1
|
Fan Y, Zhu J, Ni Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Effect of Monascus-fermented Moringa oleifera on production performance, carcass characteristics, and meat quality attributes in broilers. Poult Sci 2024; 103:104306. [PMID: 39303353 PMCID: PMC11437757 DOI: 10.1016/j.psj.2024.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
This study investigated the production performance, carcass characteristics, and meat quality attributes of broilers fed with different doses of Monascus-fermented Moringa oleifera leaves. A total of 400 one-day-old unsexed Greenleg partridge broilers were randomly divided into 4 dietary which were fed a basal diet supplemented with 0, 5% Monascus-fermented Moringa oleifera leaves, 10% Monascus-fermented Moringa oleifera leaves, and 10% Moringa oleifera leaves, respectively. Each group had 5 replicates of twenty birds each. The whole trial lasted for 63 d. The results indicated that a high dose of Moringa oleifera leaves supplement in broiler diet reduced the production performance, carcass characteristics, and meat quality attributes (P < 0.05). While the addition of the same dose of Monascus-fermented Moringa oleifera leaves reversed this adverse effect, and the 5% Monascus-fermented Moringa oleifer leaves supplement was found to be more effective (P < 0.05). In addition, Monascus-fermented Moringa oleifera leaves improved the concentration of amino acids and polyunsaturated fatty acids in the meat, which could be beneficial for human health. We conclude that, a 5% Monascus-fermented Moringa oleifera leaves supplement in the diet is beneficial in terms of improved growth performance and the functional attributes of meat than sole Moringa oleifera leaves supplement.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuechun Ni
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Jia T, Luo Y, Wang L, Yu Z. Effect of soil contamination and additives on fermentative profile, microbial community and iron bioaccessibility of alfalfa silage. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2024; 11:55. [DOI: 10.1186/s40538-024-00578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/05/2024] [Indexed: 01/05/2025]
Abstract
Abstract
Background
During alfalfa harvesting and preservation, it is important to minimize losses and preserve dry matter and nutrients. Soil contamination of alfalfa forage is a common issue that occurs during the ensiling process. Soil contamination can adversely influence the quality of silage, potentially altering the fermentation process, microbial composition, and iron content.
Results
In this study, different levels of soil (0, 1.5% or 7.5% contamination on a wet basis; silt loam soil) and two types of additives (LP, Lactobacillus plantarum inoculant alone; MLP, combination addition of molasses and Lactobacillus plantarum) were added to alfalfa and subjected to anaerobic fermentation for 45 days to evaluate the iron content as well as the alpha diversity and relative abundance of bacterial and fungal communities. Soil-contaminated alfalfa contained lower levels of LA (14.2–41.8 g kg−1 DM) and higher levels of AN (50.0–156.4 g kg−1 DM) compared to uncontaminated alfalfa. Soil contamination of alfalfa forage increased the abundance of Clostridia, Actinobacteria, and Alphaproteobacteria in silage. The application of LP or MLP in soil-contaminated silage increased the abundance of Lactobacillus and inhibited the growth of Enterococcus faecium, Pediococcus pentosaceus, unclassified_f_Enterobacteriaceae, and Weissella cibaria. In addition, as the level of soil contamination increased, both the total and bioaccessible iron contents in alfalfa silage increased. The dominant bacteria Lactobacillus plantarum exhibited a positive relationship with LA and bioaccessible iron contents and a negative relationship with pH, AN and BA. The dominant fungi Neocosmospora rubicola showed a positive relationship with total iron, BA, AN and pH.
Conclusions
Soil contamination of alfalfa increased the abundance of Clostridia, Actinobacteria, and Alphaproteobacteria and it also increased the total and bioaccessible iron content in silage. The addition of LP and MLP improved the fermentation quality of soil-contaminated silage by increasing LA production and reducing the relative abundance of Enterococcus faecium, Pediococcus pentosaceus, unclassified_f_Enterobacteriaceae, and Weissella cibaria.
Graphical Abstract
Collapse
|
3
|
Zheng Y, Ngo HH, Luo H, Wang R, Li C, Zhang C, Wang X. Production of cost-competitive bioethanol and value-added co-products from distillers' grains: Techno-economic evaluation and environmental impact analysis. BIORESOURCE TECHNOLOGY 2024; 397:130470. [PMID: 38395236 DOI: 10.1016/j.biortech.2024.130470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Here, Baijiu distillers' grains (BDGs) were employed in biorefinery development to generate value-added co-products and bioethanol. Through ethyl acetate extraction at a 1:6 solid-liquid ratio for 10 h, significant results were achieved, including 100 % lactic acid and 92 % phenolics recovery. The remaining BDGs also achieved 99 % glucan recovery and 81 % glucan-to-glucose conversion. Simultaneous saccharification and fermentation of remaining BDGs at 30 % loading resulted in 78.5 g bioethanol/L with a yield of 94 %. The minimum selling price of bioethanol varies from $0.149-$0.836/kg, contingent on the co-product market prices. The biorefinery processing of one ton of BDGs caused a 60 % reduction in greenhouse gas emissions compared to that of the traditional production of 88 kg corn-lactic acid, 70 kg antioxidant phenolics, 234 kg soybean protein, and 225 kg corn-bioethanol, along with emissions from BDG landfilling. The biorefinery demonstrated a synergistic model of cost-effective bioethanol production and low-carbon emission BDGs treatment.
Collapse
Affiliation(s)
- Yuxi Zheng
- Department of Resources and Environmental Science, Moutai Institute, Renhuai 564500, Guizhou Province, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, FEIT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Han Luo
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruxue Wang
- Department of Resources and Environmental Science, Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Chun Li
- Baolu Green Technology (Chengdu) Co., Ltd., Chengdu 610000, China
| | - Chaolong Zhang
- Baolu Green Technology (Chengdu) Co., Ltd., Chengdu 610000, China
| | - Xuliang Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Zunyi 564501, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China; China Alcoholic Drinks Association, Beijing 100037, China.
| |
Collapse
|
4
|
Long M, Cai Y, Zheng N, Lu Z, Cao W, Li Y, Pei X, Tolbert O, Xia X. Clean Monascus pigments production from Chinese rice wine wastes through submerged fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Gao H, Zhao R, Wu Z, Ye J, Duan L, Yu R. New insights into exogenous N-acyl-homoserine lactone manipulation in biological nitrogen removal system against ZnO nanoparticle shock. BIORESOURCE TECHNOLOGY 2023; 370:128567. [PMID: 36596365 DOI: 10.1016/j.biortech.2022.128567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The effects and mechanisms of three N-acyl-homoserine lactones (AHLs) (C4-HSL, C6-HSL, and C10-HSL) on responses of biological nitrogen removal (BNR) systems to zinc oxide nanoparticle (NP) shock were investigated. All three AHLs improved the NP-impaired ammonia oxidation rates by up to 50.0 % but inhibited the denitrification process via regulating nitrogen metabolism-related enzyme activities. C4-HSL accelerated the catalase activity by 13.2 %, while C6-HSL and C10-HSL promoted the superoxide dismutase activity by 26.6 % and 18.4 %, respectively, to reduce reactive oxygen species levels. Besides, the enhancements of tryptophan protein and humic acid levels in tightly-bound extracellular polymeric substance by AHLs were vital for NP toxicity attenuation. The metabonomic analysis demonstrated that all three AHLs up-regulated the levels of lipid- and antioxidation-related metabolites to advance the system's resistance to NP shock. The "dual character" of AHLs emphasized the concernment of legitimately employing AHLs to alleviate NP stress for BNR systems.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zeyu Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Lijie Duan
- Guangdong Institute of Socialism, Guangzhou, Guangdong 510400, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|