synapse and the two-component system (TCS) in which the genes playing key roles were mainly gadB, gadA, glsA, glnA, narH and narJ. In summary, these potential key metabolic pathways and key genes were proposed to provide valuable information for improving glucose conversion during E. coli fermentation.
Collapse
Affiliation(s)
- Zheng Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Xiaojia Chen
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Qinyu Li
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Peng Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Zhijun Zhao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
| |
Collapse
|
21
|
Zeng L, Si Z, Zhao X, Feng P, Huang J, Long X, Yi Y. Metabolome analysis of the response and tolerance mechanisms of Saccharomyces cerevisiae to formic acid stress. Int J Biochem Cell Biol 2022; 148:106236. [PMID: 35688405 DOI: 10.1016/j.biocel.2022.106236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/18/2022]
Abstract
Various inhibitors are produced during the hydrolysis of lignocellulosic biomass that can interfere with the growth of yeast cells and the production of bioethanol. Formic acid is a common weak acid inhibitor present in lignocellulosic hydrolysate that has toxic effects on yeast cells. However, the mechanism of the response of Saccharomyces cerevisiae to formic acid is not fully understood. In this study, liquid chromatography-mass spectrometry (LC-MS) was used to investigate the effects of formic acid treatment on cell metabolites of S. cerevisiae. Treatment with different concentrations of formic acid significantly inhibited the growth of yeast cells, reduced the yield of ethanol, prolonged the cell fermentation cycle, and increased the content of malondialdehyde. Principal component analysis and orthogonal partial least squares discriminant analysis showed that 55 metabolites were significantly altered in S. cerevisiae after formic acid treatment. The metabolic relevance of these compounds in the response of S. cerevisiae to formic acid stress was investigated. Formic acid can cause oxidative stress, inhibit protein synthesis, and damage DNA in S. cerevisiae, and these are possible reasons for the inhibition of S. cerevisiae cell growth. In addition, the levels of several aromatic amino acids identified in the cells of formic acid-treated yeast were increased; the biosynthesis of nucleotides was slowed, and energy consumption was reduced. These mechanisms may help to improve the tolerance of yeast cells to formic acid. The results described herein highlight our current understanding of the molecular mechanism of the response of S. cerevisiae to formic acid. The study will provide a theoretical basis for research on the tolerance mechanisms of S. cerevisiae.
Collapse
Affiliation(s)
- Lingjie Zeng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zaiyong Si
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Xuemei Zhao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Pixue Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Jinxiang Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Xiufeng Long
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China.
| |
Collapse
|
22
|
Zhang Y, Xu Z, Lu M, Ding B, Chen S, Wen Z, Yu Y, Zhou L, Jin M. Rapid evolution and mechanism elucidation for efficient cellobiose-utilizing Saccharomyces cerevisiae through Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution. BIORESOURCE TECHNOLOGY 2022; 356:127268. [PMID: 35533888 DOI: 10.1016/j.biortech.2022.127268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Lack of cellobiose utilization capability for many microorganisms results in carbon source waste in lignocellulosic biorefinery. In this study, genes for cellobiose transport and hydrolysis were introduced to Saccharomyces cerevisiae synV, a semi-synthetic yeast with an inducible SCRaMbLE (Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution) system incorporated into its chromosome V, endowing cellobiose utilization capability to this strain. Thereafter, two evolved strains with 98.1% and 79.2% improvement, respectively, in cellobiose utilization rate were obtained through induced SCRaMbLE. Further studies suggested that the enhanced cellobiose utilization capability directly correlated with copy number increases of introduced genes and some chromosome structural variations. In particular, it was experimentally demonstrated for the first time that deletion of redox stress related gene MXR1 and ATP conversion related gene ADK2 contributed to enhanced cellobiose conversion. Thereafter, the effectiveness of MXR1 and ADK2 deletions was demonstrated in artificial hydrolysate and rice straw hydrolysate, respectively.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yang Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
23
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
24
|
Peng F, Ye M, Liu Y, Liu J, Lan Y, Luo A, Zhang T, Jiang Z, Song H. Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution. Appl Microbiol Biotechnol 2022; 106:2751-2761. [DOI: 10.1007/s00253-022-11858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
|
25
|
Zhou H, Xu Z, Cai C, Li J, Jin M. Deciphering the metabolic distribution of vanillin in Rhodococcus opacus during lignin valorization. BIORESOURCE TECHNOLOGY 2022; 347:126348. [PMID: 34798253 DOI: 10.1016/j.biortech.2021.126348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Vanillin bioconversion is important for the biological lignin valorization. In this study, the obscure vanillin metabolic distribution in Rhodoccous opacus PD630 was deciphered by combining the strategies of intermediate detection, putative gene prediction, and target gene verification. The results suggest that approximately 10% (mol/mol) of consumed vanillin is converted to vanillic acid for further metabolism, and a large amount is converted to dead-end vanillyl alcohol in R. opacus PD630. Subsequently, five vanillin reductases were identified in R. opacus PD630, among which Pd630_LPD03722 product exhibited the greatest activity. With the detected metabolic distributions of vanillin, the conversion of vanillin to muconic acid was facilitated by deleting domestic vanillin reductase genes and introducing vanillin dehydrogenase from Sphingobium sp. SYK-6. Ultimately, the muconic acid yield from vanillin increased to 97.83% (mol/mol) from the initial 10% (mol/mol). Moreover, this study demonstrated the existence of vanillin reductases in Escherichia coli, Bacillus subtilis, and Corynebacterium glutamicum.
Collapse
Affiliation(s)
- Huarong Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Chenggu Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
26
|
Erian AM, Sauer M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. BIORESOURCE TECHNOLOGY 2022; 346:126296. [PMID: 34798255 DOI: 10.1016/j.biortech.2021.126296] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Sugar alcohols are widely marketed compounds. They are useful building block chemicals and of particular value as low- or non-calorigenic sweeteners, serving as sugar substitutes in the food industry. To date most sugar alcohols are produced by chemical routes using pure sugars, but a transition towards the use of renewable, non-edible feedstocks is anticipated. Several yeasts are naturally able to convert renewable feedstocks, such as lignocellulosic substrates, glycerol and molasses, into sugar alcohols. These bioconversions often face difficulties to obtain sufficiently high yields and productivities necessary for industrialization. This review provides insight into the most recent studies on utilizing yeasts for the conversion of renewable feedstocks to diverse sugar alcohols, including xylitol, erythritol, mannitol and arabitol. Moreover, metabolic approaches are highlighted that specifically target shortcomings of sugar alcohol production by yeasts from these renewable substrates.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
27
|
Zhang G, Chen Y, Li Q, Zhou J, Li J, Du G. Growth-coupled evolution and high-throughput screening assisted rapid enhancement for amylase-producing Bacillus licheniformis. BIORESOURCE TECHNOLOGY 2021; 337:125467. [PMID: 34320747 DOI: 10.1016/j.biortech.2021.125467] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bacillus licheniformis α-amylase is a thermostable enzyme used in industrial starch hydrolysis. However, difficulties in the genetic manipulation of B. licheniformis hamper further enhancement of α-amylase production. In this regard, adaptive evolution is a useful strategy for promoting the productivity of microbial hosts, although the success of this approach requires the application of suitable evolutionary stress. In this study, we designed a growth-coupled adaptive evolution model to enrich B. licheniformis strains with enhanced amylase productivity and utilization capacity of starch substrates. Single cells of high α-amylase-producing B. licheniformis were isolated using a droplet-based microfluidic platform. Clones with 67% higher α-amylase yield were obtained and analyzed by genome resequencing. Our findings confirmed that growth-coupled evolution combined with high-throughput screening is an efficient strategy for enhanced α-amylase production. In addition, we identified several potential target genes to guide further modification of the B. licheniformis host for efficient protein expression.
Collapse
Affiliation(s)
- Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yukun Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qinghua Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
Sun T, Yu Y, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. BIORESOURCE TECHNOLOGY 2021; 337:125484. [PMID: 34320765 DOI: 10.1016/j.biortech.2021.125484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from lignocellulosic biomass has great potential industrial applications due to its economic feasibility and environmental attractiveness. However, the utilized microorganisms must be able to use all the sugars present in lignocellulosic hydrolysates, especially xylose, the second most plentiful monosaccharide on earth. Yarrowia lipolytica is a good candidate for producing various valuable products from biomass, but this yeast is unable to catabolize xylose efficiently. The development of metabolic engineering facilitated the application of Y. lipolytica as a platform for the bioconversion of xylose into various value-added products. Here, we reviewed the research progress on natural xylose-utilization pathways and their reconstruction in Y. lipolytica. The progress and emerging trends in metabolic engineering of Y. lipolytica for producing chemicals and fuels are further introduced. Finally, challenges and future perspectives of using lignocellulosic hydrolysate as substrate for Y. lipolytica are discussed.
Collapse
Affiliation(s)
- Tao Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
29
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|